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By means of quantum Monte Carlo simulations we study phase diagrams of dipolar bosons in a square optical
lattice. The dipoles in the system are parallel to each other and their orientation can be fixed in any direction in
the three-dimensional space. Starting from experimentally tunable parameters like scattering length and dipolar
interaction strength, we derive the parameters entering the effective Hamiltonian. Depending on the direction of
the dipoles, various types of supersolids (e.g., checkerboard, stripe) and solids (checkerboard, stripe, diagonal
stripe, and an incompressible phase) can be stabilized. Remarkably, we find a cluster supersolid characterized
by the formation of horizontal clusters of particles. These clusters order along a direction at an angle with
the horizontal. Moreover, we find what we call a grain-boundary superfluid. In this phase, regions with solid
order are separated by extended defects—grain boundaries—which support superfluidity. We also investigate
the robustness of the stripe supersolid against thermal fluctuations. Finally, we comment on the experimental
realization of the phases found.
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I. INTRODUCTION

Supersolidity, a fascinating state of matter in which crys-
talline order and global phase coherence are simultaneously
present, was originally predicted several decades ago [1–4]
and initially searched for in helium systems [5]. The quest for
experimental realization of the supersolid phase later focused
on ultracold quantum gases because they offer a highly con-
trollable platform where interactions can be finely tuned [6].
The first observations of supersolidity in ultracold gases were
made in atomic systems coupled with external light fields
[7–9]. In these setups, the density modulation is imposed
by the external fields. More recently, experimentalists have
exploited the anisotropic and long-range nature of dipolar
interaction to demonstrate the existence of supersolid states
of matter in ultracold dipolar gases [10–18]. Here, the dipo-
lar interaction is responsible for a spontaneous formation of
droplets of gas organized in a crystalline structure (see also
recent theoretical work in, e.g., Refs. [19,20]).

Supersolid structures have also been theoretically predicted
in dipolar gases trapped in optical lattices [21–31]. As optical
lattices already impose a crystalline structure, solid order in
these systems is realized when a discrete symmetry is also
broken as particles arrange themselves in a crystalline struc-
ture different from the one of the underlining optical lattice,
e.g., checkerboard or stripe patterns. While supersolidity in
ultracold atoms trapped in optical lattices has yet to be ex-
perimentally observed, a recent experiment [32] has paved
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the way to investigate this elusive phase with dipolar lattice
bosons.

Motivated by these recent experimental breakthroughs,
here we study under which experimental conditions supersolid
phases can be realized with lattice dipolar bosons tilted in
three dimensions (3D). We use quantum Monte Carlo simu-
lations based on the worm algorithm [33] to study quantum
phases stabilized by the extended Bose-Hubbard model in a
square lattice. The model describes a system of soft-core dipo-
lar bosons with dipoles parallel to each other. The polarization
axis can be fixed in any direction of the three-dimensional
space. We notice that we calculate the parameters entering
the effective Bose-Hubbard model, i.e., the onsite interaction,
long-range interaction strength, and density-induced hopping,
from the parameters that can be tuned experimentally, such
as scattering length, dipolar interaction strength, and optical
lattice potential depth. This paper is organized as follows:
In Sec. II we introduce the Hamiltonian of the system and
the relative parameters that can be controlled in experiments.
In Sec. III we discuss various phases and the corresponding
order parameters. In Sec. IV we present the phase diagrams
with different dipole orientations and other experimentally
controllable conditions. In Sec. V we discuss the experimental
realization. We conclude the article in Sec. VI.

II. HAMILTONIAN

We study a two-dimensional cold-atom system of dipo-
lar bosons in a square optical lattice, as shown in Fig. 1.
The external potential that creates the lattice is given by
Vext.(x, y, z) = V0[cos2(kLx) + cos2(kLy)] + m�2

z z2/2, where
V0 denotes the depth of the two-dimensional (2D) optical
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FIG. 1. Schematic representation of the system. Dipoles are
trapped in a two-dimensional optical lattice and are aligned parallel
to each other along the direction of polarization, determined by an
electric or magnetic field. θ is the polar angle between polarization
axis and z direction, and φ is the azimuthal angle. �ri j is the relative
position between site i and j. αi j is the angle between the polarization
axis and �ri j .

lattice, kL = 2π/λ = π/a is the lattice momentum, a = λ/2
is the lattice spacing, m is the atomic mass, and �z is the
angular frequency of the harmonic trap in the z direction.
The lattice depth s is expressed in units of recoil energy,

s = V0/ER, with ER = h̄2k2
L

2m . The z dependence of the wave
function is a Gaussian function that in lattice coordinates,
r → r/a, reads ≈ exp(−π2κz2/2), where κ = h̄�z/2ER is
the flattening constant [34] characterizing the width of the
2D sheet for our system. The dipole moments are allowed to
rotate in three-dimensional space and are characterized by the
polar angle θ between the dipole moment and the z axis and
the azimuthal angle φ (see Fig. 1).

