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We obtain the superfluid transition temperature of equal Rashba-Dresselhaus spin-orbit- and Rabi-coupled
Fermi superfluids, from the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) regimes in
three dimensions for tunable s-wave interactions. In the presence of Rabi coupling, we find that spin-orbit
coupling enhances (reduces) the critical temperature in the BEC (BCS) limit. For fixed interactions, we show that
spin-orbit coupling can convert a first-order (discontinuous) phase transition into a second-order (continuous)
phase transition, as a function of Rabi coupling. We derive the Ginzburg-Landau free energy to sixth power in
the superfluid order parameter to describe both continuous and discontinuous phase transitions as a function of
spin-orbit and Rabi couplings. Lastly, we develop a time-dependent Ginzburg-Landau fluctuation theory for an
arbitrary mixture of Rashba and Dresselhaus spin-orbit couplings at any interaction strength.
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I. INTRODUCTION

The ability to simulate magnetic and other external fields
[1–12] in cold atomic gases has created the opportunity to
explore a wide variety of new interactions and complex phase
structures otherwise inaccessible in the laboratory. Moreover,
the capacity to generate these synthetic fields in both bosonic
and fermionic systems, and to continuously tune two-body
interactions by means of a Feshbach resonance, has opened
up a wonderland of tunable systems, previously restricted to
theorists’ dreams. For example, the possibility of simulat-
ing quantum chromodynamics (QCD) on an optical lattice
[13–16] is a tantalizing prospect for researchers whose current
theoretical tools remain limited by QCD’s nonperturbative
character and the restriction of lattice techniques to near-zero
chemical potential.

Previous theoretical analyses of three-dimensional spin-
orbit-coupled Fermi gases (e.g., 6Li, 40K) have focused
mainly on the zero-temperature limit, in which several exotic
phases characterized by unconventional pairing are expected
to emerge [17–22]. However, the Raman laser platforms cur-
rently employed to produce synthetic spin-orbit fields also
induce heating that prevents the realization of temperatures
sufficiently low to observe the superfluid transition in ei-
ther the weakly coupled Bardeen-Cooper-Schrieffer (BCS)
or the strongly coupled Bose-Einstein condensate (BEC)
regimes [5,7]. Thus, while two-body bound states (Feshbach
molecules) have been observed in the BEC limit of 40K [7,23],
the observation of superfluid states remain elusive. Future
experiments, however, may break this impasse by employing
a new platform currently under development—the radio fre-
quency atom chip—which avoids heating of the atom cloud
entirely [24]. While rf atom chips are somewhat more re-
stricted than the Raman scheme in the maximum obtainable

spin-orbit coupling, its potential to reach superfluid temper-
atures is leading to its adoption in the next generation of
experiments probing the topological superfluid phases of spin-
orbit-coupled fermions [25].

One class of systems of particular interest in the context of
quantum simulation is that of Rashba-Dresselhaus spin-orbit-
coupled gases [17–22,26,27]. These systems are intriguing
both because they reflect physics studied extensively in the
context of semiconductors [28,29] and because they provide
a platform for realizing tunable non-Abelian fields in the
laboratory. Thus, while the holy grail of a full optical sim-
ulation of QCD remains years in the future, there do exist
notable analogies between quark matter and cold atomic sys-
tems (e.g., non-Abelian fields, evolution between strongly and
weakly coupled limits) within near-term experimental reach
[30–33]. Investigations of spin-orbit-coupled ultracold gases
have also included optical lattices [34–43], thus enlarging the
number of possible physical systems that can be accessible
experimentally.

To date, most experimental realizations of these systems
have adopted equal Rashba-Dresselhaus couplings [4–6,44],
but systems exhibiting Rashba-only couplings have also
been created [11,45,46]. Other experiments have generated
spin-orbit coupling dynamically [47] or even created three-
dimensional spin-orbit coupling [48]. Due to the versatility
of Rashba-Dresselhaus coupled systems, the ability to real-
ize these systems in the laboratory, and the myriad technical
challenges inherent in reaching arbitrarily low temperatures,
it is increasingly important to provide a theoretical framework
for guiding and testing these simulators against experimental
probes at realistic (nonzero) temperatures.

This problem bears a close relation to spin-orbit coupling
in solids, where the role of the Rabi frequency is played by an
external Zeeman magnetic field. While a mean-field treatment
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describes well the evolution from the BCS to the BEC regime
at zero temperature [49,50], this order of approximation fails
to describe the correct critical temperature of the system in the
BEC regime because the physics of two-body bound states,
i.e., Feshbach molecules, is not captured when the pairing
order parameter goes to zero [51]. To remedy this problem,
we include the effects of order-parameter fluctuations in the
thermodynamic potential.

In this paper, we investigate the impact of a specific class
of spin-orbit coupling, namely, an equal mixture of Rasha and
Dresselhaus terms, on the superfluid transition temperature
of a three-dimensional Rabi-coupled Fermi gas, but also give
general results for an arbitrary mixture of Rashba and Dres-
selhaus components. This paper is the longer version of our
preliminary work [52]. We stress that the present results are
applicable to both neutral cold atomic and charged condensed-
matter systems. We show that spin-orbit coupling, in the
presence of a Rabi field (or Zeeman field, in solids), enhances
the critical temperature of the superfluid in the BEC regime
and converts a discontinuous first-order phase transition into a
continuous second-order transition, as a function of the Rabi
frequency for given two-body interactions. We analyze the
nature of the phase transition in terms of the Ginzburg-Landau
free energy, calculating it to the sixth power of the superfluid
order parameter, as required to describe both discontinuous
transitions as a function of the spin-orbit coupling, Rabi fre-
quency, and two-body interactions.

This paper is organized as follows. In Sec. II, we describe
the Hamiltonian and action for three-dimensional Fermi gases
in the presence of a general Rashba-Dresselhaus spin-orbit
coupling, Rabi field, and tunable s-wave interactions. We
also obtain the inverse Green operator that is used in the
calculation of the thermodynamic potential and Ginzburg-
Landau theory of subsequent sections. In Sec. III, we analyze
the thermodynamic potential across the entire BCS-to-BEC
evolution, including contributions from both the mean-field
and Gaussian fluctuations, and obtain the order-parameter and
number equations. In Sec. IV, we study the combined effects
of Rabi fields and spin-orbit coupling on the superfluid critical
temperature, constructing the finite-temperature phase dia-
gram versus Rabi fields and scattering parameter. In Sec. V,
we present the Ginzburg-Landau (GL) theory for the super-
fluid order parameter and investigate further corrections to the
critical temperature in the BEC limit by including interactions
between bosonic bound states. The GL action is obtained to
sixth order in the order parameter to allow for the existence
of discontinuous (first-order) phase transitions. In Sec. VI,
we compare our work on the experimentally relevant equal
Rashba-Dresselhaus spin-orbit coupling with earlier work that
has considered different forms of theoretically motivated spin-
orbit couplings. In Sec. VII, we conclude and look toward the
future of experimental work in this field.

In the interest of readability, we relegate a number of
detailed calculations to Appendices. In Appendix A, we dis-
cuss the Hamiltonian and effective Lagrangian for a general
Rashba-Dresselhaus spin-orbit coupling. In Appendix B, we
analyze the saddle-point approximation for general Rashba-
Dresselhaus spin-orbit coupling. In Appendix C, we derive the
modified number equation, including the contribution arising
from Gaussian fluctuations, which renormalizes the chemical

potential obtained at the saddle-point level. In Appendix D,
using a general Rashba-Dresselhaus spin-orbit coupling, we
obtain expressions for the coefficients of the Ginzburg-Landau
theory up to sixth order in order parameter.

II. HAMILTONIAN AND ACTION

Throughout this paper, we adopt units in which h̄ = kB = 1.
The Hamiltonian density of a three-dimensional Fermi gas in
the presence of Rashba-Dresselhaus spin-orbit coupling and
Rabi field is

H(r) = Hk (r) + Hso(r) + HI (r) − μn(r). (1)

The first term in Eq. (1) is the kinetic energy,

Hk (r) =
∑

s

ψ†
s (r)

k̂2

2m
ψs(r), (2)

where k̂ = −i∇ is the momentum operator, ψs(r) is the
fermion field at position r with (real or pseudo-) spin s and
mass m. The second term is the spin-orbit interaction,

Hso(r) =
∑
ss′

ψ†
s (r)[Hso(k̂)]ss′ψs′ (r), (3)

with the spin-orbit-coupling matrix in momentum (k) space
being

Hso(k̂) = κ

m
(k̂xσx + ηk̂yσy) − �R

2
σz, (4)

where (σx, σy, σz ) are the Pauli matrices in spin space, κ is
the momentum transfer to the atoms in a two-photon Raman
process [7] or on a radio frequency atom chip [24], η is the
anisotropy of the Rashba-Dresselhaus field, and �R is the
Rabi frequency. The third term is the two-body s-wave contact
interaction,

HI (r) = −gψ†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r), (5)

where g > 0 corresponds to a constant attraction between
opposite spins. Finally, μ is the chemical potential and n(r) =∑

s ψ†
s (r)ψs(r) is the local density. While the general Rashba-

Dresselhaus spin-orbit coupling is discussed in Appendix A,
in what follows we focus on the more experimentally relevant
situation of equal Rashba and Dresselhaus couplings (η = 0).

Standard manipulations (see Appendix A) lead to the La-
grangian density,

L(r, τ ) = 1

2
�†(r, τ )G−1(k̂, τ )�(r, τ ) + 1

g
|�(r, τ )|2

+K (k̂)δ(r − r′), (6)

where τ = it is the imaginary time, � = (ψ↑ψ↓ψ
†
↑ψ

†
↓)T is

the Nambu spinor, K (k̂) = k̂2/2m − μ is the kinetic en-
ergy operator with respect to the chemical potential, and
�(r, τ ) = −g〈ψ↓(r, τ )ψ↑(r, τ )〉 is the pairing field describ-
ing the formation of pairs of two fermions with opposite spins.
Note that μ includes the overall positive shift κ2/2m in the
single-particle kinetic energies due to spin-orbit coupling. The
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inverse Green’s operator appearing in Eq. (6) is

G−1(k̂, τ ) =

⎛⎜⎜⎝
∂τ − K↑ −iκ k̂x/m 0 −�

iκ k̂x/m ∂τ − K↓ � 0
0 �∗ ∂τ + K↑ −iκ k̂x/m

−�∗ 0 iκ k̂x/m ∂τ + K↓

⎞⎟⎟⎠,

(7)

where K↑,↓ = K (k̂) ∓ �R/2, are the kinetic energy terms
shifted by the Rabi coupling.

