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Dynamics of optomechanical droplets in a Bose-Einstein condensate
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We investigate numerically a one-dimensional Bose-Einstein condensate illuminated by off-resonant laser
light which is retroreflected by a single feedback mirror. Studying the ground states of the system, we find
density structures which are self-trapped via the optomechanical action of the diffracted light. We show that
these structures are stable and exhibit Newtonian dynamics. We propose that these results allow continuous,
nondestructive monitoring of condensate dynamics via the optical intensity and may offer opportunities for
optical control and transport of coherent matter via gradients in optical phase alone.
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I. INTRODUCTION

Self-organized patterns and structures that arise due to a
combination of optical nonlinearity and diffraction have been
predicted and observed in a variety of media [1–10] including
specifically atomic vapors [1–6,11–13]. In recent times, there
has been significant interest in self-organization phenomena
involving cold and ultracold atomic gases, e.g., cold atoms
or a Bose-Einstein condensate (BECs) interacting with one or
more modes of an optical cavity [14–19], which have resulted
in a wide range of new nonlinear and quantum phenomena,
e.g., collective atomic recoil lasing [14,20], Dicke super-
radiance [21], and supersolid formation [22–24]. In these
systems, the source of optical nonlinearity is optomechani-
cal, i.e., the center-of-mass motion of the atoms under the
mechanical action of light, specifically optical dipole forces.
Optomechanical self-structuring of a cold thermal gas has
been studied experimentally and theoretically in systems of
counterpropagating beams in [25,26] and, as is modeled here,
in a single-mirror feedback (SMF) configuration in [27,28],
with diffraction of light providing spatial coupling between
different parts of the BEC. The concept of optomechanical
self-structuring was extended theoretically from the case of a
thermal gas to a BEC in [29]. It was shown that a significant
difference from the behavior in a classical thermal gas was
due to the presence of quantum pressure, i.e., the dispersive
nature of the BEC wave function, which acts to damp out
density modulations or spatial structure in the BEC. Recent
work has shown that in addition to global patterns, the system
can display a spatially localized structures termed droplets
or quantum droplets both in the SMF configuration [30,31]
and in a ring-cavity setup [32]. These droplets are self-bound
optomechanical structures consisting of interacting light and
matter. They display some similar characteristics to quantum
droplets in other systems, e.g., dipolar BECs [33], but are also
similar in some respects to other types of spatially localized
structures, e.g., spatial solitons [34]. In this paper we study
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the dynamical behavior of these optomechanical droplets in
one dimension in a configuration involving a single feedback
mirror, as in [30,31].

II. MODEL

Here we model the optomechanical behavior of a BEC
present within a SMF configuration as is shown diagram-
matically in Fig. 1. We take an approach similar to that in
[29] to model the dilute noninteracting BEC where we use
a Schrödinger equation which describes the evolution of the
BEC wave function �(x, t ) as

ih̄
∂�(x, t )

∂t
= − h̄2

2m

∂2�(x, t )

∂x2
+ V (x, t )�(x, t ), (1)

where we consider a potential energy V to be given by

V (x, t ) = h̄δ

2
[|F |2 + |B(x, t )|2] (2)

and where m is the atomic mass; δ = ω − ωa, with ω and
ωa the optical field frequency and atomic transition resonance
frequency respectively; s = |F |2 + |B(x, t )|2 is the saturation
parameter due to the forward and backwards fields, which
are given by |F, B|2 = IF,B

Isat�2 , with IF,B the intensity of the
forward (F ) or backward (B) beam, Isat the saturation inten-
sity on resonance, and � = 2δ

�
; and � is the decay rate of

the atomic transition. It has been assumed that |�| � 1 and
that consequently s � 1 so that the atoms remain in their
ground state. In addition, longitudinal grating effects due to
interference between the counterpropagating optical fields on
the transverse pattern formation process are neglected.

In order to describe the optical field evolution we assume
that the gas is sufficiently thin that diffraction can be ne-
glected, so that the forward field transmitted through the cloud
is

Ftr = √
p0 exp[−iχ0n(x, t )]. (3)

where p0 = |F (z = 0)|2 is the scaled pump intensity incident
on the atoms, χ0 = b0

2�
is the susceptibility of the cloud, b0 is

the optical thickness of the cloud at resonance, and n(x, t ) =
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FIG. 1. Schematic diagram of the SMF configuration

|�(x, t )|2 is the local density of the BEC. We consider that
the total density is conserved and as such the assumption of a
preserved number of atoms is made.

