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Mobile impurity probing a two-dimensional superfluid phase transition
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The use of atomically sized quantum systems as highly sensitive measuring devices represents an exciting
and quickly growing research field. Here we explore the properties of a quasiparticle formed by a mobile
impurity interacting with a two-dimensional fermionic superfluid. The energy of the quasiparticle is shown to
be lowered by superfluid pairing, as this increases the compressibility of the Fermi gas, thereby making it easier
for the impurity to perturb its surroundings. We demonstrate that the fundamentally discontinuous nature of the
superfluid-to-normal phase transition of a two-dimensional system leads to a rapid increase in the quasiparticle
energy around the critical temperature. The magnitude of this increase exhibits a nonmonotonic behavior as a
function of the pairing strength with a sizable maximum in the crossover region, where the spatial extend of
the Cooper pairs is comparable to the interparticle spacing. Since the quasiparticle energy is measurable with
present experimental techniques, our results illustrate how impurities entangled with their environment can serve
as useful probes for nontrivial thermal and quantum correlations.
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I. INTRODUCTION

The realization of accurate measuring devices, which are
based on their quantum-mechanical properties, represents a
new and exciting research direction with great technological
potential. A main goal is to develop atomically sized probes
with maximal sensitivity and minimal back action on the
environment [1]. Impurity atoms are promising candidates
for this, and they have already been used experimentally to
measure the temperature [2–4] and density [5] of a surround-
ing quantum degenerate gas, as well as to detect induced
interactions [6]. So far, the vast majority of investigations into
mobile impurities in atomic gases concerned cases where the
environment is either a weakly interacting Bose-Einstein con-
densate (BEC) or an ideal Fermi gas, and the impurity forms
a quasiparticle called the Bose or Fermi polaron, respectively
[7–15].

Much less attention has been payed to mobile impurities
in environments with correlations between the particles. The
properties of an impurity in a fermionic superfluid across
the strongly correlated BCS-BEC crossover were examined
[16,17], but a general description turns out to be complicated
by the presence of ultraviolet divergencies related to three-
body physics [18]. A particularly interesting case concerns
two-dimensional (2D) systems, where quantum and thermal
fluctuations are more pronounced than in 3D and true long-
range order is prohibited at a nonzero temperature [19,20].
Nevertheless, 2D systems can exhibit a so-called Berezinskii-
Kosterlitz-Thouless (BKT) phase transition to a superfluid
phase with quasi-long-range order [21–23], which has been
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observed in a range of bosonic systems including 4He films
[24], magnetic layers [25], and atomic Bose gases [26–30].
A 2D superfluid in a two-component, strongly interacting
atomic Fermi gas was observed only recently [31–33], and
the underlying discontinuity of the phase transition has so far
not been seen unambiguously in this system. In general, our
understanding of 2D fermionic superfluids is less developed
as compared to their bosonic counterparts.

Here we investigate a mobile impurity immersed in a
2D fermionic superfluid. Interactions between the impu-
rity and the surrounding fermions lead to the formation
of a quasiparticle, i.e., a polaron, and we show that its
energy is lowered due to an increase in the compressibil-
ity of the environment caused by superfluid pairing. We
furthermore demonstrate that the abrupt vanishing of the
superfluid density at the critical temperature, characteristic
for a superfluid-to-normal phase transition in 2D [34], gives
rise to a rapid increase in the polaron energy. The increase
depends nonmonotonically on the Fermi-Fermi interaction
strength, exhibiting a maximum when the size of the Cooper
pairs is comparable to the interparticle spacing. Our results
show how a mobile impurity can serve as a sensitive probe
for thermal and quantum correlations of a 2D fermionic
system, thereby providing important guides for improving
our understanding of its nontrivial superfluid-to-normal phase
transition.

II. SYSTEM

Consider an impurity of mass mI immersed in a two-
component (σ =↑,↓) gas of fermions of mass m in 2D. The
↑ and ↓ fermions interact attractively and form a superfluid
below a critical temperature. Using BCS theory to describe
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this superfluid phase, the Hamiltonian of the system is

Ĥ =
∑
kσ

ξkâ†
kσ

âkσ + �
∑

k

(â−k↓âk↑ + â†
−k↑â†

k↓)

+
∑

k

εkĉ†
kĉk + gIF

∑
kk′qσ

â†
k′−qσ

âk′σ ĉ†
k+qĉk. (1)

Here, â†
kσ

is the creation operator of a fermion with momen-
tum k, spin σ , and kinetic energy ξk = k2/2m − μ, with μ the
chemical potential, and ĉk creates an impurity with momen-
tum k and kinetic energy εk = k2/2mI . gIF is the interaction
strength for momenta less than a cutoff �, which can be
eliminated in favor of a two-body bound state with energy εB

using [35,36]

1

gIF
= − 1

V
∑
|q|<�

1

EB + q2/2mr
, (2)

where mr = mmi/(m + mi ) and EB = 1/2mra2
IF .