As noted above, a mean-field treatment of this Lagrangian
fails to correctly describe the superfluid critical temperature in
the BEC regime. However, the inclusion of Gaussian fluctua-
tions of � captures the effects of two-body bound states and
leads to a physical superfluid transition temperature. It is to
this task that we now turn.

III. THERMODYNAMIC POTENTIAL

The system’s partition function may be expressed in terms
of the functional integral,

Z =
∫

D�D�∗D�D�†e−S , (8)

where the Euclidean action is

S =
∫ β

0
dτ

∫
d3rL(r, τ ), (9)

β = 1/T is the inverse temperature, and the Lagrangian den-
sity is given by Eq. (6). Integrating over the fermion fields
yields the thermodynamic potential,

� = −T lnZ = �0 + �F , (10)

where �0 = −T lnZ0 = T S0 is the mean-field (saddle-point)
contribution, for which �(r, τ ) = �0, and �F = −T lnZF

is the contribution arising from order-parameter fluctuations.
Detailed derivations of the thermodynamic potential for a gen-
eral Rashba-Dresselhaus spin-orbit coupling, as well as the
associated order-parameter and number equations, are given
in Appendices B and C. The contributions to the thermody-
namic potential for the experimentally relevant situation of
equal Rashba-Dresselhaus spin-orbit coupling are discussed
below in Sec. III A at the mean-field and in Sec. III B at the
Gaussian fluctuation level.

A. Mean-field approximation

The mean-field, or saddle-point, term in the thermody-
namic potential is

�0 = V
|�0|2

g
− T

2

∑
k, j

ln[1 + e−βEj (k)] +
∑

k

ξk, (11)

where ξk = εk − μ, εk = k2/2m, and the Ej (k), with j =
{1, 2, 3, 4}, are the eigenvalues of the momentum space
Nambu Hamiltonian matrix,

H0(k) = ∂τ − G−1(k, τ )|�=�0 , (12)

where the operator ∂τ = I∂τ , and I is the identity matrix. The
first set of eigenvalues,

E1,2(k) =
⎡⎣ζ 2

k ± 2

√
E2

0,kh2
k −

(
κkx

m

)2

|�0|2
⎤⎦1/2

, (13)

describe quasiparticle excitations, with the plus (+) associ-
ated with E1 and the minus (−) with E2. The second set
of eigenvalues, E3,4(k) = −E2,1(k), corresponds to quasi-
holes. Further, ζ 2

k = E2
0,k + h2

k, where E0,k = √
ξ 2

k + |�0|2,
and hk = √

(κkx/m)2 + �2
R/4 is the magnitude of the com-

bined spin-orbit and Rabi couplings.
We express the two-body interaction parameter g in terms

of the renormalized s-wave scattering length as via the relation
[51]

1

g
= − m

4πas
+ 1

V

∑
k

1

2εk
. (14)

Note that as is the s-wave scattering length in the absence of
spin-orbit and Rabi fields. It is, of course, possible to express
g, and all subsequent relations, in terms of a scattering length
which is renormalized by the presence of the spin-orbit and
Rabi fields [53,54], but for both simplicity and the sake of
referring to the more experimentally accessible quantity, we
do not do so here.

The order-parameter equation is obtained from the saddle-
point condition δ�0/δ�

∗
0|T,V,μ = 0, leading to

m

4πas
= 1

2V

∑
k

[
1

εk
− A+(k) − �2

R

4ξkhk
A−(k)

]
, (15)

where we introduced the notation

A±(k) = 1 − 2n1(k)

2E1(k)
± 1 − 2n2(k)

2E2(k)
, (16)

with n j (k) = 1/[eβEj (k) + 1] being the Fermi function. In
addition, the particle number at the saddle point N0 =
−∂�0/∂μ|T,V is given by

N0 =
∑

k

{
1 − ξk

[
A+(k) + (κkx/m)2

ξkhk
A−(k)

]}
. (17)

The mean-field temperature T0 is determined by solving
Eq. (15) for the given μ. The corresponding number of par-
ticles is given by Eq. (17). This mean-field treatment leads
to a transition temperature ∼e1/kF as , where kF is the Fermi
momentum. This result gives the correct transition temper-
ature on the BCS limit; however, it is unphysical on the
BEC regime for kF as → 0. In order to find a physical result,
we need to include order-parameter fluctuations, which we
now do.

B. Gaussian fluctuations

In discussing Gaussian fluctuations, we concentrate on
equal Rasha-Dresselhaus couplings, leaving details for gen-
eral Rashba-Dresselhaus coupling to Appendix C.

To obtain the correct superfluid transition temperature in
the BEC limit, we must include the physics of two-body
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bound states near the transition, as described by the two-
particle T matrix [55,56]. Accounting for all two-particle
channels, the T-matrix calculation leads to a two-particle scat-
tering amplitude �, where

�−1(q, z) = m

4πas
− 1

2V

∑
k

[
1

εk
+

2∑
i, j=1

αi jWi j

]
; (18)

z is the complex frequency and

Wi j = 1 − ni(k) − n j (k + q)

z − Ei(k) − Ej (k + q)
. (19)

At the superfluid phase boundary �0 → 0, the eigenvalues
appearing in Eq. (19) reduce to E1,2(k) = ||ξk| ± hk|, but it
is straightforward to show that ignoring the absolute values
does not result in any change in either the mean-field order
parameter or number equation. Meanwhile, the coefficients

α11 = α22 = |ukuk+q − vkv
∗
k+q|2, (20)

α12 = α21 = |ukvk+q + uk+qvk|2 (21)

are the coherence factors associated with the quasiparticle
amplitudes for �0 = 0:

uk =
√

1

2

(
1 + �R

2hk

)
, vk = i

√
1

2

(
1 − �R

2hk

)
. (22)

The Gaussian fluctuation correction to the thermodynamic
potential is

�F = −T
∑
q,iqn

ln [β�(q, iqn)/V ] (23)

over the entire BCS-to-BEC evolution. The fluctuation
contribution to the particle number is therefore NF =
−∂�F /∂μ|T,V , where

NF =
∑

q

∫ ∞

−∞

dω

π
nB(ω)

[
∂δ(q, ω)

∂μ
− ∂δ(q, 0)

∂μ

]
T,V

, (24)

with the phase shift δ(q, ω) defined via the relation

�(q, ω ± iε) = |�(q, ω)|e±iδ(q,ω). (25)

When two-body states are present, the fluctuation contribution
can be written as NF = Nsc + Nb, where

Nsc =
∑

q

∫ ∞

ωt p(q)

dω

π
nB(ω)

[
∂δ(q, ω)

∂μ
− ∂δ(q, 0)

∂μ

]
T,V

(26)

is the number of particles in scattering states, and ωt p(q) is the
two-particle continuum threshold corresponding to the branch
point of �−1(q, z) [55,57],

Nb = 2
∑

q

nB[Ebs(q) − 2μ] (27)

is the number of fermions in bound states, where nB(ω) =
1/(eβω − 1) is the Bose distribution function, and Ebs(q) is
the energy of the bound states obtained from �−1(q, z =
E − 2μ) = 0, corresponding to a pole in the scattering am-
plitude �(q, z). In the limit of large and negative fermion
chemical potential, the system becomes nondegenerate and
�−1(q, z) = 0 becomes the exact eigenvalue equation for the

two-body bound state in the presence of spin-orbit and Rabi
coupling [23]. The total number of fermions, as a function of
μ, thus becomes

N = N0 + NF , (28)

where N0 is given in Eq. (17) and NF is the sum of Nsc and Nb,
as discussed above [51,55].

IV. CRITICAL TEMPERATURE

We calculate numerically the transition temperature Tc be-
tween the normal and uniform superfluid states, as a function
of the scattering parameter 1/kF as, by simultaneously solving
the order-parameter and number equations (15) and (28). The
solutions correspond to the minima of the free energy, F =
� + μN . We do not discuss the cases of Fulde-Ferrell [58] or
Larkin-Ovchinnikov [59] nonuniform superfluid phases since
they only exist over a very narrow region of the phase diagram
deep in the BCS regime [58,59], which is not experimentally
accessible for ultracold fermions.

Figure 1, in which we scale temperatures by the Fermi
temperature TF = k2

F /2m, shows the effects of spin-orbit and
Rabi couplings on Tc. The solid (black) line in Fig. 1(a)
shows Tc versus 1/kF as for zero Rabi coupling (�R = 0) and
zero spin-orbit coupling κ . If �R = 0, the spin-orbit coupling
can be removed by a simple gauge transformation, and thus
plays no role. In this situation, the pairing is purely s-wave.
The dashed (blue) line shows Tc for �R = 0, with vanishing
equal Rashba-Dresselhaus spin-orbit coupling. We see that for
fixed interaction strength, the pair-breaking effect of the Rabi
coupling suppresses superfluidity, compared with �R = 0; the
Rabi field here plays the pair-breaking role of the Zeeman field
in a superconductor.

With both spin-orbit and Rabi couplings present, the two-
particle pairing is no longer purely singlet s-wave, but obtains
a triplet p-wave component; the admixture stabilizes the su-
perfluid phase, as shown by the dotted (green) line. The
latter curve shows that in the BEC regime with large positive
1/kF as, the superfluid transition temperature is enhanced by
the presence of spin-orbit and Rabi couplings, a consequence
of the reduction of the bosonic effective mass in the x direction
below 2m. However, for sufficiently large �R, the geometric
mean bosonic mass MB increases above 2m and Tc decreases.
This renormalization of the mass of the bosons can be traced
back to a change in the energy dispersion of the fermions
when both spin-orbit coupling and Rabi fields are present.