In second quantization and the Wannier basis [35], one can
obtain the 2D extended Bose-Hubbard (EBH) model for the
lowest Bloch band,

H = − t
∑

〈i,j〉
a†

i aj + U

2

∑

i

ni(ni − 1) + 1

2

∑

i,j

Vi,jninj

−
∑

〈i,j〉
Ti,ja

†
i (ni + nj)aj − μ

∑

i

ni, (1)

where a†
i (ai) are bosonic creation (annihilation) operators

satisfying the bosonic commutation relations [ai, a†
j ] = δij,

ni = a†
i ai is the particle number operator, t is the amplitude

of nearest-neighbor tunneling, and U is the onsite interaction.
Vij is the off-site interaction between atoms on site i and site
j. Tij is the amplitude of the density-induced hopping, and μ

is the chemical potential which we vary in our simulations to
achieve a specific filling. Here 〈· · · 〉 denotes nearest-neighbor
(NN) sites. We consider all off-site interaction terms within
|i − j| � 5 to include long-range dipolar interactions. We set

FIG. 2. Dipolar contribution to Hamiltonian parameters as a
function of polar angle θ at γ = 1/π 3, s = 10, κ = 10, (a) φ = π/8,
and (b) φ = π/4. The two vertical dash-dotted lines locate angles
θ = 38.7◦, 54.7◦ for φ = π/8, and θ = 35.3◦, 54.7◦ for φ = π/4.
The dashed line by V dd

i,i+x̂/t is V [1 − 3 sin2(θ ) cos2(φ)], and the
dashed line by V dd

i,i+ŷ/t is V [1 − 3 sin2(θ ) sin2(φ)]. The dotted line by

V dd
i,i+x̂+ŷ/t is V [1 − 3 sin2(θ ) cos2(φ − 45◦)]/(

√
2)3, and the dotted

line by V dd
i,i−x̂+ŷ/t is V [1 − 3 sin2(θ ) cos2(φ − 135◦)]/(

√
2)3. V is the

nearest-neighbor interaction at θ = φ = 0. The dashed lines in panel
(b) are on top of the calculated lines.

the lattice depth s = 10, which gives the nearest-neighbor
hopping amplitude t = 0.01 92ER.

The interaction between dipolar bosonic fields residing at r
and r′ contains the contact interaction Vc and the dipole-dipole
interaction Vdd ,

V (r − r′) = Vc(r − r′) + Vdd (r − r′)

= gδ(r − r′) + γ
1 − 3 cos2 (α)

|r − r′|3 , (2)

where g = 8as/(πa), as is the s-wave scattering length, and
γ = mμ2

e/(2π3ε0h̄2a) for electric dipolar interactions, or
μ0μ

2
mm/(2π3h̄2a) for magnetic dipolar interactions. μe (μm)

is the electric (magnetic) dipole moment of the bosons, ε0

(μ0) is the vacuum permittivity (permeability), and α is the
angle between the dipole moments and the relative position of
the two bosons r − r′. Thus, the parameters in the effective
Hamiltonian (1) have contributions from both contact and
dipolar interactions: U = U c + U dd , Ti,j = T c

i,j − T dd
i,j , and

Vi,j = V c
i,j + V dd

i,j [36]. For κ = 10 and as/a = 0.014, which
is typical in current experiments, the values of the contact part
are U c/t = 30.5, V c

〈i,j〉/t = 0.006, T c/t = 0.104. The contact
part of off-site interaction is negligible, so Vi,j is dominated
by the dipolar contribution. The contact contribution is pro-
portional to g and

√
κ (from the z-dependent Gaussian part

of the wave function) [29], so the values of U c, V c, T c for
all g and κ are easy to calculate. We set κ = 10 in all our
calculations. For each set of (U, θ, φ), we vary the value of
γ and study the phase diagram of the system. In Fig. 2, we
present the dipolar contribution to the Hamiltonian parameters
as functions of θ for γ = 1/π3, κ = 10, and φ = π/8, π/4.
Notice that the onsite interaction is in units of ER, while others
are in units of t . The onsite interaction does not depend on
the azimuthal angle. For an ideal 2D system, the z-dependent
Gaussian part of the wave function contributes a factor of√

κ to U dd . We observe that U dd = 0 at θ = sin−1(
√

2/3),
which is approximately θ ≈ 54.7◦. Using the effective 2D
interaction in Eq. (A6) from Ref. [29], it is easy to prove that
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FIG. 3. Hamiltonian parameters as a function of γ for different values of θ and φ. The total onsite interaction U/t = 20 and κ = 10. For
φ = π/4, the data points for Vi,i+x̂ and Vi,i+ŷ (Ti,i+x̂ and Ti,i+ŷ) are on top of each other.