The superfluid gap � at temperature T is determined from

� = − gF

βV
∑
k,n

G12(k, iωn), (3)

where G12 is the anomalous Green’s function. This leads to
the following gap equation:∫

dk k

(
tanh(Ek/2T )

2Ek
− 1

εB + k2/2mr

)
= 0, (4)

where Ek =
√

ξ 2
k + �2, and we have renormalized the gap

equation by replacing the Fermi-Fermi interaction strength
by the energy of a bound state of two fermions εB, which is
always present for an attractive interaction [35]. We work in
units where h̄, kB, and the system volume are all unity.

III. THE BKT TRANSITION

The 2D superfluid with quasi-long-range order melts into
a normal phase when vortex and antivortex pairs unbind and
proliferate. This occurs at the critical temperature determined
by the condition [22,37]

TBKT = π

8m
ns(TBKT), (5)

where ns is the superfluid density given by [38]

ns(T )

n
= 1 + 1

2πmn

∫ ∞

0
dkk3 ∂ f (Ek)

∂Ek
. (6)

Here f (E ) = [exp(E/T ) + 1]−1 is the Fermi-Dirac distribu-
tion, and n = k2

F /2π is the total density from both spin states
of the Fermi gas. The integral is always negative and vanishes
at T = 0, ensuring that the superfluid density is always equal
to or smaller than the total density. It follows from Eq. (5) that
the superfluid density of the Fermi gas exhibits a universal
jump �ns/mTBKT = 8/π at the BKT transition. This jump
has not yet been observed in the experiments exploring two-
dimensional atomic Fermi gases, and a main goal here is to
demonstrate that the discontinuity of the phase transition can
be detected by looking at the properties of the impurity.

FIG. 1. We consider a mobile impurity (green ball without ar-
row) forming a quasiparticle by interacting with a two-component
Fermi gas (blue and red balls with arrows) in 2D. An attractive
interaction with strength − ln(kF aF ) between the fermions gives rise
to a discontinuous phase transition between a superfluid and a normal
phase at the critical temperature TBKT, which is suppressed from the
mean-field BCS prediction Tc by phase fluctuations. The vertical
lines indicate the coupling strengths for which we plot the polaron
energy in Fig. 2.

Figure 1 shows the phase diagram of the Fermi gas as
a function of the Fermi-Fermi interaction length strength
parametrized by − ln(kF aF ) and temperature. Here, aF is a
scattering length defined by writing the energy of the bound
Fermi-Fermi dimer as −1/ma2

F . The Fermi gas is in a su-
perfluid phase below a critical temperature TBKT obtained by
solving Eqs. (4)–(6) self-consistently. We vary the chemical
potential μ to keep the density n = 2

∑
k[v2

k(1 − fk ) + u2
k fk]

fixed, where v2
k = 1 − u2

k = (1 − ξk/Ek)/2 are the coherence
factors.

For weak coupling − ln(kF aF ) � −1, corresponding to
the so-called BCS regime with large Cooper pairs, the su-
perfluid transition temperature is close to that obtained from
mean-field BCS theory, which predicts a smooth decrease of
the superfluid density to zero at the critical temperature Tc.
It follows that the jump in the superfluid density at TBKT

is small for weak coupling. For stronger coupling, however,
phase fluctuations significantly suppress the critical tempera-
ture below the BCS prediction, leading to a large jump in the
superfluid density at the phase transition. We obtain TBKT =
TF /8 in the strong-coupling regime with − ln(kF aF ) � −1,
reflecting that the superfluid density equals the total density
n = k2

F /2π just below the transition, giving rise to a maximal
jump �ns = n [39–41]. We note, however, that the gas even-
tually enters the BEC regime with increasing − ln(kF aF ) � 1,
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where it can be described as a Bose gas of tightly bound
Cooper pairs with a BKT critical temperature that decreases
slowly [31,32,42,43].

IV. PERTURBATION THEORY

We now turn to the properties of the impurity in the Fermi
gas. Since the case of general interaction strengths between
the impurity and the fermions as well as between the fermions
is very complicated, we focus on the regime of weak impurity-
fermion interactions where a reliable perturbative theory can
be developed.