Figure 1(b) shows Tc versus �R for fixed 1/kF as, both
with and without equal Rashba-Dresselhaus spin-orbit cou-
pling at κ = 0.5kF . When both κ and T are zero, superfluidity
is destroyed at a critical value of �R corresponding to the
Clogston limit [60]. At low temperature, the phase transition
to the normal state is first-order because the Rabi coupling
is sufficiently large to break singlet Cooper pairs. However,
at higher temperatures, the singlet s-wave superfluid starts to
become polarized by thermally excited quasiparticles that pro-
duce a paramagnetic response. Thus, above the characteristic
temperature indicated by the large (red) dots, the transition
becomes second-order, as pointed out by Sarma [61]. The
change in the transition order occurs not only for κ = 0, but
also for nonzero values of κ both in the BCS regime and near
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FIG. 1. (a) The superfluid transition temperature Tc/TF , where
TF is the Fermi temperature, vs the scattering parameter 1/kF as

for equal Rashba-Dresselhaus spin-orbit coupling and two different
Rabi coupling strengths, �R = 0 and εF . For �R = 0 [solid (black)
curve], Tc is the same as for zero spin-orbit coupling since the equal
spin-orbit field can be gauged away. The dashed (blue) line shows Tc

for zero spin-orbit coupling, with �R = εF , while the dotted (green)
line shows Tc for �R = εF and κ̃ = κ/kF = 0.5. (b) Tc is drawn
at unitarity, 1/kF as = 0, and in the inset at 1/kF as = −2.0, as a
function of �̃R = �R/εF . The solid (red) curves represent κ̃ = 0 and
the dotted (blue) curves represent κ̃ = 0.5. Across the dotted (red)
curves, the phase transition is first-order.

unitarity, depending on the choice of parameters, as illustrated
in Fig. 1(b).

The critical temperature for κ = 0 vanishes only asymp-
totically in the limit of large �R. We note that for �R = EF

and κ = 0, the transition from the superfluid to the normal
state is continuous at unitarity, but very close to a dis-
continuous transition. In the range 1.05 � �R/EF � 1.10,
numerical uncertainties as κ → 0 prevent us from predicting
exactly whether the transition at unitarity is continuous or
discontinuous.

Figure 2 shows μ(Tc) for fixed spin-orbit coupling and sev-
eral Rabi couplings. The solid (black) curve, which represents
the situation in which no Rabi field is present, is equivalent
to the situation in which spin-orbit coupling is also absent,
as noted in the discussion of Fig. 1. It is evident that while

FIG. 2. Chemical potential at the superfluid critical temperature
(Tc) for κ̃ = κ/kF = 0.5 and various Rabi fields, �̃R = �R/εF .

the Rabi field reduces the chemical potential in the BCS
limit, it also shifts the onset of the system’s evolution to the
BEC limit to larger inverse scattering lengths, and produces a
nonmonotonic behavior of μ(Tc) near unitarity.

Figure 3 shows Tc for equal Rashba-Dresselhaus coupling
κ = 0.5kF , as a function of Rabi field and scattering parame-
ter. We also superpose the zero-temperature phase diagram to
illustrate the different superfluid ground states of this system.
According to the zeros of the lowest quasiparticle energy
E2(k), the uniform superfluid phases that emerge are [21]
direct gapped with zero rings (line nodes), indirectly gapped
with zero rings, gapless with one ring, and gapless with two
rings.

FIG. 3. Phase diagram of critical temperature Tc/TF vs 1/kF as

and �R/εF for equal Rashba-Dresselhaus coupling κ/kF = 0.5. The
finite-temperature uniform superfluid phases reflect those at T = 0
shown in the background. These phases are distinguished by the
number of rings (line nodes) in the quasiparticle excitation spectrum
[i.e., where E2(k) = 0] and type of gap: (1) direct gapped superfluid
with zero rings (magenta diamonds), (2) indirect gapped superfluid
with zero rings (red circles), (3) gapless superfluid with two rings
(blue square), and (4) gapless one-ring superfluid (green stars).
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FIG. 4. Fractional number Nb/N of bound fermions as a function
of the interaction parameter 1/kF as, for equal Rashba-Dresselhaus
coupling κ/kF = 0.5 and Rabi frequencies �̃R = �R/εF = 0 (black
solid line) and �̃R = �R/εF = 2 (red dot-dashed line).

Figure 4 shows the fractional number Nb/N of bound
fermions at Tc as a function of 1/kF as for two sets of external
fields. In the BCS (BEC) regime, the relative contribution to N
is dominated by unbound (bound) fermions. The main effect
of spin-orbit and Rabi fields on Nb/N is to shift the location
where the two-body bound states emerge. For fixed spin-orbit
coupling (Rabi field) and increasing Rabi field (spin-orbit
coupling), two-body bound states emerge at larger (smaller)
scattering parameters. These shifts are in agreement with the
calculated shifts in binding energies of Feshbach molecules in
the presence of equal Rashba-Dresselhaus spin-orbit coupling
and Rabi fields [23].

V. GINZBURG-LANDAU THEORY

To further elucidate the effects of fluctuations on the order
of the superfluid transition, as well as to assess the impact of
spin-orbit and Rabi couplings near the critical temperature,
we now derive the Ginzburg-Landau description of the free
energy near the transition. In the limit of small order parame-
ter, the fluctuation action SF can be expanded in powers of the
order parameter �(q) beyond Gaussian order. The expansion
of SF to quartic order is sufficient to describe the continuous
(second-order) transition in Tc versus 1/kF as in the absence of
a Rabi field [51]. However, to correctly describe the first-order
transition [60,61] at low temperature (Fig. 1), it is necessary
to expand the free energy to sixth order in �.

The quadratic (Gaussian-order) term in the action is

SG = βV
∑

q

|�q|2
�(q, z)

. (29)

For an order parameter varying slowly in space and time, we
may expand �−1 as

�−1(q, z) = a +
∑

�

c�

q2
�

2m
− d0z + · · · , (30)

with the sum over � = {x, y, z}. The full result, as a functional
of �(r, τ ), has the form

SF =
∫ β

0
dτ

∫
d3r

(
d0�

∗ ∂

∂τ
� + a|�|2

+
∑

�

c�

|∇��|2
2m

+ b

2
|�|4 + f

3
|�|6

)
. (31)

The full time-dependent Ginzburg-Landau action describes
systems in and near equilibrium (e.g., with collective modes).
The imaginary part of d0 measures the nonconservation of
|�|2 in time (i.e., the Cooper pair lifetime). Details of the
derivation of SF are found in Appendix D.

We are interested in systems at thermodynamic equilib-
rium, where the order parameter is independent of time, that
is, �(r, τ ) = �(r). In this situation, minimizing the free en-
ergy TSF with respect to �∗ yields the Ginzburg-Landau
equation,[

−
∑

�

c�

∇2
�

2m
+ b|�(r)|2 + f |�(r)|4 + a

]
�(r) = 0. (32)

For b > 0, the system undergoes a continuous phase transition
when a changes sign. However, when b < 0, the system is
unstable in the absence of f . For b < 0 and a > 0, a first-
order phase transition occurs when 3b2 = 16a f . Positive f
stabilizes the system even when b < 0.

In the BEC regime, where d0 is purely real, we define an
effective bosonic wave function �(r) = √

d0�(r) to recast
Eq. (32) in the form of the Gross-Pitaevskii equation for a
dilute Bose gas,[

−
∑

�

∇2
�

2M�

+ U2|�(r)|2 + U3|�(r)|4 − μB

]
�(r) = 0.

(33)
Here, μB = −a/d0 is the bosonic chemical potential, M� =
m(d0/c�) are the anisotropic bosonic masses, and U2 = b/d2

0
and U3 = f /d3

0 represent contact interactions of two and three
bosons. In the BEC regime, these terms are always positive,
leading to a dilute gas of stable bosons. The boson chemical
potential μB is ≈2μ + Eb < 0, where Eb = −Ebs(q = 0) is
the two-body binding energy in the presence of spin-orbit
coupling and Rabi frequency, obtained from the condition
�−1(q, E − 2μ) = 0, discussed earlier.

The anisotropy of the effective bosonic masses, Mx =
My = Mz ≡ M⊥, stems from the anisotropy of the equal
Rashba-Dresselhaus spin-orbit coupling, which together with
the Rabi coupling modifies the dispersion of the constituent
fermions along the x direction. In the limit kF as � 1, the
many-body effective masses reduce to those obtained by
expanding the two-body binding energy, Ebs(q) ≈ −Eb +∑

� q2
�/2M�, and agree with known results [23]. However, for

1/kF as � 2, many-body and thermal effects produce devia-
tions from the two-body result.

In the absence of two- and three-body boson-boson inter-
actions, U2 and U3, we directly obtain an analytic expression
for Tc in the Bose limit from Eq. (27),

Tc = 2π

MB

(
nB

ζ (3/2)

)2/3

, (34)
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with MB = (MxM2
⊥)1/3, by noting that μB = 0 or Ebs(q =

0) − 2μ = 0, and using the condition that nB � n/2 [with
corrections exponentially small in (1/kF as)2], where nB is the
density of bosons. In the BEC regime, the results shown in
Fig. 1 include the effects of the mass anisotropy, but do not
include the effects of boson-boson interactions.

To account for boson-boson interactions, we adopt the
Hamiltonian of Eq. (33) with U2 = 0, but with U3 = 0, and
apply the method developed in Ref. [62] to show that these
interactions further increase TBEC to

Tc(aB) = (1 + γ )TBEC, (35)

where γ = λn1/3
B aB. Here, aB is the s-wave boson-boson scat-

tering length, λ is a dimensionless constant ∼1, and we
use the relation U2 = 4πaB/MB. Since nB = k3

F /6π2 and the
boson-boson scattering length is aB = U2MB/4π , we have
γ = λ̃M̃BŨ2, where M̃B = MB/2m, Ũ2 = U2k3

F /εF , and λ̃ =
λ/4(6π5)1/3 ≈ λ/50. For fixed 1/kF as, Tc is enhanced by the
spin-orbit field, a �R-dependent decrease in the effective bo-
son mass MB (∼10–15%), as well as a stabilizing boson-boson
repulsion U2 (∼2–3%), for the parameters used in Fig. 1.

