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Manipulating Goldstone modes via superradiant light in a bosonic lattice gas inside a cavity
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We study the low-energy excitations of a bosonic lattice gas with cavity-mediated interactions. By performing
two successive Hubbard-Stratonovich transformations, we derive an effective field theory to study the strongly
coupling regime. Taking into account the quantum fluctuation, we report the unusual effect of the superradiant
cavity light-induced density imbalance, which has been shown to have a negligible effect on the low-energy
excitation spectrum in previous studies. Instead, we show that such infinitesimal fluctuation of density imbalance
dramatically changes the behavior of low-energy excitations and results in a parameter-driven switching between
two types of Goldstone modes, i.e., type I and type II with odd and even power energy-momentum dispersion,
respectively. Our proposal would open a horizon for manipulating Goldstone modes by bridging the cavity light
and strongly interacting quantum matters.
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I. INTRODUCTION

The mechanism of spontaneous symmetry breaking is cru-
cial for understanding phase transitions and is also widely
used to study the associated emergence of new particles and
excitations [1]. It is well known that when a continuous
symmetry is spontaneously broken in nonrelativistic theo-
ries, there appear Nambu-Goldstone (NG) modes [2,3], the
dispersion relations of which are either linear (type I) or
quadratic (type II), where the numbers of distinct types of NG
modes satisfy the Nielsen-Chadha inequality [4]. Thanks to
recent experimental developments, the Goldstone modes have
been studied in various condensed matter [5–8] and ultracold
atomic systems [9–16].

A gas of bosonic atoms in an optical lattice has been re-
versibly tuned between superfluids (SF) and insulating ground
states by varying the strength of the periodic potential [17,18].
It provides an ideal platform to study the spontaneous sym-
metry breaking induced elementary excitations. Not only
has the gapless Goldstone mode been found to exhaust all
of the spectral weight in the weakly interacting limit, but also
the Higgs amplitude mode has been detected in the strongly
interacting regime near the transition between SF and Mott
state at commensurate fillings [19–21].

Recently, a complimentary approach using ultracold atoms
inside a cavity unveiled the effect of cavity-mediated inter-
actions, which resulted in the observation of a rich phase
diagram with Mott insulator (MI), superfluid, supersolid
(SS), and charge-density-wave (CDW) phases [22,23]. The
low-energy excitations associated with the above various

*liubophy@gmail.com

symmetry-breaking phases have been investigated within the
framework of the mean-field approach, where new features,
such as the softening of particle- and holelike excitations,
have been explored [24]. The quantum fluctuation has not
been taken into account within such mean-field calcula-
tions. However, it has been shown to play an important
role in the strongly interacting regime, leading to intriguing
physical phenomena, such as the appearance of the Higgs
mode in the excitation spectrum of the Bose-Hubbard model
[25,26].

In this work, we have developed an extension of the
strong-coupling expansion technique for the system of ul-
tracold bosons in an optical lattice strongly coupled to a
single mode of a high-finesse optical cavity [22,23]. Such
a strong-coupling expansion method has been successfully
applied to describe various bosonic lattice gas systems, in-
cluding the early studies of single-component bosonic lattice
gases [27–30], systems incorporating the presence of a syn-
thetic gauge field [31–35], and the degenerated p-orbitals
[36]. Many interesting properties of these systems, such as
the MI-SF phase transition, the excitation spectrum, etc.,
have been properly captured [27–36]. By employing such a
well-developed method, the effect of quantum fluctuations in
our proposed system can thus be systematically explored in
the strongly interacting regime, which has not been studied
previously [24,37]. Interestingly, we find that the quantum
fluctuations at the SS-to-CDW transition cause an unexpected
effect of the modulation of density imbalance, neglected in
the previous studies [24]. While small, this modulation results
in dramatic changes of the behavior of low-energy collective
excitations. A parameter-driven switching between odd (type
I) and even (type II) power energy-momentum dispersion
NG modes can be achieved along the phase boundary. This
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prediction would pave the way to manipulate NG modes in a
cold-atom-based system.