To do this, consider the scattering matrix between the im-
purity and a fermion. As detailed in Appendix A, it can in the
ladder approximation be written as

T (k) = g

1 − g��(k)
� g + g2��(k) + · · · , (7)

where k = (k, iωn) denotes the center-of-mass momentum k
of the colliding pair with iωn a Matsubara frequency, and
an expression for the pair propagator ��(k) is given in Ap-
pendix B. It follows from Eq. (7) that

g = − π

mr

1

ln(kF aIF)
(8)

is an effective 2D interaction strength between the impurity
and the fermions [44,45]. We have thus eliminated the bare
impurity-Fermi coupling strength gIF in favor of an effec-
tive interaction strength, which is a function of the energy
−1/2mra2

IF of the bound impurity-fermion dimer with aIF the
impurity-fermion scattering length and mr = mmI/(m + mI )
the reduced mass [35,36]. When | ln(kF aIF)| � 1, the effec-
tive interaction is weak and the impurity properties can be
calculated reliably using perturbation theory in g as used in
Eq. (7).

To first order in g, the energy shift of the impurity is simply
given by the mean-field expression �1(p) = gn. The second-
order term is

�2(p) = 2T g2
∑

k

[G11(k)��(p + k) + G12(k)�21(p + k)]

= T g2
∑

k

G0(k)χ (p − k), (9)

where

G11(k, iωn) = u2
k

iωn − Ek
+ v2

k

iωn + Ek
, (10)

G12(k, iωn) = ukvk

(
1

iωn + Ek
− 1

iωn − Ek

)
(11)

are the normal and anomalous propagators for the superfluid,
and G−1

0 (k) = iωn − εk is the impurity Green’s function in
the absence of interactions. The first term in the first line of
Eq. (9) describes the coupling of the impurity to particle-
hole excitations in the superfluid, whereas the second term
describes coupling to pair-breaking excitations. In the second
line of Eq. (9), we write the impurity self-energy in terms of
the density-density correlation function χ (k) of the superfluid,
which gives the compressibility for long wave lengths. Ex-
pressions for �12(k) and χ (k) are given in Appendix B.

The energy εP of the polaron can now be found from
the pole of the impurity Green’s function G(k) analytically
continued to real frequencies. Using the Dyson equa-
tion G−1(k) = G−1

0 (k) − �(k) with �(k) = �1(k) + �2(k) to
second order in g then yields

εP = gn + �2(0, εP + i0+), (12)

where we take zero momentum and mI = m in the following
for simplicity.

V. NORMAL PHASE

Strictly speaking, it is only the superfluid density that ex-
hibits a discontinuity at TBKT . This is because the long-range
phase coherence of the gap is lost for T > TBKT , whereas
its amplitude |�| remains continuous. In the following we
will nevertheless assume that the pairing gap jumps to zero
at the temperature TBKT for the BKT phase transition. That
is, we will use BCS theory for T � TBKT and set � = 0 for
T > TBKT , which corresponds to assuming that the Fermi gas
is noninteracting. The reasons for this are the following. First,
vortices with a vanishing gap in their centers proliferate at the
transition temperature, which will significantly decrease the
average gap for T > TBKT . Second, even if the gap is nonzero
in the normal phase, it does not lead to a perfect vanishing of
the density of states around the Fermi level as opposed to in
the superfluid phase. Indeed, the gap in the normal phase is
often refereed to as a pseudogap for this reason, and its de-
scription requires inclusion of fluctuation effects beyond BCS
theory. A central feature of the theories for the pseudogap
region is that they predict a suppressed but nonzero density
of states at the Fermi level [46,47]. This means that impurity
can scatter on low-energy excitations in the surrounding bath,
even for a nonzero pseudogap in the normal phase above TBKT .
Using a nonzero � in the BCS Green’s functions, Eq. (11)
above T > TBKT would, on the other hand, yield a vanishing
density of states at the Fermi level, thereby missing these
low-energy excitations completely, which likely will result
in an unphysical polaron energy. Finally, BCS theory dras-
tically overestimates the temperature for which the amplitude
of the gap vanishes except for weak coupling. Indeed, more
sophisticated theories predict that the pseudogap vanishes for
temperatures much lower than the mean-field critical tem-
perature [46,48]. It follows that the pseudogap goes to zero
in a temperature range above TBKT that is narrow compared
to the BCS transition temperature. Given these facts, it is
physically reasonable as a first approximation to assume that
the gap jumps to zero at TBKT , which should therefore be
understood as the limiting form of a continuous but sharp
drop. We therefore take � = 0 for T > TBKT in the rest of
the paper, which corresponds to assuming that the Fermi gas
is ideal in the normal phase.