U dd = 0 at sin2(θ ) = 2/3, independent of other experimental
parameters. For off-site interactions, the values are all close to
the approximation

V dd
i,j ≈ V dd [1 − 3 cos2(α)]

|i − j|3 , (3)

where V dd is the nearest-neighbor dipolar part of the interac-
tion at θ = 0. This approximation is valid for deep enough
lattice potential. In the x direction, cos(α) = sin(θ ) cos(φ),
V dd

i,i+x̂ ≈ 0 at θ ≈ 38.7◦, 54.7◦ for φ = π/8, π/4, respec-
tively. In the y direction, cos(α) = sin(θ ) sin(φ), V dd

i,i+ŷ is
always positive for φ = π/8, and V dd

i,i+ŷ ≈ 0 at θ ≈ 54.7◦

for φ = π/4. The value of V dd
i,i+x̂ and that of V dd

i,i+ŷ should
be the same at φ = π/4. In the x̂ + ŷ direction, cos(α) =
sin(θ ) cos(φ − π/4), V dd

i,i+x̂+ŷ ≈ 0 at θ ≈ 38.7◦, 35.3◦ for
φ = π/8, π/4, respectively. In −x̂ + ŷ direction, cos(α) =
sin(θ ) cos(φ − 3π/4), V dd

i,i−x̂+ŷ is always positive for φ =
π/8, and it is independent of θ for φ = π/4. These expected
behaviors are all confirmed in Fig. 2. Furthermore, the ap-
proximation in Eq. (3) becomes exact for nearest-neighbor
interactions in both directions at φ = π/4. The off-site in-
teractions V dd

i,j has little dependence on the value of κ for
κ � 6 [29], indicating that the system can be approximated
as a 2D one. One can see that T dd

i,i+x̂ and T dd
i,i+ŷ are close to

zero and increase slowly with increasing θ for both values of
φ and κ = 10. As a consequence, at low filling, we do not
expect significant changes in the phase diagrams compared
with the case with no density-induced hopping. Notice that,
for θ = 54.7◦, φ = π/4, the dipolar part of the onsite inter-
action, the off-site interactions in both x̂ and ŷ directions, and
the density-induced hopping are all zero.

In our calculations, we fix the value of the total onsite
interaction. Then, for a given dipole orientation, other Hamil-
tonian parameters only depend on γ . Figure 3 depicts the
dependence of the Hamiltonian parameters on γ for κ = 10,
θ = π/4, 3π/8, and φ = 0, π/8, π/4. Notice that we multi-
ply T/t by 20 for a better view. As the contact part of the NN
interaction (V c/t = 0.006) is close to zero, the total off-site
interactions are dominated by the dipolar part. Comparing
Figs. 3(a), 3(b), and 3(c), we notice that the magnitude of the
NN interactions becomes smaller as we increase the azimuthal
angle φ for fixed θ = π/4, consistent with the results in Fig. 2.
Thus we expect, for larger φ, the superfluid phase can persist

at larger values of γ . At small φ, the NN interaction in y di-
rection is repulsive and stronger than the attractive interaction
in x direction, thus particles tend to populate rows separated
by empty ones. The NN interactions become identical and
repulsive at φ = π/4, smaller than the next-nearest-neighbor
(NNN) interaction in −x̂ + ŷ direction. Since the NNN in-
teraction in x̂ + ŷ direction is attractive, the particles tend to
populate in diagonal lines in x̂ + ŷ direction. Figures 3(d),
3(e), and 3(f) show that, at θ = 3π/8, the magnitude of the
NN interactions also decrease as we increase φ. But at this
θ , the attractive parts of the off-site interaction are stronger
than the repulsive parts. In the point of view of the mean-field
approximation, the off-site interactions in every direction are
effective linear potentials depending on local densities, and
the total potential for each site is negative, thus the system
should stabilize at a finite density. We see that the competition
between attractive and repulsive interaction tends to destabi-
lize solid phases at filling smaller than one. Low densities turn
out to be unstable and no quantum phases can be stabilized,
while, at larger densities, particles tend to occupy every site of
the lattice and a SF phase is stabilized. We expect solid phases
to be stable at densities n > 1, which is not considered here.
Finally, the density-induced hoppings at θ = 3π/8 is larger
than those at θ = π/4, so we can expect a stronger superfluid
response. In the following, we discuss the phase diagrams for
these cases.