II. EFFECTIVE MODEL

As with the ETH (Swiss Federal Institute of Technology
in Zurich) experiment [22], here we consider a Bose-
Einstein condensate (BEC), such as 87Rb atoms, subjected
to an ultrahigh-finesse optical cavity, where three mutu-
ally orthogonal standing waves form a highly anisotropic
three-dimensional (3D) optical lattice VL(r) = Vy cos2(q0y) +
V2D[cos2(q0x) + cos2(q0z)] with the lattice depth Vy � V2D

and the wave vectors of laser fields denoted by q0. The BEC
is thus split into a stack of 2D layers, where the bosonic
atoms are exposed to an additional potential Vc(r) = h̄η̄(â +
â†) cos(q0x) cos(q0z) − h̄(�c − U0 cos2(q0z))ââ† in the xz-
plane formed by the coherent scattering between one free-
space lattice and one intracavity optical standing wave with
the same wave vector q0 [22,23]. η̄ is the two-photon Rabi
frequency determining the scattering rate. â and â† are the
annihilation and creation operators for the cavity photon, re-
spectively. �c = ωp − ωc describes the discrepancy between
pumping light (lattice standing-wave) frequency ωp and the
cavity resonance frequency ωc. U0 captures the maximum
light shift per atom resulting from the effect of the dispersive
shift of the cavity resonance frequency [22].

Since the coherent scattering of light between the lattice
and the cavity mode creates a dynamical checkerboard super-
lattice for the atoms, the effective Hamiltonian describing the
atomic dynamics dressed by the cavity field can be expressed
as

H =
∑
r,r′

−Tσσ ′ (r − r′)ψ†
σ (r)ψσ ′ (r′) −

∑
r,σ

μσ nσ (r)

+ U

2

∑
r,σ

nσ (r)[nσ (r) − 1] − δc|α|2, (1)

where ψσ (r) is the bosonic atom field. σ = e, o stands
for even and odd sites, respectively, describing distinct
sublattices of the checkerboard lattice. Here we choose the
nearest-neighbor two sites as one unit cell, and r (r′) is
the lattice index capturing the location of the unit cell. The
expression of the hopping matrix Tσσ ′ is given in Appendix A.
U captures the strength of the repulsive interaction between
bosonic atoms determined by the effective s-wave scattering
length, which can be tuned by means of the Feshbach
resonance and lattice depth. nσ (r) = ψ†

σ (r)ψσ (r) is the
density operator. The on-site energies μe = μ − η(α∗ + α)
and μo = μ + η(α∗ + α) are introduced for even and odd
sites, respectively, where μ is the chemical potential and
η is the energy shift due to the two-photon Rabi process.
δc = h̄(�c − δ) is the energy detuning between the cavity
and the pumping lights, where δ is the dispersive shift of
the cavity due to the BEC [22]. α is the mean value of the
cavity field, which can be determined by the steady equation
ih̄∂tα = 〈[â, H̃]〉 − iκα = 0 with H̃ = −∑

r,r′ Tσσ ′ (r −
r′)ψ†

σ (r)ψσ ′ (r′) − μ
∑

r,σ nσ (r) + U
2

∑
r,σ nσ (r)[nσ (r) −

1] + η(â + â†)
∑

r[ne(r) − no(r)] − h̄(�c − δ)â†â in the
regime of large decay rate κ [38], and it leads to the following

relation:

α = η
∑

r [〈ne(r)〉 − 〈no(r)〉]
δc + iκ

|�c|�κ,|δ|≈ Nη(〈ne〉 − 〈no〉)

h̄�c
, (2)

where 〈ne(r)〉 and 〈no(r)〉 are the average density of bosonic
atoms at even and odd sites, respectively. 2N is the total lattice
site.

III. PATH INTEGRAL APPROACH

In the following, we apply the strong-coupling expansion
to the model Hamiltonian in Eq. (1), which extends the treat-
ment in the Bose-Hubbard model [27], where both superfluid
and Mott phases can be captured at the same time by this
method. Through introducing the complex field ψσ , the ther-
modynamic properties of the system can be obtained from the
partition function Z as a functional integral with the action
S[ψ∗

σ , ψσ ] = ∫ β

0 dτ {∑σ,r ψ∗
σ (r)∂τψσ (r) + H[ψ∗, ψ]}. Here,

τ is an imaginary time and β = 1/kBT is the inverse tempera-
ture. We then perform a Hubbard-Stratonovich transformation
through introducing the auxiliary field φσ to decouple the
intersite hopping in the action, and we obtain

Z =
∫

D[ψ∗
σ , ψσ , φ∗

σ , φσ ]

× exp

{
−

∫ β

0
dτ

∑
r,r′

φ∗
σ (r)T −1

σσ ′φσ ′ (r′)

+
[∑

σ,r

∫ β

0
dτφ∗

σ (r)ψσ (r) + c.c.