In closing our discussion of the strongly bound BEC limit,
we note that in the absence of spin-orbit coupling, a Gaussian-
order calculation of the two-boson scattering length yields
the erroneous Born approximation result aB = 2as. However,
an analysis of the T matrix beyond Gaussian order, which
includes the effects of two-body bound states, obtains the
correct result aB = 0.6as at very low densities [63] and agrees
with four-body calculations [64]. The same method can be
used to estimate U2 or aB beyond the Born approximation
discussed above. Nevertheless, while the precise quantita-
tive relation between aB and as in the presence of spin-orbit
coupling is yet unknown, the trend of increasing Tc due to
spin-orbit coupling has been clearly shown.

VI. COMPARISON TO EARLIER WORK

In this section, we briefly compare our results with earlier
investigations of different types of theoretically motivated
spin-orbit couplings, worked in different dimensions or at
zero temperature. Our results focus mainly on an analysis
of the critical superfluid temperature and the effects thereon
of order-parameter fluctuations for a three-dimensional Fermi
gas in the presence of equal Rashba-Dresselhaus spin-orbit
coupling and Rabi fields. The Appendices consider the more
general situation of arbitrary Rashba and Dresselhaus compo-
nents.

Several works have analyzed the effects of spin-orbit-
coupled fermions in three dimensions at zero temperature
[17–22,65–68]. While some authors have described the sit-
uation of Rashba-only couplings [17–19,65], others have
assessed the case of equal Rashba and Dresselhaus compo-
nents [21,22] or a general mixture of the two [20]. It has
been demonstrated that in the absence of a Rabi field, the
zero-temperature evolution from BCS to BEC superfluidity
is a crossover for s-wave systems, not only for Rashba-only
couplings [17–20,65], but also for arbitrary Rashba and Dres-
selhaus components [20]. This result directly follows from the
fact that the quasiparticle excitation spectrum remains fully
gapped throughout the evolution.

In contrast, the addition of a Rabi field gives rise to topo-
logical phase transitions for Rashba-only couplings [17] and
equal Rashba and Dresselhaus components [21,22], a situa-
tion which certainly persists for general Rashba-Dresselhaus
couplings. The simultaneous presence of a general Rashba-
Dresselhaus spin-orbit coupling and Rabi fields leads to a
qualitative change in the quasiparticle excitation spectrum and
to the emergence of topological superfluid phases [17,21,22].
Two-dimensional systems have also been investigated at zero
temperature, where topological phase transitions have been
identified for Rashba-only [69] and equal Rashba-Dresselhaus
[70] couplings, in the presence of a Rabi field.

While early papers in this field focused mainly on the
zero-temperature limit, progress toward finite-temperature
theories was made first in two dimensions [71,72] and
later in three dimensions [73–75]. The effects of a gen-
eral Rashba-Dresselhaus spin-orbit coupling and Rabi field
on the Berezenskii-Kosterlitz-Thouless transition were thor-
oughly investigated for two-dimensional Fermi gases at finite
temperatures [71,72], including both Rashba-only and equal
Rashba-Dresselhaus spin-orbit couplings as examples.

The superfluid critical temperature in three dimensions
was investigated using a spherical (3D) spin-orbit coupling
λk · σ in the absence of a Rabi field [73,74], and also for
Rashba-only (2D) couplings in the presence of a Rabi field
[75]. In a recent review article [76], the critical temperature
throughout the BCS-BEC evolution was discussed both in
the absence [51] and presence [52] of Rashba-Dresselhaus
spin-orbit coupling. In Secs. 5 and 6 of this review, the authors
describe the same method and expressions we obtained in our
earlier preliminary work [52] for the analytical relations re-
quired to obtain the critical temperature at the Gaussian order;
they include, however, only the contribution of bound states
discussed earlier in the literature for Rashba-only spin-orbit
coupling without Rabi fields [18]. In contrast, here we develop
a complete Gaussian theory to compute the superfluid critical
temperature of a three-dimensional Fermi gas in the pres-
ence of both a general Rashba-Dresselhaus (2D) spin-orbit
coupling and Rabi fields. We focus our numerical calcula-
tions on the specific situation of equal Rashba-Dresselhaus
components, which is easier to achieve experimentally in the
context of ultracold atoms. Our key results, already announced
in our earlier work [52], include the contributions of bound
and scattering states at the Gaussian level. As seen in Fig. 4
of this present paper, there is a wide region of interaction
parameters for which the contribution of scattering states can-
not be neglected. Furthermore, unlike previous work [73–76],
we provide a comprehensive analysis of the Ginzburg-Landau
fluctuation theory and include the effects of boson-boson in-
teractions on the superfluid critical temperature in the BEC
regime.

VII. CONCLUSION

We have evaluated the superfluid critical temperature
throughout the BCS-to-BEC evolution of three-dimensional
Fermi gases in the presence of equal Rashba-Dresselhaus
spin-orbit couplings, Rabi fields, and tunable s-wave interac-
tions. Furthermore, we have developed the Ginzburg-Landau
theory up to sixth power in the order parameter to elucidate the
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origin of first-order phase transitions when the spin-orbit field
is absent and the Rabi field is sufficiently large. Lastly, in the
Appendices, we have presented the finite-temperature theory
of s-wave interacting fermions in the presence of a generic
Rashba-Dresselhaus coupling and external Rabi fields, as well
as the corresponding time-dependent Ginzburd-Landau theory
near the superfluid critical temperature.
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APPENDIX A: HAMILTONIAN AND EFFECTIVE
LAGRANGIAN FOR GENERAL RASHBA-DRESSELHAUS

SPIN-ORBIT COUPLING

In this Appendix, we consider a larger class of spin-
coupled fermions in three dimensions with a general Rashba-
Dresselhaus (GRD) coupling. The Hamiltonian density for
equal Rashba-Dresselhaus (ERD) discussed in Sec. II is a par-
ticular case of the general Rashba-Dresselhaus Hamiltonian
density,

H(r) = H0(r) + Hso(r) + HI (r). (A1)

Adopting units in which h̄ = kB = 1, the independent-particle
Hamiltonian density without spin-orbit coupling is

H0(r) =
∑

α

[ |∇ψα (r)|2
2mα

− μαψ†
α (r)ψα (r)

]
, (A2)

where ψα , mα , and μα are the fermion field operator, mass,
and chemical potentials for internal state α, respectively. The
spin-orbit Hamiltonian can be written as

Hso(r) = −
∑
iαβ

ψ†
α (r)σi,αβhi(r)ψβ (r), (A3)

where the σ i are the Pauli matrices in isospin (internal state)
space and h = (hx, hy, hz ) includes both the spin-orbit cou-
pling and Zeeman fields. Finally, we consider a two-body
s-wave contact interaction,

HI (r) = −gψ†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r), (A4)

where g > 0 corresponds to an attractive interaction.
By introducing the pairing field �(r, τ ) =

−g〈ψ↓(r, τ )ψ↑(r, τ )〉, we remove the quartic interaction
and obtain the Lagrangian density,

L(r, τ ) = 1

2
�†(r, τ )G−1(k̂, τ )�(r, τ ) + |�(r, τ )|2

g

+K̃+(k̂)δ(r − r′), (A5)

where we introduced the momentum operator k̂ = −i∇,
the Nambu spinor � = (ψ↑ψ↓ψ

†
↑ψ

†
↓)T , and defined

K̃± = (K̃↑ ± K̃↓)/2. Here, K̃↑ = K↑ − hz, and K̃↓ = K↓ + hz,

with Kα (k̂) = k̂2/(2mα ) − μα being the kinetic energy
operator of internal state α with respect to its chemical
potential. Lastly, the inverse Green’s operator appearing in
Eq. (A5) is

G−1(k̂, τ ) =

⎛⎜⎜⎜⎝
∂τ − K̃↑ h∗

⊥ 0 −�

h⊥ ∂τ − K̃↓ � 0

0 �∗ ∂τ + K̃↑ −h⊥
−�∗ 0 −h∗

⊥ ∂τ + K̃↓

⎞⎟⎟⎟⎠,

(A6)

where h⊥(k̂) = hx(k̂) + ihy(k̂) plays the role of the spin-orbit
coupling, and hz is the Zeeman field along the z direction.

To make progress, we expand the order parameter about
its saddle-point (mean-field) value �0 by writing �(r, τ ) =
�0 + η(r, τ ). Next, we integrate over the fermionic fields and
use the decomposition G−1(k̂, τ ) = G−1

0 (k̂, τ ) + G−1
F (k̂, τ ),

where G−1
0 (k̂, τ ) is the mean-field Green’s operator, given by

Eq. (A6) with �(r, τ ) = �0, and G−1
F (k̂, τ ) is the contribu-

tion to the inverse Green’s operator arising from fluctuations.
These steps yield the saddle-point Lagrangian density,

L0(r, τ ) = − T

2V
Tr ln

(
βG−1

0

) + |�0|2
g

+ K̃+(k̂)δ(r − r′),

(A7)
and the fluctuation contribution,

LF (r, τ ) = − T

2V
Tr ln

(
I + G0G−1

F

) + �(r, τ ) + |η(r, τ )|2
g

,

(A8)
resulting in the effective Lagrangian density Leff (r, τ ) =
L0(r, τ ) + LF (r, τ ). In the expressions above, we work in
a volume V and take traces over both discrete and contin-
uous indices. Notice that the term �(r, τ ) = [�0η

∗(r, τ ) +
�∗

0η(r, τ )]/g in the fluctuation Lagrangian cancels out the
linear terms in η and η∗ when the logarithm is expanded, due
to the saddle-point condition,

δS0

δ�∗
0

= 0, (A9)

where S0 = ∫ β

0 dτd3rL0(r, τ ) is the saddle-point action.