To complete the feedback loop, calculation of the backward
field B at the atomic cloud is required. As the field propagates
a distance 2d from the cloud to the mirror and back, optical
diffraction plays a crucial role by converting phase modu-
lations to amplitude modulations and consequently optical
dipole forces. The relation between the Fourier components
of the forward and backward fields at the cloud is

B(q) =
√

RFtr (q)e−iq2d/k0 , (4)

where R is the mirror reflectivity, q is the transverse wave
number, k0 = 2π

λ0
, and it has been assumed that q � k0. It

has also been assumed that the propagation time of the light
between the BEC and mirror is sufficiently small as to be
neglected.

Equations (1), (3), and (4) can be solved self-consistently
to describe the mutual interaction of the moving atoms and
the optical fields. Numerical integration of these equations is
performed to obtain the spatiotemporal dynamics of the BEC
within the SMF setup. Transformation to imaginary time τ =
−it is also performed here and the same equations are numer-
ically integrated with an initial Gaussian density distribution
to obtain the ground-state solutions.

III. OPTOMECHANICAL PATTERNS AND DROPLETS

A. Optomechanical patterns

The existence of optomechanical patterns in a dilute BEC
illuminated by an optical field retroreflected by a single
feedback mirror was first predicted in [29] using a one-
dimensional model. These patterns form as a result of a
self-structuring instability in which a spatially homogeneous
optical field and BEC density become unstable, resulting in
the spontaneous formation of periodic modulations in both
the optical intensity and BEC density. The physical origin
of the instability is the Talbot effect, which converts phase
modulation in the optical field produced by BEC density
fluctuations to intensity modulations and consequently optical
dipole forces which increase density modulation. An example
of this pattern formation is shown in Fig. 2. The system
develops a modulated optical intensity and modulated BEC
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FIG. 2. Example of pattern formation or self-structuring of a
BEC in a single-feedback-mirror configuration. The parameters used
here are p0 = 1.9 × 10−9, � = −100, R = 0.99, (ωr )/� = 9.88 ×
10−9, and b0 = 20.

density with a spatial period of �c = 2π
qc

, where

qc =
√

π

2

k0

d
. (5)

From qc we define ωr = h̄q2
c

2m , analogous to the recoil frequency
associated with momentum changes of h̄qc.

The reason for this instability is that BEC density modula-
tions (which correspond to refractive index modulations of the
BEC) with spatial frequency qc produce phase modulations in
Ftr which are in turn converted into intensity modulations of B
[see Eq. (4)] [35]. These intensity modulations produce dipole
forces, which in turn reinforce density modulations, resulting
in positive feedback and instability of the initial homogeneous
state. More recently, two-dimensional patterns and droplet
formation in a SMF configuration were studied in [30,31],
including the effects of direct atom-atom interactions via the
BEC scattering length.

B. Optomechanical droplets

1. Stable droplets

In Sec. III A, the initial conditions correspond to a spa-
tially homogeneous optical intensity and BEC density which
exhibits a self-structuring instability and evolves into a qua-
sistationary state which consists of a strongly modulated
pattern with some temporal variation in the amplitude of the
pattern maxima and minima. However, simulations involv-
ing imaginary-time propagation demonstrate that the ground
states of this system are localized structures of BEC density
and corresponding optical intensity, as originally predicted
in [30], where a nonlinearity due to a combination of op-
tomechanical forces and atomic collisions was investigated.
Here we concentrate on a regime in which effects due to
atomic collisions (or atomic scattering length) are negligible
and structures are produced due to optomechanical forces
alone. The temporal evolution of these stable optomechanical
droplets is shown in Figs. 3 and 4 for red detuning (� < 0)
and blue detuning (� > 0), respectively. It can be seen that
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FIG. 3. Evolution of a stable optomechanical droplet for red de-
tuning. The parameters are p0 = 2.0 × 10−9, � = −800, R = 0.99,
(ωr )/� = 5.69 × 10−8, and b0 = 20

for red detuning, the maxima of the BEC density and optical
intensity coincide due to the potential energy of the system
being minimized when atoms sit at positions of maximum
optical intensity. In contrast, for blue detuning, the maximum
of the BEC density coincides with a minimum of optical
intensity. The properties of the stable ground-state droplet are
determined in full by the optical parameters of the system such
as detuning, pump intensity, and mirror distance d (via qc).