]
− S0[ψ∗

σ , ψσ ]

}

= Z0

∫
D[φ∗

σ , φσ ]e− ∫ β

0 dτ
∑

r,r′ φ∗
σ (r)T −1

σσ ′φσ ′ (r′ )

×
〈

exp

[∑
σ,r

∫ β

0
dτφ∗

σ (r)ψσ (r) + c.c.

]〉
0

= Z0

∫
D[φ∗

σ , φσ ]

× exp

{
−

∫ β

0
dτ

∑
r,r′

φ∗
σ T −1

σσ ′φσ ′ + W [φ∗
σ , φσ ]

}
, (3)

where T −1
σσ ′ represents the inverse hopping matrix. S0

and Z0 are the action and partition function in the
limit of t = 0. 〈· · · 〉0 stands for averaging with S0.
W [φ∗

σ , φσ ] = ln〈exp[
∑

σ,r

∫ β

0 dτφ∗
σ (r)ψσ (r) + c.c.]〉0 is

the generation function linking to connected local Green’s
functions GRc through the relation [25] W [φ∗, φ] =∑∞

R=1
(−1)R

(R!)2

∑′
σ1···σ ′

R
GRc

{σi,σ
′
i }φ

∗
σ1

· · · φ∗
σR

φσ ′
R
· · ·φσ ′

1
, where∑′ means that all the fields share the same value of the

site index and {σi, σ
′
i } ≡ σ1 · · · σR, σ ′

1 · · · σ ′
R. After doing a

power expansion of W [φ∗, φ] to quartic order, we obtain
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that

S[φ∗
σ , φσ ] =

∫ β

0
dτ

∑
r,r′

φ∗
σ (r)T −1

σσ ′ (r − r′)φσ ′ (r′) −W [φ∗
σ , φσ ]

=
∫ β

0
dτ

∑
r,r′

φ∗
σ (r)T −1

σσ ′ (r − r′)φσ ′ (r′)

+
∫

dτ1dτ2
r

∑
Gσσ (r,τ1 − τ2)φ∗

σ (r, τ1)φσ (r, τ2)

− 1

2!

∫
4
�

α=1
dτα

∑
r

χσσ ′ (r,τ1, τ2, τ3, τ4)

×φ∗
σ (τ1)φσ (τ2)φ∗

σ ′ (τ3)φσ ′ (τ4) + O(φ6), (4)

where G is the local Green’s function and χ is the two-particle
vertex in the local limit, i.e., t = 0 (see details in Appendix
B). However, starting from the above action, it is inconve-
nient to calculate physical quantities, such as the excitation
spectrum or the momentum distribution. These difficulties
can be circumvented through performing another Hubbard-
Stratonovich transition to decouple the hopping term [27]. It
is shown that the auxiliary field of this transformation has the
same correlation functions as the original boson field (see de-
tails in Appendix C). Therefore, we can use the same notation
for both fields. The partition function can thus be expressed as

Z = Z0

∫
D[ψ∗

σ , ψσ , φ∗
σ , φσ ] exp

{∫ β

0
dτ

∑
r,r′

ψ∗
σ Tσσ ′ψσ ′

−
[∑

σ,r

∫ β

0
dτψ∗

σ (r)φσ (r) + c.c.

]
+ W [φ∗

σ , φσ ]

}
. (5)

Integrating out the φσ field in Eq. (5), the effective action can
be obtained,

S[ψ∗
σ , ψσ ] =

∫ β

0
dτ

∑
r,r′

ψ∗
σ (r, τ )[−Tσσ ′ (r − r′)]ψσ ′ (r′, τ )

+
∫ β

0
dτ1dτ2

∑
r

ψ∗
σ (r, τ1)

[ − G−1
σσ (τ1 − τ2)

]
×ψσ (r, τ2)

+ 1

2
gσσ ′

∫ β

0
dτ

∑
r

|ψσ (r, τ )|2|ψσ ′ (r, τ )|2,

(6)

where gσσ ′ captures the amplitude of the boson-boson inter-
action determined by the local two-particle vertex in its static
limit (see details in Appendix B).