APPENDIX B: SADDLE-POINT APPROXIMATION
FOR GENERAL RASHBA-DRESSELHAUS

SPIN-ORBIT COUPLING

We first analyze the saddle-point contribution. The saddle-
point thermodynamic potential �0 = −T lnZ0 can be ob-
tained for the saddle-point partition function Z = e−S0 as
�0 = T S0. Transforming the saddle-point Lagrangian L0

from Eq. (A7) into momentum space and integrating over spa-
tial coordinates and imaginary time leads to the saddle-point
thermodynamic potential,

�0 = V
|�0|2

g
− T

2

∑
k, j

ln(1 + e−βEk, j ) +
∑

k

K̃+(k), (B1)

where Kα (k) = k2/2mα − μα and the eigenvalues Ek, j are the
poles of G0(k, z), with j = {1, 2, 3, 4}.
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Next, we restrict our analysis to mass balanced sys-
tems (m↑ = m↓) in diffusive equilibrium (μ↑ = μ↓). We also
consider the general Rashba-Dresselhaus (GRD) spin-orbit
field h⊥(k) = κ (kx + iηky)/m, where κ and η are the magni-
tude and anisotropy of the spin-orbit coupling, respectively.
Note that this form is equivalent to another common form
of the Rashba-Dresselhaus coupling found in the literature
[21,22]: hso = hR + hD, where hR = vR(kxŷ − kyx̂) and hD =
vD(kxŷ + kyx̂). The two forms are related via a momentum-
space rotation and the correspondences κ = m(vR + vD)
and η = (vR − vD)/(vR + vD). The equal Rashba-Dresselhaus
limit (ERD) corresponds to vR = vD = v, leading to η = 0
and κ = 2mv. The specific case of equal Rashba-Dresselhaus
spin-orbit coupling discussed in the main part of the paper
corresponds to the case where η = 0, that is, h⊥(k) = κkx/m.

For the general Rashba-Dresselhaus case, the four eigen-
values are

E1,2(k) = [
ζ 2

k ± 2
√

E2
0,kh2

k − |�0|2|h⊥(k)|2]1/2
, (B2)

E3,4(k) = −E2,1(k), (B3)

where the + (−) sign within the outermost square root cor-
responds to E1 (E2), and the functions inside the square roots
are ζ 2

k = E2
0,k + h2

k, with contributions

E0,k =
√

ξ 2
k + |�0|2, (B4)

hk =
√

|h⊥(k)|2 + h2
z , (B5)

where ξk = εk − μ, and εk = k2/2m. The order-parameter
equation is found from the saddle-point condition
δ�0/δ�

∗
0|T,V,μ = 0. At the phase boundary between

the superfluid and normal phases, �0 → 0, and the
order-parameter equation becomes

m

4πas
= 1

2V

∑
k

[
1

εk
− tanh(βE1/2)

2E1
− tanh(βE2/2)

2E2

− h2
z

ξkhk

(
tanh(βE1/2)

2E1
− tanh(βE2/2)

2E2

)]
, (B6)

after expressing the interaction parameter g in terms of the
s-wave scattering length via the relation

1

g
= − m

4πas
+ 1

V

∑
k

1

2εk
. (B7)

We note that as is the s-wave scattering length in the absence
of spin-orbit and Zeeman fields. It is, of course, possible to
express all relations obtained in terms of a scattering length
which is renormalized by the presence of the spin-orbit and
Rabi fields [53,54]. However, in addition to complicating our
already cumbersome expressions, it would make reference to
a quantity that is more difficult to measure experimentally and
that would hide the explicit dependence of the properties that
we analyze in terms of the spin-orbit and Rabi fields, so we do
not consider such complications here. Note that since �0 = 0
at the phase boundary, the eigenvalues in Eq. (B2) reduce to

E1(k) = ||ξk| + hk|, E2(k) = ||ξk| − hk|, which is the abso-
lute value of the normal-state energy dispersions. However, it
is straightforward to show that ignoring the absolute values

does not result in any change in either the mean-field order
parameter given by Eq. (B6) or number equation shown in
Eq. (B8), when �0 → 0.

The saddle-point critical temperature T0 is determined by
solving Eq. (B6) subject to the thermodynamic constraint
N0 = −∂�0/∂μ|T,V , which yields

N0 =
∑

k

{
1 − ξk

[
1

εk
+ tanh(βE1/2)

2E1
+ tanh(βE2/2)

2E2

+ |h⊥(k)|2
ξkhk

(
tanh(βE1/2)

2E1
− tanh(βE2/2)

2E2

)]}
.

(B8)

A mean-field description of the system, which involves a
simultaneous solution of Eqs. (B6) and (B8), yields the
asymptotically correct description of the system in the BCS
limit; however, such a description fails miserably in the
BEC regime where it does not account for the formation
of two-body bound states. The general Rashba-Dresselhaus
spin-orbit saddle-point equations (B6) and (B8) reduce to the
equal Rashba-Dresselhaus equations (15) and (17) of the main
part of the paper with the explicit use of hz = �R/2 and
h⊥(k) = κkx/m, where �R is the Rabi coupling.

APPENDIX C: DERIVATION OF THE MODIFIED NUMBER
EQUATION WITH GAUSSIAN FLUCTUATIONS

We begin by deriving the modified number equation arising
from Gaussian fluctuations of the order parameter near the
superfluid phase boundary. The fluctuation thermodynamic
potential �F results from the Gaussian integration of the fields
η(r, τ ) and η∗(r, τ ) in the fluctuation partition function ZF =∫

dη∗dηe−SF , where the action SF = ∫
dτ

β

0

∫
d3rLF (r, τ ) is

calculated to quadratic order. The contribution to the thermo-
dynamic potential due to Gaussian fluctuations is

�F = −T
∑
iqn,q

ln [β�(q, iqn)/V ], (C1)

where qn = 2πnT are the bosonic Matsubara frequencies and
�(q, iqn) is directly related to the pair fluctuation propagator
χpair (q, iqn) = V �−1(q, iqn).

The Matsubara sum can be evaluated via contour integra-
tion,

�F = −T
∑

q

∮
C

dz

2π i
nB(z) ln [β�(q, z)/V ], (C2)

where nB(z) = 1/(ez − 1) is the Bose function and the contour
C encloses all of the Matsubara poles of the Bose function.
Next, we deform the contour around the Matsubara frequen-
cies towards infinity, taking into account the branch cut and
the possibility of poles coming from the logarithmic term
inside the contour integral. We take the branch cut to be along
the real axis, then add and subtract the pole at iqn = 0 to
obtain

�F = −T
∑

q

∫ ∞

−∞

dω

π
nB(ω)[δ(q, ω) − δ(q, 0)], (C3)
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where the phase shift δ(q, ω) is defined via �(q, ω ± iε) =
|�(q, ω)|e±iδ(q,ω), and arises from the contour segments above
and below the real axis.

The thermodynamic identity N = −∂�/∂μ|T,V then yields
to the fluctuation correction,

NF = T
∑

q

∫ ∞

−∞

dω

π
nB(ω)

[
∂δ(q, ω)

∂μ
− ∂δ(q, 0)

∂μ

]
, (C4)

to the the saddle-point number equation, and has a similar an-
alytical structure as in the case without spin-orbit and Zeeman
fields [51,55]. Thus, we can write the final number equation at
the critical temperature Tc as N = N0 + NF . Since the phase
shift δ(q, z) vanishes everywhere that �(q, z) is analytic, the
only contributions to Eq. (C4) arise from a possible isolated
pole at ωp(q) and a branch cut extending from the two-particle
continuum threshold ωt p(q) = min{i, j,k}[Ei(k) + Ej (k + q)]
to z → ∞ along the positive real axis. The explicit form of
�(q, z) can be extracted from Eq. (D15) of Appendix D.

When there is a pole corresponding to the emergence of
a two-body bound state, we can explicitly write �(q, z) ∼
R(q)/[z − ωp(q)], from which we obtain ∂δ(q, ω)/∂μ =
2δ[z − ωp(q)], leading to the bound state density,

Nb = 2
∑

q

nB(ωp(q)), (C5)

where the energy ωp(q) must lie below the two-particle
continuum threshold ωt p(q). The factor of 2, which arises
naturally, is due to the two fermions comprising a bosonic
molecule. Naturally, the presence of this term in the
fluctuation-modified number equation is dependent upon the
existence of such a pole, that is, a molecular bound state.
These bound states correspond to the Feshbach molecules in
the presence of spin-orbit coupling and Zeeman fields [7,23].

Having extracted the pole contribution to Eq. (C4), when it
exists, the remaining integral over the branch cut corresponds
to scattering state fermions,

Nsc = T
∑

q

∫ ∞

ωt p(q)

dω

π
nB(ω)

[
∂δ(q, ω)

∂μ
− ∂δ(q, 0)

∂μ

]
, (C6)

whose energy is larger than the minimum energy ωt p(q) of
two free fermions. Thus, when bound states are present, we
arrive at the modified number equation,

N = N0 + Nsc + Nb, (C7)

where N0 is the number of free fermions obtained from the
saddle-point analysis in Eq. (B8), and Nb and Nsc are the
bound state and scattering contributions given in Eqs. (C5)
and (C6), respectively. These general results are particularized
to the equal Rashba-Dresselhaus case in Sec. III B of this
paper.

The number of unbound states Nu is then easily seen to
be Nu = N0 + Nsc, that is, the sum of the free-fermion (N0)
and scattering (Nsc) contributions. Naturally, the number of
unbound states is also equal to the total number of states, N ,
minus the number of bound states, Nb, that is, Nu = N − Nb.

APPENDIX D: DERIVATION OF GINZBURG-LANDAU
COEFFICIENTS FOR GENERAL RASHBA-DRESSELHAUS

SPIN-ORBIT COUPLING

Next, we derive explicit expressions for the coefficients
of the time-dependent Ginzburg-Landau theory valid near the
critical temperature of the superfluid. We start from the fluc-
tuation Lagrangian,

LF (r, τ ) = − T

2V
Tr ln

(
I + G0G−1

F

) + �(r, τ ) + |η(r, τ )|2
g

,

(D1)
in a volume V , and take the traces over both discrete and con-
tinuous indices. Notice that the term �(r, τ ) = [�0η

∗(r, τ ) +
�∗

0η(r, τ )]/g in the fluctuation Lagrangian cancels out the lin-
ear terms in η and η∗ when the logarithm is expanded, due to
the saddle-point condition. Since the expansion is performed
near Tc, we take the saddle-point order parameter �0 → 0 and
redefine the fluctuation field as η(r, τ ) = �(r, τ ) to obtain

LF (r, τ ) = |�|2
g

− T

2V
Tr ln

(
I + G0[0]G−1

F [�]
)
. (D2)

Notice that the arguments in G0[0] and G−1
F [�] represent the

values of �0 = 0 and η = �, respectively.
We expand the logarithm to sixth order in � to obtain

LF (r, τ ) = |�|2
g

+ T

2V
Tr

[
1

2

(
G0G−1

F

)2 + 1

4

(
G0G−1

F

)4

+1

6

(
G0G−1

F

)6 + · · ·
]
, (D3)

where the higher-order odd (cubic and quintic) terms in the
order-parameter amplitudes expansion can be shown to vanish
due to conservation laws and energy or momentum consider-
ations.