III. QUANTUM PHASES AND ORDER PARAMETERS

In this section, we present some of the phases stabilized by
Eq. (1) and the corresponding order parameters. Table I shows
order parameters for the superfluid (SF) phase, checkerboard
solid (CB) phase, checkerboard supersolid (CBSS) phase,
stripe solid (StrS) phase, stripe supersolid (StrSS) phase, and
diagonal stripe solid phase (DiagStrS). Each phase corre-
sponds to a unique combination of the order parameters. To
characterize these quantum phases we need the following
order parameters: superfluid density ρs and structure factors
S(π, π ), S(0, π ), and S(π/2,−π/2). Notice that we have
found other quantum phases that are not captured by these
order parameters (see next section for details).

The superfluid density is calculated in terms of the winding
number [37]: ρs = 〈W2〉/DLD−2β, where 〈W2〉 = ∑D

i=1〈W 2
i 〉

is the expectation value of winding number square, D is the
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TABLE I. Quantum phases and the corresponding order param-
eters: superfluid density ρs, structure factor S(π, π ), S(0, π ), and
S(π/2,−π/2).

Phase ρs S(π, π ) S(0, π ) S(π/2,−π/2)

Superfluid (SF) 
=0 0 0 0
Checkerboard solid (CB) 0 
=0 0 0
CB Supersolid (CBSS) 
=0 
=0 0 0
Stripe Soild (SS) 0 0 
=0 0
Stripe Supersolid (SSS) 
=0 0 
=0 0
Diagonal Stripe Solid (DiagSS) 0 0 0 
=0

dimension of the system and here D = 2, L is the linear
system size, and β is the inverse temperature. The structure
factor characterizes diagonal long-range order and is defined
as S(k) = ∑

r,r′ exp [ik · (r − r′)]〈nrnr′ 〉/N , where N is the
particle number. k is the reciprocal-lattice vector. We use
k = (π, π ), k = (0, π ), and k = (π/2,−π/2) to identify
the CB, StrS, and DiagStrS, respectively. Another quantity
we monitor is compressibility defined as β�N2

L2 , where �N2 =
〈(N − 〈N〉)2〉. The compressibility is finite for compressible
phases and zero (in the thermodynamic limit) for incompress-
ible phases.

IV. GROUND-STATE PHASE DIAGRAMS

Throughout this section, we fix U/t = 20 and flattening
constant κ = 10 and study under which experimental param-
eters supersolids and other phases are stabilized for filling

factors n < 1. The results presented are an extended inves-
tigation of what was discussed in Ref. [29], where dipoles
are tilted within the x-z plane; that is, the azimuthal angle
is fixed at φ = 0. In this work, dipoles are parallel to each
other and the polarization axis can be fixed in any direction
in the 3D space. Due to the reflection symmetry along the
diagonal of the square lattice, we only consider φ � π/4.
We investigate the phase diagrams at φ = π/8 and π/4 for
three values of the polar angle θ = π/16, π/4, 3π/8. The
polar angles are chosen so that we can make comparisons
with results presented in Ref. [29], where φ = 0. System
sizes L = 20, 32, and 40 are used to get the transition
points on phase diagrams, and the inverse temperature is set
to β = L.

Figure 4 shows the ground-state phase diagram at φ =
π/8, and polar angles θ = π/16 [Fig. 4(a)], π/4 [Fig. 4(b)],
and 3π/8 [Fig. 4(c)]. At θ = π/16 [Fig. 4(a)], the phase
diagram features a SF, a CB stabilized at n = 0.5, and CBSS
phase. We investigated the SF-CB transition (γ ≈ 0.055) at
filling factor n = 0.5 and did not find any evidence of hys-
teretic behavior in superfluid density ρs and structure factor
S(π, π ) as a function of the dipolar interaction strength γ .
We used a step �γ = 0.000 65. We were also unable to detect
any supersolid phases. If either exists, it would be within a
range narrower than �γ . Upon doping with particles or holes
from half filling, we enter the CBSS phase. Here, diagonal
long-range order and off-diagonal long-range order coexist;
that is, the superfluid density ρs and structure factor S(π, π )
are simultaneously finite. For large enough doping, on both
the particle and hole sides, the supersolid disappears via a
second-order phase transition of Ising type in favor of a SF

FIG. 4. Ground-state phase diagrams for (a) φ = π

8 , θ = π

16 , (b) θ = π

4 , and (c) θ = 3π

8 . The x axis is the filling factor n and the y axis
is the dipolar interaction strength γ . For polar angles θ � π

6 , the solid phase stabilized at half filling is a checkerboard solid (CB) and the
supersolid phase is a checkerboard supersolid (CBSS); for θ � π