VI. RESULTS

In Fig. 2 we plot the polaron energy as a function of the
temperature for different values of the Fermi-Fermi interac-
tion, which are shown by vertical lines in Fig. 1. This is found
by first solving Eqs. (4)–(6) numerically for constant density
to find the properties of the Fermi bath. We then calculate
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FIG. 2. Polaron energy as a function of temperature for the
Fermi-Fermi coupling strengths − ln(kF aF ) = −2.342 (green up-
per line), − ln(kF aF ) = −1.386 (red lower line), and − ln(kF aF ) =
−0.077 (blue middle line). The dashed pink line gives polaron energy
in the normal phase, and the dash-dotted lines the polaron energy
assuming the Fermi gas remains superfluid up to the mean-field
critical temperature Tc. The inset shows the superfluid gap as a
function of temperature for the same coupling strengths, with the
dash-dotted lines giving the mean-field prediction for T > TBKT. The
colors blue (upper), red (middle), and green (lower) correspond to
the scattering values of the main plot. The dotted lines illustrate the
expected continuous behavior of the polaron energy and magnitude
|�| of the gap around the BKT transition, as explained in Sec. V.

the impurity self-energy from Eq. (9). The impurity-fermion
interaction is − ln(kF aIF) = −1.03, for which perturbation
theory is still accurate for an impurity in a 2D ideal Fermi
gas [49]. First, we note that the polaron has a lower energy
when the Fermi gas is in the superfluid phase as compared to
when it is in the normal phase (dashed lines). Physically, this
is because pairing correlations increase the compressibility of
the Fermi gas [50–53] so that the impurity more easily can
perturb its surroundings, thereby lowering the energy. As the
temperature increases, the superfluid gap decreases (inset in
Fig. 2) and the polaron energy approaches the value in the
normal phase, which in turn decreases with temperature, in
analogy with what is found in 3D [54,55]. In particular, the
polaron energy exhibits a discontinuity at the critical tem-
perature TBKT, since we assume that the superfluid gap in
the surrounding medium jumps to zero at the transition. It
is strictly only the superfluid density that is discontinuous at
the transition due to the loss of phase coherence, whereas as
the amplitude of the gap and therefore the polaron energy is
continuous. Nevertheless, as we argued above, the gap must
be expected to exhibit a steep decrease in a narrow region

FIG. 3. The limiting discontinuity �εP in the polaron energy
at the critical temperature TBKT as a function of the Fermi-Fermi
coupling strength − ln(kF aF ). The inset shows the superfluid gap
at T = 0 (blue upper line) and at T = TBKT (red lower line) as a
function of the interaction strength.

around TBKT. The results shown in Fig. 2 should in this sense
be understood as a limiting form of a continuous but rapid
increase in εP on the scale of the mean-field (BCS) transition
temperature. This should be contrasted to BCS theory pre-
dicting a gap that goes to zero at a much higher transition
temperature Tc (except for weak coupling), giving rise to a
much more smooth behavior of polaron energy. Thus the
abrupt change of the Fermi gas at TBKT is reflected in the
polaron energy, which exhibits a sizable and steep increase
in its energy in a narrow temperature region. Importantly, this
should be observable with the spectral resolution of current
Fermi polaron experiments [11–15]. These results show that
the polaron can be used as a probe of the abrupt nature of the
superfluid-to-normal phase transition in a 2D fermionic super-
fluid. In particular, a measurement of the polaron energy and
its behavior around TBKT should provide valuable information
regarding the thermal and quantum fluctuations in the critical
region.