Observation of a fully static droplet in time-dependent sim-
ulations using Eqs. (1), (3), and (4) requires the BEC density
profile to exactly match the ground-state profile. However, the
system continues to support droplet structures with an initial
BEC density profile which is perturbed from the ground state.
With such initial conditions the system exhibits now dynam-
ical behavior, with density oscillations as the self-imposed
trapping potential from the optical intensity continually ad-
justs to the changing BEC density profile. This behavior is
shown in Fig. 5.
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FIG. 4. Evolution of a stable optomechanical droplet for blue
detuning. The parameters are p0 = 2.0 × 10−9, � = 800, R = 0.99,
(ωr )/� = 5.69 × 10−8, and b0 = 20.
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FIG. 5. Evolution of a perturbed blue-detuned droplet, where the
initial BEC density has been produced from a Gaussian distribution
whose width is adjusted slightly from the ideal value. The parameters
are p0 = 5.0 × 10−9, � = 800, R = 0.99, (ωr )/� = 5.69 × 10−8,
and b0 = 20.

For both the self-structuring patterned state and perturbed
droplet profiles we can observe temporal variation consistent
with a system which is a superposition of eigenstates rather
than in the ground state. In this conservative system the pat-
terned state is a asymptotic state; however, with the inclusion
of damping and friction, the system would be expected to
relax to the droplet state as it is a ground state of the system,
as demonstrated by the imaginary-time simulations.

Quantum pressure in the BEC plays an important role in
stabilizing the droplet against compression and is capable of
producing a stable droplet even in the absence of other disper-
sive effects such as finite temperature or repulsive collisions
(positive scattering length). It can be shown that the pres-
ence of quantum pressure is required to produce a minimized
ground-state energy with nonzero droplet width [36,37]. For
narrow droplets an additional stabilizing factor is diffraction,
which will produce a lower limit to the width of the optical
potential associated with the droplet.

2. Single- and multiple-peak droplet structures

Figure 6 shows the dependence of the width and amplitude
of the BEC density on pump intensity p0 when a stable droplet
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FIG. 6. (a) Droplet width σx and (b) peak density |�|2 against
pump intensity p0. Results were calculated through imaginary-time
integration with the parameters R = 0.99, (ωr )/� = 1.01 × 10−7,
� = 800, and b0 = 20.
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FIG. 7. Example ground-state droplet density profiles of
(a) single-, (b) dual-, and (c) triple-peak droplet structures for red
detuning, calculated from imaginary-time integration. The parame-
ters are R = 0.99, (ωr )/� = 4.05 × 10−7, b0 = 20, � = −800, and
pump intensity p0 equal to (a) 3.714 × 10−9, (b) 2.395 × 10−8, and
(c) 9.398 × 10−8. Shown in (b) is an off-center structural position,
consistent with the translational invariance of the system.

forms. It can be seen that as the pump intensity is increased,
the droplet narrows and the peak of the BEC density increases.
It can also be seen that the width of the droplet has a power-
law dependence on p0, scaling as σx ∝ p0

−1/4, in agreement
with analytical predictions of the droplet width in the limit
where χ |�|2 � 1 [36,37].

When the pump is red detuned (� < 0), then in addition to
the single-peak droplet structures shown previously, structures
consisting of multiple density peaks also arise. Examples of
these multipeak droplet structures are shown in Figs. 7(b)
and 7(c), which show double- and triple-peak droplet struc-
tures respectively. Complex, multiple droplet structures were
observed in [30,31], but their physical origin is different as
their existence was reported only for nonzero BEC scattering
length, whereas here we exclusively consider the case for no
internal interactions.

These multiple droplet structures have not been observed
in numerical simulations for cases involving blue detuning
(� > 0). The reason for the different behavior of the system
when red and blue detuned is due to the combined effect
of refraction in the narrow BEC and diffraction between the
BEC and mirror, which produces the corresponding optical
intensity profile and consequent (dipole) potential energy pro-
file. The BEC acts like a narrow refractive element, which
affects the optical phase as described by Eq. (3). Its refractive
effect is dependent on χ0 and consequently on �. The re-
sulting diffraction pattern after propagation of the transmitted
optical field from the BEC to the mirror and back will also
therefore depend on �. The most significant difference is in
relative amplitudes of the off-axis maxima and minima of
the diffraction pattern. As shown in Figs. 3(b) and 4(b), for
� > 0 the pattern consists of a central minimum, with a series
of damped oscillations off-center which are characteristic of
Fresnel diffraction. For � < 0 the pattern consists of a cen-
tral maximum, with damped oscillations off-center. As pump
intensity p0 is increased, the width of the BEC decreases as
shown in Fig. 6, which causes the amplitude of the off-center
diffractive minima and maxima to increase relative to the
central one [35].

In the case of red detuning these off-center maxima grow
to become the global maxima of the optical intensity profile.
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FIG. 8. Ground-state optical field intensity profiles for the
red-detuned system with pump amplitudes (a) p0 = 3.07 × 10−9,
(b) p0 = 1.43 × 10−8, and (c) p0 = 1.53 × 10−8, calculated from
imaginary-time integration. The other parameters are R = 0.99,
(ωr )/� = 4.05 × 10−7, � = −800, and b0 = 20.