6 , the half filling solid phase is a stripe solid (StrS) and the supersolid phase
around half filling is a stripe supersolid (StrSS). In panel (b), CSS stands for cluster supersolid, IP stands for the incompressible ground states
stabilized at rational filling factors, CIP is a cluster incompressible phase (see text for more details), GBSF is a grain-boundary superfluid (see
text for more details), and MS is a metastable region. Dark blue regions in panels (b) and (c) correspond to first-order phase transitions. Dotted
lines at filling factor n = 0.5 represent the solid phase CB or StrS.
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FIG. 5. Density maps for various phases. Each circle corresponds to a different site and its radius is proportional to the local density. (a)–(c)
θ = π

4 , φ = π

8 , γ = 0.1096, and L = 32: (a) n = 0.46875 incompressible phase (IP), (b) n = 0.40625 cluster incompressible phase (CIP), (c)
n = 0.3215 grain-boundary superfluid (GBSF). (d) θ = 3π

8 , φ = π

8 , γ = 0.0532, and L = 20. We fix n to 0.25 and observe coexistence of
vacuum and superfluid regions. (e), (f) Diagonal stripe solids (DiagSTRS) at θ = π

4 , φ = π

4 , γ = 0.1854, L = 20: (e) n = 0.25, (f) n = 0.5.
(g), (h) θ = π

4 , φ = π

4 , and L = 40: (g) grain-boundary superfluid (GBSF) at n = 0.321 and γ = 0.166, (h) incompressible phase (IP) at
n = 0.325 and γ = 0.169.

phase. We notice that this phase diagram is pretty much
unchanged from the one at φ = 0 (see Ref. [29]). This is
because, at small polar angles, the dipolar contribution to the
Hamiltonian parameters does not change significantly as a
function of φ, which can be seen in Fig. 2. Notice that one may
expect other solid phases stabilized at rational filling factors,
e.g., a star solid at n = 1/4, 3/4 (see e.g., Ref. [30]), for larger
dipolar interaction strength (not explored here).

At φ = π/8 and θ = π/4, Fig. 4(b), the phase diagram
features SF, StrS, StrSS, a cluster supersolid (CSS), a grain-
boundary superfluid (GBSF), and an incompressible (IP) and
cluster incompressible (CIP) phase. At this polar angle, the
dipolar interaction along the x axis is attractive stabilizing a
stripe solid phase at filling factor n = 0.5 and γ � 0.07 67. In
the StrS, particles arrange themselves such that fully occupied
horizontal rows alternate with empty ones. We have studied
the transition from SF to StrS at half filling and observed
that a supersolid intervenes in between, for a narrow range
0.0748 � γ � 0.0767. For 0.0767 � γ � 0.0960 (0.1000), a
StrSS phase (shaded pink area) also appears upon doping the
stripe solid with holes (particles). We notice that, for larger
γ and large enough doping, spacing between stripes can be
irregular (we will discuss this below in more details for the
incompressible phase). The StrSS disappears in favor of a SF
via a second-order transition of Ising type.

When γ is further increased, upon doping the half filling
solid, the system stays incompressible. This incompressible
phase (IP) first appears on the hole side. The IP corresponds

to a succession of incompressible ground states with ratio-
nal filling factors (this succession will become dense in the
thermodynamic limit), similar to the classical devil’s stair-
case [38–40]. In the IP (cyan shaded area), particles arrange
themselves in stripes, similarly to the StrS at n = 0.5, but
with the difference that the spacing between stripes can be
irregular to accommodate a specific filling. Figure 5(a) shows
an example of a density map of the IP phase at γ = 0.1096
and n = 0.468 75. Here, each circle corresponds to a single
lattice site, and its radius is proportional to the local density.
The transition IP-StrSS is of first order (marked in dark blue),
as confirmed by a discontinuity in density and superfluid
stiffness, and hysteretic behavior. At lower densities, we ob-
serve what appears to be a smooth changeover to a different
type of IP (yellow shaded area) where particles arrange in
horizontal clusters of length smaller than L. These clusters
align along a direction that makes an angle of 7◦–10◦ with
the horizontal (depending on the density). We call this phase
a cluster IP (CIP). In Fig. 5(b), we show an example of a
density map of this cluster solid. This particle arrangement
results from the competition between attractive interaction
along the x direction which favors a stripe solid structure,
and attractive interaction along the positive diagonal which
favors a diagonal solid structure. We notice that the size
of the horizontal particle clusters and their relative position
vary slightly with density throughout the CIP region. Conse-
quently, the value of k for which the structure factor peaks also
varies.
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For γ � 0.106 and upon decreasing density, the CIP dis-
appears in favor of a grain-boundary superfluid (shaded light
blue region). Here, extended solid regions of stripe solid
at 1/3 filling, i.e., a single filled stripe alternating with
two empty ones, are separated by extended defects—grain
boundaries—which support superfluidity along the direction
of the boundary. In Fig. 5(c), we show an example of a
density map of this phase at γ = 0.1096 and n = 0.3215. For
the system size considered, we observe minor system size
dependence of the one-dimensional superfluid stiffness across
the GBSF-CIP boundary and do not further resolve it. Upon
further decreasing the density, we enter a supersolid phase
[shaded purple area in Fig. 4(b)] that we call cluster supersolid
(CSS). Here, particles are also arranged in horizontal clusters
much like in the cluster solid but the system also supports a
superfluid response. We notice that similar phases have also
been observed in lattice bosonic systems with soft-shoulder
interactions [41,42]. In going from GBSF to cluster super-
solid, within our resolution, we do not observe any obvious
discontinuity in density or in the superfluid stiffness in the
direction perpendicular to the boundary neither we observe
hysteretic behavior which would all signal a first-order phase
transition. Rather, these observables behave smoothly. We
also do not observe considerable finite-size dependence in
our results for the system size considered and therefore we
do not fully resolve the nature of this phase boundary. Upon
increasing doping, CSS disappears in favor of a SF. Here, one
would expect a second-order phase transition. Nonetheless,
since the structure factor peaks at slightly different k vec-
tors for different densities, doing finite-size scaling becomes
complicated. For γ � 0.106, the GBSF no longer intervenes
between CSS and CIP rather, for L > 20, we find a very
narrow region of metastability (green thick line) separating
CSS from CIP. Finally, across the CSS-StrSS boundary, we
observe a smooth changeover from stripe to cluster structure.