The traces can be evaluated explicitly by using the
momentum-space inverse single-particle Green’s function,

G−1
0 (k, k′) =

(
A−1(k) 0

0 −[A−1(−k)]T

)
δkk′ , (D4)

derived from Eq. (A6). Here, we use the shorthand notation
k ≡ (iω, k), where ωn = 2πnT are bosonic Matsubara fre-
quencies and define the 2×2 matrix,

A−1(k) =
(

iωn − K̃↑(k) h∗
⊥(k)

h⊥(k) iωn − K̃↓(k)

)
, (D5)

where K̃↑ = ξk − hz, K̃↓ = ξk + hz, with ξk = k2/2m − μ the
kinetic energy relative to the chemical potential, hz the exter-
nal Zeeman field, and h⊥(k) = hx(k) + ihy(k) the spin-orbit
field. We also define the fluctuation contribution to the inverse
Green’s function,

G−1
F (k, k′) =

(
0 −iσy�k−k′

iσy�
†
k′−k 0

)
, (D6)

where σy is the second Pauli matrix in isospin (internal state)
space and

�k = β

V

∫ β

0
dτ

∫
d3rei(k·r−ωτ )�(r) (D7)
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is the Fourier transform of �(r), with r ≡ (r, τ ), and also has
dimensions of energy. Recall that we set h̄ = kB = 1, such that
energy, frequency, and temperature have the same units.

Inversion of Eq. (D4) yields

G0(k, k′) =
(

A(k) 0
0 −[A(−k)]T

)
δkk′ , (D8)

where the matrix A(k) is

A(k) = 1

det[A−1(k)]

(
iωn − K̃↓(k) −h∗

⊥(k)
−h⊥(k) iωn − K̃↑k)

)
, (D9)

with det[A−1(k)] = ∏2
j=1[iωn − Ej (k)] and where the

independent-particle eigenvalues Ej (k) are two of the poles
of G0(k, k). These poles are exactly the general eigenvalues
described in Eqs. (B2) in the limit of �0 → 0. Note that
setting �0 = 0 in the general eigenvalue expressions yields
E1,2(k) = ||ξk| ± hk|. The other set of poles of G0(k, k)
corresponds to the eigenvalues E3,4(k) = −E2,1(k) found
from det[A−1(−k)]T = 0.

Using Eq. (D3) to write the fluctuation action as SF =∫ β

0 dτ
∫

d3rLF (r, τ ) results in

SF = βV
∑

q

|�q|2
�(q)

+ βV

2

∑
q1,q2,q3

b1,2,3�1�
∗
2�3�

∗
1−2+3

+βV

3

∑
q1···q5

f1···5�1�
∗
2�3�

∗
4�5�

∗
1−2+3−4+5, (D10)

where summation over q ≡ (iqn, q) indicates sums over both
the bosonic Matsubara frequencies qn = 2πnT and momen-
tum q. Here, we used the shorthand notation j ≡ qj to
represent the labels of �q j or �∗

q j
.

The quadratic order appearing in Eq. (D10) arises from the
terms |�(r, τ )|2/g and (T/2V )Tr(G0G−1

F )2/2 in Eq. (D3),
and is directly related to the pair propagator χpair (q) =
V �−1(q), with

�−1(q) = 1

g
− T

2V

∑
k

Tr[A(k)A−1(q − k)]

det[A−1(q − k)]
, (D11)

where we use the identity σyAσy = det(A)(AT )−1.

The fourth-order contribution arises from 1
4 (G0G−1

F )4 and leads to

b(q1, q2, q3) = T

2V

∑
k

Tr[A(k)A−1(q1 − k)A(k − q1 + q2)A−1(q1 − q2 + q3 − k)]

det[A−1(q1 − k)]det[A−1(q1 − q2 + q3 − k)]
, (D12)

while the sixth-order contribution emergences from 1
6 (G0G−1

F )6, giving

f (q1, . . . , q5) = T

2V

∑
k

det[A(q1 − k)]det[A(q1 − q2 + q3 − k)]det[A(q1 − q2 + q3 − q4 + q5 − k)]

×Tr[A(k)A−1(q1 − k)A(k − q1 + q2)A−1(q1 − q2 + q3 − k)

×A(k − q1 + q2 − q3 + q4)A−1(q1 − q2 + q3 − q4 + q5 − k)]. (D13)

Evaluating the expressions given in Eqs. (D11) through
(D13) requires us to perform summations over Matsubara
frequencies of the type

T
∑
iωn

1

iωn ± E (k)
=

{
n(k) if “+”
1 − n(k) if “−”, (D14)

where n(k) = 1/[eβE (k) + 1] is the Fermi function. For the
quadratic term, we obtain the result

�−1(q, iqn) = − m

4πas
+ 1

2V

∑
k

[
1

εk

+
2∑

i, j=1

αi j (k, q)Wi j (k, q, iqn)

]
, (D15)

where the functions in the last term are

Wi j (k, q, iqn) = 1 − ni(k) − n j (k + q)

iqn − Ei(k) − Ej (k + q)
, (D16)

corresponding to the contribution of bubble diagrams to the
pair susceptibility. The coherence factors are

α11(k, q) = |ukuk+q − vkv
∗
k+q|2, (D17)

α12(k, q) = |ukvk+q + uk+qvk|2, (D18)

with α11(k, q) = α22(k, q) and α12(k, q) = α21(k, q), where
the quasiparticle amplitudes are

uk =
√

1

2

(
1 + hz

hk

)
, (D19)

vk = eiθk

√
1

2

(
1 − hz

hk

)
. (D20)

The angle θk is the phase associated with the spin-orbit field
h⊥(k) = |h⊥(k)|eiθk , and we replaced the interaction parame-
ter g by the s-wave scattering length as via Eq. (B7), recalling
that εk = k2/2m. The phase and modulus of h⊥(k) are

θk = arctan

(
ηky

kx

)
, (D21)

|h⊥(k)| = |κ|
m

√
k2

x + ηk2
y , (D22)
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and the total effective field is

hk =
√

h2
z + |h⊥(k)|2. (D23)

Since we are interested only in the long-wavelength and
low-frequency regime, we perform an analytic continuation to
real frequencies iqn = ω + iδ after calculating the Matsubara
sums for all coefficients appearing in Eq. (D10) and perform a
small momentum q and low-frequency ω expansion resulting
in the Ginzburg-Landau action,

SF = SGL = βV
∑

q

(
a +

∑
�

c�

q2
�

2m
− d0ω

)
|�q|2

+ βV

2

∑
q1,q2,q3

b(q1, q2, q3)�q1�
∗
q2

�q3�
∗
q1−q2+q3

+ βV

3

∑
q1···q5

f (q1, q2, q3, q4, q5)�q1�
∗
q2

×�q3�
∗
q4

�q5�
∗
q1−q2+q3−q4+q5

. (D24)

Here, the label � appearing explicitly in the term∑
� c�q2

�/(2m) represents the spatial directions {x, y, z},
while the q j’s in the sums correspond to (q j, ω j ) and
the summations

∑
q j

represent integrals βV
∫

dω j
∫

d3q j ,
where j labels a fermion pair and can take values in the set
{1, 2, 3, 4, 5}. In the expression above, we used the result

�−1(q, ω) = a +
∑

�

c�

q2
�

2m
− d0ω + · · · (D25)

for the analytically continued expression of �−1(q, iqn) ap-
pearing in Eq. (D15). To write the coefficients above in a more
compact notation, we define

Xi = Xi(k) = tanh[βEi(k)/2], (D26)

Yi = Yi(k) = sech2[βEi(k)/2]. (D27)

The frequency- and momentum-independent coefficient is

a = − m

4πas
+ 1

V

∑
k

[
1

2εk
−

(
X1

4E1
+ X2

4E2

)

− h2
z

ξkhk

(
X1

4E1
− X2

4E2

)]
, (D28)

where E1 = E1(k) and E2 = E2(k). The coefficient d0 =
dR + idI multiplying the linear term in frequency has a real
component given by

dR = 1

2V
P

∑
k

2∑
i, j=1

αi j (k, 0)
1 − ni(k) − n j (k)

[Ei(k) + Ej (k)]2
. (D29)

Using the explicit forms of the coherence factors uk and vk
that define αi j (k, q = 0), the above expression can be rewrit-
ten as

dR = 1

2V
P

∑
k

[(
1 + h2

z

ξ 2
k

)(
X1

4E2
1

+ X2

4E2
2

)

+ 2h2
z

ξkhk

(
X1

4E2
1

− X2

4E2
2

)]
, (D30)

which defines the timescale for temporal oscillations of the
order parameter. Here, the symbol P denotes the principal
value, and the coefficient dR is obtained from

Re[�−1(q = 0, ω + iδ)] = − m

4πas
+ 1

2V

∑
k

[
1

εk
+ P

2∑
i, j=1

αi j (k, q = 0)
1 − ni(k) − n j (k)

ω − Ei(k) − Ej (k)

]
. (D31)

The imaginary component of the coefficient d has the form

dI = π

2V

∑
k

2∑
i, j=1

αi j (k, 0)[1 − ni(k) − n j (k)]δ′(Ei(k) + Ej (k)), (D32)

where the derivative of the δ function is δ′(λ) = ∂δ(x + λ)/∂x|x=0. Using again the expressions of the coherence factors uk and
vk leads to

dI = π

2V

∑
k

{
(X1 + X2)δ′(2ξk ) + |h⊥|2

h2
k

[X1δ
′(2E1) + X2δ

′(2E2) − (X1 + X2)δ′(2ξk )]

}
, (D33)

which determines the lifetime of fermion pairs. This result originates from

Im[�−1(q = 0, ω + iδ)] = − π

2V

∑
k

2∑
i, j=1

αi j (k, q = 0)[1 − ni(k) − n j (k)]δ(ω − Ei(k) − Ej (k)), (D34)

which immediately reveals that below the two-particle thresh-
old ωt p(q = 0) = min{i, j,k}[Ei(k) + Ej (k)] at center-of-mass
momentum q = 0, the lifetime of the pairs is infinitely long
due to the emergence of stable two-body bound states. Note
that collisions between bound states are not yet included.