This results in an energetically favorable configuration when
the BEC occupies the off-center locations of peak optical
intensity instead of occupying the central local maximum.
Figure 8(a) shows the case for a global central peak where
a single-peak droplet is the ground-state configuration. Fig-
ure 8(b) shows that, for an increased pump amplitude relative
to Fig. 8(a), the off-center maxima are now the global maxima.
As the pump amplitude is increased further a transition to the
two-peak droplet ground state is observed, at which point the
optical intensity profile takes the form shown in Fig. 8(c). For
blue detuning the off-center minima do not grow to become
global minima of the intensity profile for any of the parame-
ters examined here.

3. Dynamic droplets

It has been established that the BEC and optical fields
can form a stationary stable droplet. We now consider the
dynamics of moving droplets, with first the addition of a
uniform velocity. Providing our initial BEC wave function
with an additional linear phase gradient will imprint this initial
velocity on the droplet:

�(x, t = 0) =
√

n0(x)eimv0x/h̄. (6)

Such a phase gradient is given in Eq. (6), where n0(x) is the
initial density profile of the BEC (the ground-state droplet
profile), v0 is the uniform BEC velocity, and m is the mass
of each atom in the BEC.

Figures 9 and 10 show the evolution of the BEC and optical
fields for red and blue detuning, respectively. These droplets
continue to be stable like their static counterparts, which were
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FIG. 9. Uniformly moving droplet for red detuning (� < 0). The
parameters are identical to those of Fig. 3 with the addition of v0 =
h̄qc/12m.

shown in Figs. 3 and 4. In both cases the optical field distribu-
tion also moves with uniform velocity, tracking the uniformly
moving BEC. In the case of red detuning (Fig. 9), this results
in an optical intensity maximum which always coincides with
the BEC, whereas in the case of blue detuning (Fig. 10), an
optical intensity minimum always coincides with the BEC.

The dynamics of similar self-trapping BEC structures have
been studied for a ring-cavity configuration [32] where a fric-
tionlike force was found to damp out motion of the density
structures. This friction arises in the ring-cavity case from the
finite response time of the cavity, which allows optical inten-
sity profiles to lag behind changes in BEC density. Although
mirror loss is included within our model, the finite time for
propagation of light through the system is neglected, resulting
in the undamped motion seen here.

Similarly, we can investigate the stability and behavior of
these droplets under uniform acceleration. An acceleration
can be achieved with the modification of the potential energy

0 10
x/Λc

0.0

0.2

0.4

0.6

0.8

1.0

tΓ

×109 |Ψ(x, t)|2

0

5

10

15

20

25

30

0 10
x/Λc

0.0

0.2

0.4

0.6

0.8

1.0

tΓ

×109 s(x, t)

3.6

3.8

4.0

4.2

4.4

×10−9

FIG. 10. Uniformly moving droplet for blue detuning (� > 0).
The parameters are identical to those of Fig. 4 with the addition of
v0 = h̄qc/12m.

0 10
x/Λc

0.0

0.2

0.4

0.6

0.8

1.0

tΓ

×109 |Ψ(x, t)|2

0

5

10

15

20

25

30

0 10
x/Λc

0.0

0.2

0.4

0.6

0.8

1.0

tΓ

×109 s(x, t)

3.6

3.8

4.0

4.2

4.4

×10−9

FIG. 11. Uniformly accelerating droplet for red detuning (� <

0). The parameters are identical to those of Fig. 3 with the addition
of a = −4.0 × 10−9(h̄qc�/12m).

given by

V (x, t ) = h̄δ

2
[|F |2 + |B(x, t )|2] + (ma)x, (7)

where a is the constant acceleration. Figures 11 and 12 show
the evolution of the BEC and optical fields for the cases
of red and blue detuning, respectively. It can be seen that
the BEC now accelerates uniformly and, as for the case of
uniform motion, the optical field follows this motion with the
BEC density coinciding with an optical intensity maximum or
minimum for red and blue detuning, respectively.

Figures 9 and 10 for uniform motion and Figs. 11 and 12
for uniform acceleration show that in both cases it is possi-
ble to infer the distribution of BEC density continuously via
observation of the optical intensity distribution.

It should be noted that although only the motion of single
droplet structures has been presented here, the stable multi-
peak droplet structures display similar behavior under motion,
maintaining their structure as they propagate and providing a
consistent optical intensity profile dependent on detuning.
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FIG. 12. Uniformly accelerating droplet for blue detuning (� >

0). The parameters are identical to those of Fig. 4 with the addition
of a = −4.0 × 10−9(h̄qc�/12m).
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FIG. 13. Schematic diagram of the SMF configuration with a
mirror misalignment or tilt, labeled α.