Figure 2 shows that the amplitude of the rapid en-
ergy increase is larger for − ln(kF aF ) = −1.386 than for
− ln(kF aF ) = −2.342. This is as expected, since a stronger
Fermi-Fermi coupling gives rise to a larger decrease in the
superfluid gap (inset) at TBKT. The discontinuity is, however,
smaller again for even stronger coupling with − ln(kF aF ) =
−0.077, even though the pairing energy is larger. To explore
this further, we plot in Fig. 3 the value �εP = εP(T +

BKT) −
εP(T −

BKT) as a function of the Fermi-Fermi coupling strength
− ln(kF aF ), which corresponds to the change in the polaron
energy in the limit where it occurs with infinite slope at TBKT.
We see that �εP initially increases with the coupling strength
in the BCS regime. It reaches a sizable maximum of �εP �
0.32εF in the crossover region around ln(kF aF ) ∼ −0.6, after
which it decreases, as the BEC region is approached with
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FIG. 4. The limiting discontinuity �εP in the polaron energy
at the critical temperature TBKT in units of the jump �ns in the
superfluid density as a function of the Fermi-Fermi coupling strength
− ln(kF aF ). The inset shows �ns/n as a function of interaction
strength.

increasing interaction, even though the gap continues to in-
crease as shown in the inset. This should be contrasted to
the gap, which increases monotonically as a function of the
coupling both for T = 0 and T = TBKT as shown in the inset
of Fig. 3. Interestingly, the maximum in �εP occurs when
the size of the Cooper pairs is comparable to the interparticle
spacing, where one has also observed a maximum in the crit-
ical temperature [31,32] and in the critical velocity [33]. As
the coupling strength increases further with − ln(kF aF ) � 1,
the Cooper pairs shrink and the Fermi gas becomes a BEC
of dimers with a transition temperature in a narrow region
∝ 1/ ln[ln(1/na2

D)] below the mean-field prediction, with aD

the dimer-dimer scattering length and a correspondingly small
discontinuity in the superfluid density [31,32,42,43]. It fol-
lows that there should be a maximum in �εP somewhere in
the crossover region as indeed predicted here. Note, however,
that our theory is unreliable in the BEC regime, since it does
not include the Bogoliubov-Anderson mode, which becomes
the dominant excitation compared to particle-hole and pair-
breaking excitations. A consistent description of the polaron
in the whole BEC-BCS crossover of the Fermi gas is remains
an open and very challenging problem beyond the present
scope.

Finally, Fig. 4 plots the limiting change �εP in the polaron
energy at TBKT in units of the jump �ns/m in the superfluid
density at the critical temperature, which is shown in the
inset. This shows that while the rapid change in the polaron
energy is a direct consequence of the abrupt nature of the BKT
phase transition of the surrounding medium, there is no sim-
ple proportionality between �εP and �ns. Instead, the ratio
�εPm/�ns increases with Fermi-Fermi interaction strength
in the BCS regime, reaching a maximum at ln(kF aF ) ∼ −0.6,
after which it decreases. The jump in the superfluid density

at the transition temperature, on the other hand, increases
monotonically with the coupling strength, reaching the lim-
iting value n in the BEC regime.

VII. DISCUSSION AND OUTLOOK

We investigated the properties of a quasiparticle formed by
a mobile impurity in a fermionic superfluid. The characteristic
discontinuity of the superfluid-to-normal phase transition of
a 2D system was shown to give rise to a rapid increase in
the quasiparticle energy around the transition temperature.
We demonstrated that the amplitude of the increase depends
nonmonotonically on the pairing strength, with a maximum
in the crossover region between the BCS and BEC limits, and
that it is measurable with present experimental techniques.
In particular, radio-frequency spectroscopy has proven to be
a very powerful technique for measuring the polaron energy
both in Fermi gases and in BECs [7–15].

Our results show a way to probe the properties of the
superfluid as well as its transition to the normal phase for a
2D fermionic system. This is of particular interest since there
is no quantitatively reliable theory for this challenging prob-
lem in the strong-coupling regime. For instance, a nonzero
width of the rapid increase of the polaron energy around TBKT

will provide information regarding the pseudogap region. This
could, moreover, cast light on the intriguing question regard-
ing the role of vortex-antivortex pairs in the superfluid phase
and above, and their interplay with the impurity. It would
also be very interesting to develop an improved theoretical
understanding regarding the properties of the BKT transition
for a fermionic superfluid, including its quantum and thermal
fluctuations [46,47,56,57]. Here, experimental results regard-
ing the polaron energy in the critical region would provide
important guides for this challenging problem.

The magnitude of the jump in the polaron energy will
clearly be even larger for stronger interactions between the im-
purity and the surrounding Fermi gas. Exploring this requires
going beyond the perturbative approach used here, which is
an interesting topic for future study. Another fascinating but
very challenging problem is to explore how the quasiparticle
evolves smoothly from a Fermi to a Bose polaron as the Fermi
gas changes from a BCS superfluid to a BEC of dimers.