We notice that we have found an extended metastable
(MS) region [shaded green area in Fig. 4(b)] for 0.096 �
γ � 0.0985, where, given a certain γ and n, we find the
system in either a cluster supersolid, a stripe supersolid or an
incompressible phase depending on the initial conditions of
the simulation. The metastability is likely due to the onset, in
this region, of competition between different density-density
orders (cluster vs stripe) and the competition between com-
pressible (supersolids) vs incompressible phases away from
half filling. Indeed, four different phases are stabilized around
this region.

On the particle side of the stripe solid the situation is much
simpler. The IP phase disappears in favor of the StrSS via a
first-order phase transition (thick dark blue line) as indicated
by a jump in density and superfluid density as a function of
chemical potential.

Finally, we notice that overall the superfluid response is
anisotropic, with the superfluid stiffness along the x direction
being larger than the one along the y direction.

In Fig. 4(c), we plot the phase diagram at φ = π/8 and
θ = 3π/8 which, at filling factor n < 1.0, only features a SF
phase. Due to the competition between attractive and repulsive
parts of the off-site interaction, no stable solid is observed in
the parameter regime considered. The SF phase disappears
via a first-order phase transition in favor of the vacuum, as

marked by the shaded dark-blue region. Here, one observes
coexistence of SF and vacuum. This is shown in Fig. 5(d),
where, at fixed density n = 0.25, one observes compressible,
superfluid stripes of particles arranged at an angle and sepa-
rated by regions of “vacuum.” Here, by vacuum, we refer to
the regions of the lattice where the average density is either
zero or much smaller than the density in the SF regions. We
would expect solid and supersolid phases to be stabilized for
n > 1.

Figure 6 shows the ground-state phase diagrams at φ =
π/4 and polar angles θ = π/16 [Fig. 6(a)], π/4 [Fig. 6(b)],
3π/8 [Fig. 6(c)]. At θ = π/16 [Fig. 6(a)], the phase diagram
features a SF, a CB stabilized at n = 0.5, and CBSS phase.
As expected for small polar angles, this phase diagram is very
similar to Figs. 4(a) and 3(b) in Ref. [29]. As before, we were
unable to resolve any hysteretic behavior or a supersolid phase
at half filling with a step size �γ = 0.000 65.