The expressions for the c� coefficients appearing in
Eq. (D25) are quite long and complex. Since these coefficients
are responsible for the mass renormalization and anisotropy
within the Ginzburg-Landau theory, we outline below their
derivation in detail. These coefficients can be obtained from
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the last term in Eq. (D15), which we define as

F (q) = 1

2V

∑
k

2∑
i, j=1

αi j (k, q)Wi j (k, q, iqn = 0). (D35)

The relation between c� and the function F (q) defined above
is

c� = m

[
∂2F (q)

∂q2
�

]
q=0

. (D36)

A more explicit form of c� is obtained by analyzing the
symmetry properties of F (q) under inversion and reflection
symmetries. To make these properties clear, we rewrite the
summand in Eq. (D35) by making use of the transformation
k → k − q/2. This procedure leads to the symmetric form,

F (q) = 1

2V

∑
k

2∑
i, j=1

α̃i j (k−, k+)W̃i j[Ei(k−), Ej (k+)].

(D37)
Here, k+ = k + q/2 and k− = k − q/2 are new momentum
labels, and

α̃11(k−, k+) = |uk−uk+ − vk−v∗
k+|2, (D38)

α̃12(k−, k+) = |uk−vk+ − vk−uk+|2 (D39)

are coherence factors, with α̃11(k−, k+) = α̃22(k−, k+) and
α̃12(k−, k+) = α̃21(k−, k+) The functions uk± and vk± are
defined in Eqs. (D19) and (D20). It is now very easy to
show that α̃i j (k−, k+) = α̃i j (k+, k−), that is, α̃i j (k−, k+) is
an even function of q, since taking q → −q leads to k− → k+
and k+ → k−, leaving α̃i j invariant. It is also clear, from its
definition, that α̃i j is symmetric in the band indices {i, j}.
Furthermore, the function

W̃i j[Ei(k−), Ej (k+)] = Ni j

Di j
, (D40)

defined above, is the ratio between the numerator,

Ni j = tanh[βEi(k−)/2] + tanh[βEj (k+)/2], (D41)

representing the Fermi occupations, and the denominator,

Di j = 2[Ei(k−) + Ej (k+)], (D42)

representing the sum of the quasiparticle excitation energies.
To eliminate the Fermi distributions ni(k) in the numerator,
we used the relation 1 − 2ni(k) = tanh[βEi(k−)/2]. Notice
that W̃i j[Ei(k−), Ej (k+)] is not generally symmetric under
inversion q → −q, that is, under the transformation k− → k+
and k+ → k−. This means that W̃i j[Ei(k−), Ej (k+)] =
W̃i j[Ei(k+), Ej (k−)], unless when i = j, where it is trivially
an even function of q. However, W̃i j[Ei(k−), Ej (k+)] is al-
ways symmetric under simultaneous momentum inversion
(q → −q) and band index exchange, that is,

W̃i j[Ei(k−), Ej (k+)] = W̃ji[Ej (k+), Ei(k−)], (D43)

for any {i, j}. This property will be used later to write a final
expression for c�. Next, we write[

∂2F (q)

∂q2
�

]
q=0

= 1

2V

∑
k

2∑
i, j=1

Fi j, (D44)

where the function inside the summation is

Fi j =
[
∂2α̃i j

∂q2
�

W̃i j + αi j
∂2W̃i j

∂q2
�

]
q=0

. (D45)

Notice the absence of terms containing the product of the
first-order derivatives of α̃i j and W̃i j . These terms vanish
due to parity since α̃i j is an even function of q, leading to
[∂α̃i j/∂q�]q=0 = 0. The last expression can be further devel-
oped upon summation over the band indices, leading to[

∂2F (q)

∂q2
�

]
q=0

= A + B. (D46)

The first contribution is given by

A = 1

2V

∑
k

[
∂2α̃11

∂q2
�

W̃di + ∂2α̃12

∂q2
�

W̃od

]
q=0

, (D47)

and contains the second derivatives of α̃i j and the symmetric
terms

W̃di = (W̃11 + W̃22), (D48)

W̃od = (W̃12 + W̃21). (D49)

The second contribution is given by

B = 1

2V

∑
k

[
α̃11

∂2W̃di

∂q2
�

+ α̃12
∂2W̃od

∂q2
�

]
q=0

. (D50)

Next, we explicitly write α̃i j , W̃i j and their second deriva-
tives with respect to q� at q = 0. We start with

[W̃i j]q=0 = Xi + Xj

2[Ei + Ej]
, (D51)

and for the second derivative, we write[
∂2W̃i j

∂q2
�

]
q=0

=
[

1

Di j

∂2Ni j

∂q2
�

]
q=0

−
[

2

D2
i j

∂Di j

∂q�

∂Ni j

∂q�

]
q=0

+
[

2Ni j

D3
i j

(
∂Di j

∂q�

)2]
q=0

−
[Ni j

D2
i j

∂2Di j

∂q2
�

]
q=0

.

Each one of the four terms in the above expression is evaluated
at q = 0 and can be written in terms of specific expressions
that are given below. The numerator is

[Ni j]q=0 = Xi + Xj, (D52)

the first derivative of Ni j is[
∂Ni j

∂q�

]
q=0

= Y 2
j

4T

∂Ej

∂k�

− Y 2
i

4T

∂Ei

∂k�

, (D53)

and the second derivative of Ni j is[
∂2Ni j

∂q2
�

]
q=0

= −XjY 2
j

8T 2

(
∂Ej

∂k�

)2

+ Yi

8T

∂2Ei

∂k2
�

−XiY 2
i

8T 2

(
∂Ei

∂k�

)2

+ Y 2
i

8T

∂2Ei

∂k2
�

. (D54)
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The denominator Di j and its first derivative are

[Di j]q=0 = 2(Ei + Ej ), (D55)[
∂Di j

∂q�

]
q=0

= ∂Ej

∂k�

− ∂Ei

∂k�

, (D56)

while the second derivative of Di j is[
∂2Di j

∂q2
�

]
q=0

= 1

2

[
∂2Ei

∂k2
�

+ ∂2Ej

∂k2
�

]
. (D57)

When the order parameter is zero, that is, |�0| = 0, the ener-
gies E1(k) and E2(k) become

E1(k) = ||ξk| + hk|, (D58)

E2(k) = ||ξk| − hk|. (D59)

The first derivatives of these energies are

∂E1(k)

∂k�

= S1(k)
k�

m
+ ∂hk

∂k�

, (D60)

∂E2(k)

∂k�

= S2(k)
k�

m
− ∂hk

∂k�

, (D61)

with the functions S1(k) = sgn[|ξk| + hk]sgn[ξk] and S2(k) =
sgn[|ξk| − hk]sgn[ξk]. The derivative of the effective Zeeman
field is

∂hk

∂k�

= 1

hk

κ2

m2
(kxδ�x + ηkyδ�y). (D62)

The second derivatives of the energies are

∂2E1(k)

∂k2
�

= S1(k)

m
+ ∂2hk

∂k2
�

, (D63)

∂2E2(k)

∂k2
�

= S2(k)

m
− ∂2hk

∂k2
�

, (D64)

where the second derivative of the effective field is

∂2hk

∂k2
�

= 1

hk

κ2

m2

[
(δ�x + ηδ�y) − 1

h2
k

κ2

m2

(
k2

x δ�x + η2k2
y δ�y

)]
.

(D65)

Since the diagonal elements W̃ii are even functions of q
and so are Nii and Dii, their expressions are simpler than
in the general case discussed above because the first-order
derivatives of Nii and Dii vanish. The surviving terms involve
only the second derivatives of Nii and Dii, leading to the
expression[

∂2W̃ii

∂q2
�

]
q=0

=
[

1

Dii

∂2Nii

∂q2
�

]
q=0

−
[Nii

D2
ii

∂2Dii

∂q2
�

]
q=0

. (D66)

Here, the numerator and denominator functions are

[Nii]q=0 = 2Xi and [Dii]q=0 = 4Ei, (D67)

while their second derivatives are[
∂2Nii

∂q2
�

]
q=0

= −XiY 2
i

4T 2

(
∂Ei

∂k�

)2

+ Y 2
i

4T

∂2Ei

∂k2
�

, (D68)

[
∂2Dii

∂q2
�

]
q=0

= ∂2Ei

∂k2
�

. (D69)

The next step in obtaining the c� coefficients is to analyze
the functions α̃i j and their second derivatives. We begin by
writing α̃11 at q = 0,

[̃α11]q=0 = ∣∣u2
k − |vk|2

∣∣2 = h2
z

h2
k

. (D70)

To investigate the second derivative of α̃11, we write

α̃11 = γ11γ
∗
11, (D71)

where the complex function is given by

γ11 = uk−uk+ − vk−vk+ . (D72)

In this case, we write the first derivative of α̃11 as

∂α̃11

∂q�

= ∂γ11

∂q�

γ ∗
11 + γ11

∂γ ∗
11

∂q�

, (D73)

and the second derivative as

∂2α̃11

∂q2
�

= ∂2γ11

∂q2
�

γ ∗
11 + 2

∂γ11

∂q�

∂γ ∗
11

∂q�

+ γ11
∂2γ ∗

11

∂q2
�

. (D74)

To explore the symmetry with respect to q, we express γ11 in
terms of its odd and even components via the relation γ11 =
γ11,e + γ11,o, where the even component γ11,e = [γ11(q) +
γ11(−q)]/2 is

γ11,e = uk−uk+ − |vk−||vk+| cos(θk− − θk+ ), (D75)

and the odd component γ11,o = [γ11(q) − γ11(−q)]/2 is

γ11,o = i|vk+||vk−| sin(θk+ − θk− ). (D76)

Expressed via the even γ11,e and odd γ11,o components, the
second derivative in Eq. (D74) is

∂2α̃11

∂q2
�

= ∂2γ11,e

∂q2
�

γ ∗
11.e + 2

∂γ11,o

∂q�

∂γ ∗
11,o

∂q�

+ γ11,e
∂2γ ∗

11,e

∂q2
�

.