C. Controlling droplet motion using mirror tilt

In the preceding section we demonstrated how imposing a
uniform velocity or acceleration on the BEC could produce an
optomechanical droplet with a BEC density distribution and
optical field distribution which moved with uniform veloc-
ity or uniform acceleration, respectively. We now investigate
what happens when the mirror in the SMF configuration is
not perfectly aligned so that the normal to the mirror and the
pump propagation direction are misaligned by a small angle
α. This mirror misalignment or tilt is shown schematically in
Fig. 13.

In order to simulate the effect of this mirror tilt, we follow
the method used in [38], where before calculation of the back-
ward field B using Eq. (4) the forward field is shifted by an
amount �x = 2d tan(α). The effect of a mirror tilt can also be
understood as creating a phase gradient in the reflected light.
An example of evolution of an initially stationary droplet
(v0 = a = 0) with �x > 0 is shown in Fig. 14. It can be
seen that the effect of the mirror tilt is to produce a constant
acceleration on the droplet.

Figure 15 shows the dependence of the droplet accel-
eration on the mirror-tilt-induced shift �x. It can be seen
that for the smallest mirror tilts, the acceleration produced is
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FIG. 14. Evolution of BEC density and optical field intensity
when a mirror tilt is present. The parameters are p0 = 1.9 ×
10−9, � = 800, R = 0.99, (ωr )/� = 5.69 × 10−8, b0 = 20, and
(�x )/(�c ) = 1.465 × 10−3.
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FIG. 15. Dependence of droplet acceleration ad on mirror-tilt-
induced shift �x/�c. The parameters are p0 = 1.9 × 10−9, � =
200, R = 0.99, (ωr )/� = 1.01 × 10−7, and b0 = 20.

approximately proportional to �x and consequently α. How-
ever, as the mirror tilt is increased, there is a region where
the acceleration produced changes direction. Similar behavior
was observed for dissipative solitons [34]; however, a signif-
icant difference between the behavior shown here and that
in [34] is that here the droplets exhibit Newtonian dynamics
whereas in [34] the solitons exhibited Aristotelian dynamics.

The dynamics of dissipative solitons in phase gradients
are known from many such dissipative systems. However, the
dynamics are Aristotelian in nature as overdamped motion
exhibits a constant velocity in the presence of a constant gra-
dient [34,39,40]. The acceleration consistent with Newtonian
motion in the BEC model considered here is a different feature
of conservative optomechanical systems, in comparison to
dissipative solitons relying on internal degrees of freedom
[34,39,40] or optomechanical structures and solitons in the
presence of velocity damping [41,42].

Laser solitons in which the medium dynamics is infinitely
fast should also exhibit Newtonian dynamics [9,43], but we
are not aware of any experimental observation, as typical
lasers do not operate in this regime. In contrast, observation
in a BEC system, similar to that discussed here, would appear
to be very feasible.

In addition to inducing acceleration of the droplet, the
application of a finite mirror tilt also decreases the long-term
stability of the droplet, with stability of the structures pre-
served for only very small misalignments.

IV. CONCLUSION

We have investigated the dynamical behavior of optome-
chanical droplets, self-bound structures which arise due to
the interaction between light and a BEC in the presence
of a feedback mirror, using a one-dimensional model. We
have shown the existence of multipeak droplet profiles from
optical interactions alone, when atomic collisions are neg-
ligible. We have also shown that by inducing BEC motion
with constant velocity and constant acceleration, the optome-
chanical droplets remain stable and also move with the same
velocity and acceleration, respectively, with the BEC density
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maximum being tracked by the optical field pattern in each
case. As the pump is far detuned from resonance, absorp-
tion, and therefore heating, of the BEC due to scattering
of pump photons is minimized. Consequently, these results
may offer possibilities for methods allowing continuous mea-
surement of BEC dynamics. Finally, we demonstrated that
by introducing a mirror misalignment or tilt it was possible
to induce a constant droplet acceleration. This may offer
opportunities for optical control and transport of coherent

matter via phase gradients rather than amplitude gradients.
Possibilities for future development of the results presented
here include investigation of the dynamics of droplets in
two dimensions and the inclusion of atomic collisions, i.e.,
nonzero scattering length in the BEC, as [30] showed that
the inclusion of nonzero scattering length leads to other more
complex structures, e.g., droplet chains and lattices, in ad-
dition to the single-peak and multipeak droplets considered
here.
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