From a broader perspective, our results illustrate how
impurities entangled with their environment via particle colli-
sions can be used as sensitive probes for nontrivial quantum
and thermal correlations. This motivates further investigations
into how coherent superpositions of internal spin states of the
impurity can be used to enhance the sensitivity of the impurity
probe while minimizing the back action on the environment
[58–61]. Another intriguing research direction is to investigate
how impurities can be used to probe nonlocal correlations and
order, as well as the geometric and topological properties of
the environment [62–66].
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APPENDIX A: T MATRIX

In order to get an expression for gIF in terms of the pair
propagator we write the T matrix in vacuum as

Tv (k, ω) = 1

g−1
IF − �v (k, ω)

, (A1)

where �v is the pair propagator for two fermions in a vacuum,

�v (k, ω) = 1

V

�∑
q

1

ω − k2/2M − q2/2mr
, (A2)

with M = m + mI , and � is a UV cutoff that we send to
infinity at the end of the calculation. We perform a variable
change q2 = x ⇒ dq = dx/2

√
x, and after a straightforward

calculation we get

�v (k, ω) = − mr

2π

[
ln

(∣∣∣∣ω + i0+ − k2/2M − �

ωn − k2/2M + μ

∣∣∣∣
)

+ iπ

− i arg(ω + i0+ − k2/2M )

]
. (A3)

Lastly, since the dimer bound-state energy is a pole of the vac-
uum T matrix we can write from Eq. (A1) g−1

IF = �v (0, εB).
We can now write the scattering matrix in the medium as

T (k, iωn) = 1

�v (0, εB) − �(k, ωn)
, (A4)

where

�(k, iωn) = 1

V
∑

p

(
u2

p(1 − np)

iωn − Ep − εk−p
+ v2

pnp

iωn + Ep − εk−p

)
.

(A5)

Note that here we take εB = −1/2mra2
IF < 0. In order to re-

move the divergence in both pair propagators, we add and
subtract Re[�v (0, εF )] in the denominator, and with this we
can define

1

g
= �v (0, εB) − Re[�v (0, εF )] � − π

mr

1

ln (kF a)
, (A6)

where we left out mr/m since kF aIF � mr/m.

APPENDIX B: PERTURBATIVE EXPANSION

Going back to the full expression for the scattering matrix,
we can expand it in the weak-coupling regime (kF aIF � 1) in
a perturbative series up to second order in g,

T (k, iωn) = g

1 − g��(k, iωn)
� g + g2��(k, iωn), (B1)

where g is expressed by Eq. (A6), and

��(k, iωn) = �(k, iωn) − Re[�v (0, εF )]. (B2)

To first order this gives the mean-field contribution to the self-
energy of the polaron

Σ1(q, iΩν) = = 2g
∑

k

G11(k) (21)

∑ ∑ ∑
(B3)

with k = (k, iωn) and
∑

k = 1
βV

∑
k

∑
n. After a straightfor-

ward calculation we find

�1(0, εP ) = g

π

∫ ∞

0
dk k

[
u2

knk + v2
k (1 − nk)

]
. (B4)

The second-order contribution is written in Eq. (9) of the main
text with

χ (k) =
∑

q

[G11(q)G11(p− k + q) + G12(q)G12(p − k + q)].

(B5)

We can write this in a different way as �2 = �2a + �2b,
where

Σ2a(0, εP ) =

k − p, i

p, σ

k, σ
(B6)

After a straightforward calculation we find

�2a(0, εP )

= 2g2

V2

∑
k,p

(
v2

pu2
knknp

εP + Ek + Ep − εk−p

+ u2
pv

2
k (1 − nk)(1 − np)

εP−Ek − Ep − εk−p
+ v2

pv
2
k (1 − nk)np

εP − Ek + Ep − εk−p

+ u2
pu2

knk(1 − np)

εP + Ek − Ep − εk−p
− u2

knk + v2
k (1 − nk)

εF − εF (p) − εI (p)

)
.

(B7)

We also get

Σ2b(0, εP ) =

k − p, i

k, σ

p, σ
(B8)

where

�21(k, iωn + εP ) = 1

βV
∑

p

∑
m

G12(p, iωm)

× G0,i(k − p, iωn − iωm + εP ). (B9)
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After a straightforward calculation we can write

�2b(0, εP ) = 2g2

V2

∑
k,p

ukvkupvp

[
nknp

εP + Ek + Ep − εk−p
+ (1 − nk)(1 − np)

εP − Ek − Ep − εk−p

− (1 − nk)np

εP − Ek + Ep − εk−p
− nk(1 − np)

εP + Ek − Ep − εk−p

]
. (B10)
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