At φ = π/4 and θ = π/4 [Fig. 6(b)], we observe signifi-
cant qualitative changes in the phase diagram compared with
Fig. 4(b). At this azimuthal angle, the interaction along the
positive diagonal is attractive while the interactions between
nearest neighbors and the interaction along the negative di-
agonal are all repulsive. As a result, the model stabilizes a
variety of incompressible phases with particles arranged along
the positive diagonal. The diagonal stripe solid (DiagStrS) at
n = 1/4 for γ � 0.159 and at n = 1/2 for γ � 0.1815 are
shown in Figs. 5(e) and 5(f) for L = 20. We notice that, at
n = 1/2, we observe a diagonal solid with two consecutive
filled diagonals followed by two consecutive empty diagonals.
This is because the repulsion along the negative diagonal is
stronger than the one along the x and y direction. There also
exists a solid phase at n = 3/4 and γ > 0.196 with three
consecutive filled diagonals followed by one empty diagonal.
We investigated the SF-DiagStrS transition at fixed filling
factor and found hysteresis curves as a function of the inter-
action strength γ for the superfluid density ρs and structure
factor S(π/2,−π/2), signaling a first-order phase transition.
On the hole side of the quarter filling DiagStrS, for 0.159 �
γ � 0.176, we find that the solid phase disappears in favor
of a SF via a first-order phase transition (dark blue shaded
area) as clearly indicated by a jump in the density and in the
superfluid density (not shown here). For larger γ , instead, an
incompressible phase intervenes between the DiagStrS and
SF. The nature of the IP phase is the same as what discussed
above but with particles arranged on diagonals, similarly to
the quarter filling case, and spacing between filled diagonals
which can be irregular. On the particle side, things are a bit
more complex. At lower γ values (0.159 � γ � 0.164), in the
proximity of the onset of the DiagStrS at quarter filling, we
observe a first-order DiagStrS-GBSF phase transition. This
grain-boundary superfluid (light blue shaded region) is similar
to the one discussed above. Here, regions of DiagStrS at
1/3 filling (one filled diagonal followed by two empty ones)
are separated by extended defects—grain boundaries—which
support a superfluid response. Figure 5(g) shows a density
map of this phase where we see that regions of DiagStrS at
filling 1/3 are separated by superfluid grain-boundaries. For
larger γ , upon doping the quarter filling solid, we enter the IP
phase. Here, particles are arranged on filled diagonals which
can be not uniformly spaced. For large enough doping, the
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FIG. 6. Ground-state phase diagrams for φ = π

4 , (a) θ = π

16 , (b) θ = π

4 , and (c) θ = 3π

8 . The x axis is the filling factor n and the y axis is
the dipolar interaction strength γ . (a) Checkerboard solid (CB) at n = 0.5 dotted line, superfluid (SF), and checkerboard supersolid (CBSS).
(b) Diagonal stripe solid (DiagStrS) at n = 1

4 , 1
2 , and 3

4 (dotted lines), incompressible ground states (IP) stabilized at rational filling factors,
grain-boundary superfluid (GBSF), superfluid phase (SF). Dark blue regions in panels (b) and (c) represent first-order phase transitions.

IP phase disappears in favor of the GBSF which eventually
disappears in favor of a SF via a first-order phase transition.
The GBSF phase disappears altogether for γ � 0.178. At
larger γ , the IP occupies a large region in the parameter space.
An example of the IP phase at filling n = 0.325 is shown in
Fig. 5(h), where we observe filled diagonal with some unequal
spacing between them.

At φ = π/4 and θ = 3π/8 [Fig. 6(c)], the phase diagram
looks much like the one in Fig. 4(c). Again, the competition
between attractive and repulsive part of the interaction inhibits
solid formation in the parameter range considered.

Finally, we briefly discuss the robustness of the stripe su-
persolid against thermal fluctuations. We find the solid order
to be the most robust against thermal fluctuations. We find
that superfluidity in the stripe supersolid phase disappear first
via a Kosterlitz-Thouless transition [43] while the diagonal
order survives at larger temperatures (see also Ref. [44]). In
Fig. 7(a), we show the superfluid density ρs as a function of
T/t for L = 20, 28, 36, 44, and 52 at θ = π/4, φ = π/8,
γ = 0.0968, and n = 0.5675. In the thermodynamic limit, a
universal jump is observed at the critical temperature given
by ρs(Tc) = 2mkBTc/π h̄2. Here, m is the effective mass in
the lattice, m = h̄2/2ta2. In a finite-size system this jump
is smeared out as shown in Fig. 7(a). To extract the critical
temperature in the thermodynamic limit, we apply finite-size
scaling to Tc(L). From renormalization-group analysis one
finds Tc(L) = Tc(∞) + c

ln2(L)
, where c is a constant and Tc(L)

is determined from ρs(Tc, L) = 2mkBTc/π h̄2 [45–47]. The
dashed line in Fig. 7(a) corresponds to ρs = T/tπ (h̄ = 1,
kB = 1, lattice step a = 1) and its intersection points with each
ρs vs T/t curve are used to find Tc as shown in the inset. We
find Tc/t = 0.26 ± 0.02. Above this temperature the system

is in a StrS. The solid order melts in favor of a normal fluid
via a two-dimensional Ising transition. We use standard finite-
size scaling as shown in Fig. 7(b), where we plot the scaled
structure factor S(0, π )L2β/ν , with 2β/ν = 0.25 as a function
of T/t for L = 20, 28, 36, 44, 52. The crossing indicates a
critical temperature Tc/t = 0.68 ± 0.01.