(D77)
Notice that the even component is purely real, that is, γ ∗

11,e =
γ11,e, and that the odd component is purely imaginary, γ ∗

11,o =
−γ11,o. Use of this property leads to

∂2α̃11

∂q2
�

= 2γ11,e
∂2γ11,e

∂q2
�

− 2

(
∂γ11,o

∂q�

)2

. (D78)

The contribution from the even term γ11,e is

[γ11,e]q=0 = u2
k − |vk|2 = hz

hk
, (D79)

and from its second derivative is[
∂2γ11,e

∂q2
�

]
q=0

= 1

2

(
∂|vk|
∂k�

)2

− 1

2
|vk|∂

2|vk|
∂k2

�

+ |vk|2
(

∂θk

∂k�

)2

,

(D80)
while the contribution from the odd term γ11,o is[

∂γ11,o

∂q�

]
q=0

= i|vk|2 ∂θk

∂k�

. (D81)

Now, we turn our attention to α̃12 and its second derivative.
From Eq. (D39), we notice that γ12 is explicitly odd in q be-
cause γ12(q) = −γ12(−q), since the operation q → −q takes
k− → k+ and vice versa, leading to

[̃α12]q=0 = 0. (D82)
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To calculate the second derivative of α̃12, we write

α̃12 = γ12γ
∗
12, (D83)

where the complex function

γ12 = uk−vk+ − vk−uk+ . (D84)

We relate ∂2α̃12/∂q2
� to γ12 and its first and second derivatives

via

∂2α̃12

∂q2
�

= ∂2γ12

∂q2
�

γ ∗
12 + 2

∂γ12

∂q�

∂γ ∗
12

∂q�

+ γ12
∂2γ ∗

12

∂q2
�

. (D85)

Given that [γ12]q=0 = 0 and [γ ∗
12]q=0 = 0, the expression

above simplifies to[
∂2α̃12

∂q2
�

]
q=0

= 2

[
∂γ12

∂q�

∂γ ∗
12

∂q�

]
q=0

= [��(q)]2, (D86)

where we used the expressions[
∂γ12

∂q�

]
q=0

= eiθk��(k) (D87)

for the derivatives of γ12 at q = 0 with the function

��(k) = uk
∂|vk|
∂k�

− |vk|∂uk

∂k�

+ uk|vk|∂θk

∂k�

. (D88)

The last information needed is the derivatives of uk, |vk|,
and θk, which are given by

∂uk

∂k�

= −1

2

hz

h3
k

κ2

m2

(kxδ�x + ηkyδ�y)

(1 + hz/hk )1/2
, (D89)

∂|vk|
∂k�

= 1

2

hz

h3
k

κ2

m2

(kxδ�x + ηkyδ�y)

(1 − hz/hk )1/2
, (D90)

∂θk

∂k�

= η
(kxδ�y − kyδ�x )

k2
x + η2k2

y

. (D91)

The long steps discussed above complete the derivation of
all the functions needed to compute the c� coefficients for
an arbitrary spin-orbit coupling, expressed as a general linear
combination of Rashba and Dresselhaus terms.

As announced earlier, the calculation of c�, defined in
Eq. (D36), is indeed very long and requires the use of all the
expressions given from Eq. (D37) to Eq. (D91). Despite this
complexity, that are a few important comments about the sym-
metries of the c� coefficients that are worth mentioning. Given
that c� determines the mass anisotropies in the Ginzburg-
Landau (GL) theory, we discuss next the anisotropies of c�

as a function of the spin-orbit-coupling parameters κ and η.
First, in the limit of zero spin-orbit coupling, where κ and η

are equal to zero, all the c� coefficients are identical, reflecting
the isotropy of the system, that is, cx = cy = cz, and reduce to
previously known results [51]. In this case, the GL effective
masses m� = mdR/c� are isotropic: mx = my = mz. Second,
in the limit of κ = 0 and η = ±1, the spin-orbit coupling
has the same strength along the x and y directions, and thus
for the Rashba (η = 1) or Dresselhaus (η = −1) cases, the
coefficients obey the relation cx = cy = cz. This leads to ef-
fective masses mx = my = mz. Third, in the limit κ = 0, but
η = 0, corresponding to the ERD case, the coefficients have
the symmetry cx = cy = cz. Now the effective masses obey
the relation mx = my = mz. Finally, in the case where κ = 0,
and 0 = |η| < 1, all the c� coefficients are different, that is,
cx = cy = cz. Therefore, the effective masses are also differ-
ent in all three directions: mx = my = mz.

Following an analogous procedure, we analyze the coef-
ficients b(q1, q2, q3), and e(q1, q2, q3, q4, q5) with all qi =
(0, 0), and define

Zi j = Xi + βEiYj/2. (D92)

Using the notation b(0, 0, 0) = b(0), we obtain

b(0) = 1

8V

∑
k

[(
1 + h4

z

ξ 2
k h2

k

)(
Z11

E3
1

+ Z22

E3
2

)
+ 2h2

z

ξkhk

(
Z11

E3
1

− Z22

E3
2

)
+ h4

z

ξ 3
k h3

k

(
X1

E1
− X2

E2

)]
, (D93)

which is a measure of the local interaction between two pairing fields. Using the notation f (0, 0, 0, 0, 0) = f (0), we obtain

f (0) = 3

32V

∑
k

[
−

(
1 + 3h4

z

ξ 2
k h2

k

)(
Z11

E5
1

+ Z22

E5
2

)
− h2

z

ξkhk

(
3 + h4

z

ξ 2
k h2

k

)(
Z11

E5
1

− Z22

E5
2

)
− h6

z

ξ 4
k h4

k

(
Z11

E3
1

+ Z22

E3
2

)

− h4
z

ξ 3
k h3

k

(
Z11

E3
1

− Z22

E3
2

)
+ β2

6

(
X1Y1

E3
1

+ X2Y2

E3
2

)
+ β2h2

z

6ξkhk

(
X1Y1

E3
1

− X2Y2

E3
2

)
− h6

z

ξ 5
k h5

k

(
X1

E1
− X2

E2

)]
, (D94)

which is a measure of the local interaction between three
pairing fields. It is important to mention that in the absence
of spin-orbit and Zeeman fields, the Ginzburg-Landau coeffi-
cients obtained above reduce to those reported in the literature
[51].

As we proceed to explicitly write the Ginzburg-Landau
action and Lagrangian density, we emphasize that in contrast
to the standard crossover that one observes in the absence
of an external Zeeman field [51], for fixed hz = 0 it is pos-
sible for the system to undergo a first-order phase transition

with increasing 1/kF as. The same applies for fixed 1/kF as

with increasing hz. Thus, while an expansion of SF to quar-
tic order is sufficient when no Zeeman fields are present,
when Zeeman fields are turned on, the fourth-order coefficient
b(0) = b may become negative. Such a situation requires the
analysis of the sixth-order coefficient f (0) = f to describe
this first-order transition correctly and to stabilize the theory
since f > 0.

The Ginzburg-Landau action in Euclidean space can be
written as SGL = ∫

dt
∫

d3rLGL(r), where r ≡ (r, t ). Here,
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the Lagrangian density is

LGL(r) = a|�(r)|2 + b

2
|�(r)|4 + f

3
|�(r)|6

+
∑

�

c�

|∇��(r)|2
2m

− id0�
∗(r)

∂�(r)

∂t
, (D95)

where � = {x, y, z}, b = b(0), and f = f (0). A variation of
SGL with respect to �∗(r) via δSGL/δ�∗(r) = 0 yields the
time-dependent Ginzburg-Landau (TDGL) equation,(

−id0
∂

∂t
−

∑
�

c�

∇2
�

2m
+ b|�|2 + f |�|4 + a

)
�(r) = 0,

(D96)

with cubic and quintic terms, where � = �(r) are de-
pendent on space and time. This equation describes the
spatiotemporal behavior of the order parameter �(r, t ) in the
long-wavelength and long-time regime.

In the static homogeneous case with b > 0, Eq. (D96)
reduces to either the trivial (normal-state) solution � = 0
when a > 0 or to the nontrivial (superfluid state) |�| =√|a|/b, when a < 0. The coefficient d provides the timescale
of the TDGL equation, and thereby determines the lifetime
associated with the pairing field �(r). This can be seen
directly by again considering the homogeneous case to lin-
ear order in �(r), in which case the TDGL equation has
the solution �(t ) ≈ �(0)eiat/d0 . This last expression can be

rewritten more explicitly as �(t ) ≈ �(0)e−iω0t e−t/τ0 , where
ω0 = |a|dR/|d0|2 is the oscillation frequency of the pairing
field, and τ0 = |d0|2/(|a|dI ) is the lifetime of the pairs, where
both dR and dI are positive definite, that is, dR > 0 and dI > 0.

In the BEC regime, where stable two-body bound states ex-
ist, the imaginary part of d0 vanishes (dI = 0), and the lifetime
time of the pairs is infinitely long. In this case, d0 = dR and we
can define the effective bosonic wave function � = √

dR� to
recast Eq. (D96) in the form of the Gross-Pitaevskii equation,(

−i
∂

∂t
−

∑
�

∇2
�

2M�

+ U2|�|2 + U3|�|4 − μB

)
�(r) = 0,

(D97)

with cubic and quintic nonlinearities, where � = �(r), to
describe a dilute Bose gas. Here, μB = −a/dR is the bosonic
chemical potential, M� = m(dR/c�) are the anisotropic masses
of the bosons, and U2 = b/d2

R and U3 = f /d3
R represent con-

tact interactions of two and three bosons, respectively. In
the Bose regime, the lifetime τ of the composite boson is
τ ∝ 1/dI → ∞ and the interactions U2 and U3 are always
repulsive, thus leading to a system consisting of a dilute gas
of stable bosons. In this regime, the chemical potential of
the bosons is μB ≈ 2μ + Eb < 0, where Eb is the two-body
bound state energy in the presence of spin-orbit coupling and
Zeeman fields obtained from the condition �−1(q, E − 2μ) =
0 discussed in the main text. Notice that when μB → 0−, in
the absence of boson-boson interactions, the bosons condense.
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