FIG. 7. Parameters θ = π

4 , φ = π

8 , γ = 0.0968, and n = 0.5675.
Upon increasing the temperature, thermal fluctuations destroy the
stripe supersolid phase in favor of a normal fluid in two steps.
First, superfluidity is destroyed and the stripe supersolid becomes
a stripe solid via a Kosterlitz–Thouless phase transition. Then, the
stripe solid phase melts into a normal fluid via a two-dimensional
Ising transition. In (a) we show ρs as a function of T/t for L = 20
(red), 28 (blue), 36 (green), 44 (orange), and 52 (purple). The dashed
line is T/tπ . Inset shows the intersection points between the T/tπ
line and the ρs versus T/t curves for each L are used to extract
Tc/t ∼ 0.26 ± 0.02. (b) Scaled structure factor with 2β/ν = 0.25 for
L = 28, 36, 44, 52. The crossing determines the critical tempera-
ture Tc/t = 0.68 ± 0.01.
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V. EXPERIMENTAL REALIZATION

Dipolar systems can be created using atoms with magnetic-
dipole moments such as Cr [48,49], Er [32,50,51], and Dy
[52,53], polar molecules such as Er2 [54], KRb [55], NaK
[56], and Rydberg dressing techniques [57]. To create a two-
dimensional system, the laser along the z direction should be
able to be adjusted independently. By appropriately choosing
intensity, wavelength, and cross angle between the two beams
along the z direction, a desired two-dimensional lattice system
can be generated. With implementing three pairs of magnetic
coils or metal plates along three perpendicular directions,
the strength and direction of the dipoles in the lattice can
be adjusted in three-dimensional space. While the tunneling
amplitude can be controlled by changing light intensity, the
on-site interaction can be adjusted using Feshbach resonance.
Both the filling factor n and temperature T can be adjusted by
manipulating the evaporation before loading into lattices. In
general, a deeper evaporation gives a lower temperature with
less atoms left. For atomic species with atomic mass around
150 amu loaded in optical lattices formed by 532 nm lasers,
both critical temperatures in Fig. 7 for the vanishing of the
superfluidity and spatial structure are around few nanokelvins.

The parameter γ depends on the dipole moments and
the masses of atomic species. It also depends on the lattice
spacing. For magnetic atoms, the magnetic-dipole moments
are not large enough to observe quantum phases other than
superfluidity. Indeed, in an optical lattice with a lattice con-
stant ≈266 nm one has γ ≈ 0.0018 for Cr, γ ≈ 0.008 for Er,
γ ≈ 0.016 for Dy. For Er2 one gets γ ≈ 0.06 which is still too
small to realize solid or supersolid phases in the setup studied.
Nonetheless, likely, in a bilayer geometry, solid orders could
be observed with Er2 molecules [58]. While the preparation
of and subsequent observation with polar molecules are more
challenging, these systems are better candidates to explore
the quantum phases discussed here. Polar molecules possess
dipole moments around one to few Debye, depending on dif-
ferent quantum number states corresponding to, e.g., γ ≈ 0.8
for KRb, γ ≈ 4 for RbCs. Another way to adjust γ is to
continuously change the lattice spacing in two dimensions,
this topic is still challenging up to today. It is recommended
to refer to Ref. [59] for some pioneering work.

To observe a supersolid state is to confirm the existence
of both crystalline order and global phase coherence in a

system at the same time. Quantum gas microscopes, which
can give a single-site-resolved resolution [60–62], are capable
for observing atom number density distribution with periodic
patterns, which include the CB, CBSS, and DiagSS phases
and so on. The global phase coherence can be observed us-
ing time-of-flight observation after releasing atoms from the
lattice [6,63]. Thus all phases mentioned above can be well
captured using a combination of these two methods.

VI. CONCLUSION

In this work, we have studied a system of dipolar bosons
in a square optical lattice. Dipole moments are parallel to
each other and their direction can be fixed in the three-
dimensional space. The effective model describing the system
is the extended Bose-Hubbard model. We start from the pa-
rameters that can be experimentally tuned, e.g., scattering
length, dipolar interaction strength, or optical lattice depth,
and we calculate parameters entering the effective model.
Overall, besides superfluidity, we have found a variety of solid
and supersolid phases, e.g., checkerboard and stripe solids
and supersolids, depending on the direction of the dipoles.
For angles θ = π

4 and φ = π
8 , we have observed a very rich

phase diagram which includes a cluster incompressible phase,
a cluster supersolid phase, a metastable phase, and a grain-
boundary superfluid phase. In both the cluster incompressible
phase and the cluster supersolid phase, particles form horizon-
tal clusters. These clusters order themselves along a direction
at an angle with the horizontal. In the grain-boundary su-
perfluid, regions of solid order are separated by extended
defects that support superfluidity. We have also briefly dis-
cussed the robustness of the stripe supersolid against thermal
fluctuations. All phases can in principle be accessible within
ultracold experiments with polar molecules. In the future, a
thorough finite-temperature study of this system can pinpoint
where, in the parameter space, higher critical temperatures
exist and therefore provide further guidance to experiments.
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