IV. PHASE DIAGRAM UNDER THE SADDLE-POINT
APPROXIMATION

Starting from the above effective action, we first perform
a saddle-point approximation to determine the ground state
of our proposed system. The saddle-point action derived from

Eq. (6) can be expressed as

Ssaddle = −Ḡ−1
ee |ψ̄e|2 − Ḡ−1

oo |ψ̄o|2 − 4tψ̄∗
o ψ̄e − 4tψ̄∗

e ψ̄o

− 1

4

χ̄ee

Ḡ4
ee

|ψ̄e|4 − 1

4

χ̄oo

Ḡ4
oo

|ψ̄o|4, (7)

where Ḡσσ and χ̄σσ are the static limit of the single-particle
Green’s function and the two-particle vertex, respectively (see
details in Appendix B). The saddle-point value ψ̄σ can be
obtained from minimizing Ssaddle, and we obtain

ns,e = Ḡ−1
ee + 4tc−1

gee
if Ḡ−1

ee + 4tc−1 > 0,

ns,e = 0 otherwise, (8)

ns,o = Ḡ−1
oo + 4tc

goo
if Ḡ−1

oo + 4tc > 0,

ns,o = 0 otherwise, (9)

where ns,σ = |ψ̄σ |2 is the superfluid density of the pseu-
dospin σ component under the saddle-point approximation,
and c = |ψ̄e/ψ̄o|. By utilizing an iterative algorithm to solve
a complete set of self-consistent equations (2), (8), and (9),
superfluid order parameters ψ̄σ for even and odd lattice sites
and the mean value of cavity field α can be determined. As
defined in Eq. (2), α characterizes the average imbalance
between even and odd lattice sites, which can be used as the
order parameter describing the CDW order.

We display the phase diagram as a function of the lattice
depth V2D and detuning �c in Fig. 1(a) to compare with the
realistic experiments, such as the ETH experimental setup
[22]. There are four different phases as shown in the phase
diagram, which consists of a superfluid (SF) phase, a Mott
insulator (MI) state, a charge-density-wave (CDW) state, and
a supersolid (SS) phase. The difference among these four
phases can be captured by order parameters defined above, for
example, as shown in Fig. 1(b). A SF phase is characterized
by finite and equal superfluid order parameters and vanishing
even-odd imbalance indicated by α = 0. It is quite different in
the SS phase, where a finite even-odd imbalance and nonzero
superfluid order parameters are observed. In both MI and
CDW states, superfluid order parameters vanish. However, the
presence of a finite even-odd imbalance α 
= 0 distinguishes
between MI and CDW states. The obtained phase diagram is
consistent with other mean-field calculations [24,37]. How-
ever, the path integral approach constructed here can provide
a systematic way beyond the mean-field approach for inves-
tigating the effect of high-order fluctuations. The unexpected
results driven by the fluctuations will be unveiled below.

V. MANIPULATING GOLDSTONE MODES AT THE
SS-CDW TRANSITION

Since typically fluctuations will play a dominant role in
determining physical properties at the critical region, to ex-
plore the unexpected results arising from the fluctuations, we
construct the critical theory describing the phase transition
region as shown in Fig. 1(a). By performing both a spatial
and a temporal gradient expansion of the action in Eq. (6), as
well as the cumulant expansion in powers of ψσ [27,39,40],
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FIG. 1. (a) Zero-temperature phase diagram as a function of the lattice depth V2D and �c. The phase diagram shows four different phases,
which are a superfluid (SF) phase, a Mott insulator (MI) state, a charge-density-wave (CDW) state, and a supersolid (SS) phase. The dashed and
solid lines along the boundary between SS and CDW separate two distinct regions, where two different types of Goldstone modes (type I and
type II) were found in its low-energy excitations, respectively. (b) Evolution of the different order parameters as a function of the lattice depth
V2D when �c/2π = −36 MHz. Er is the recoil energy. Other parameters are chosen as μ = 0.42U , κ/h̄ = 2π × 1.25 MHz, and N = 1 × 104.
To compare with the realistic 87Rb experiments, we choose the effective s-wave scattering length as as = 120a0 (a0 being the Bohr radius) and
the lattice constant 2a = 785 nm. Therefore, t/U can be estimated in the region of t/U ∈ [0.074, 0.039] when varying V2D/Er from 8.8 to 10.8
as shown in (a).

the effective action can be rewritten as

S =
∫ β

0
dτ

∫
dr{[ψ∗

e (r, τ )reψe(r, τ ) + ψ∗
o (r, τ )roψo(r, τ )

−ψ∗
o (r, τ )4tψe(r, τ ) − ψ∗

e (r, τ )4tψo(r, τ )]

+ [Ke1ψ
∗
e (r, τ )∂τψe(r, τ ) + Ko1ψ

∗
o (r, τ )∂τψo(r, τ )]

+ [Ke2|∂τψe(r, τ )|2 + Ko2|∂τψo(r, τ )|2]

+ [K3∇ψ∗
e (r, τ )∇ψo(r, τ ) + K3∇ψ∗

o (r, τ )∇ψe(r, τ )]

+ gee

2
|ψe(r, τ )|4 + goo

2
|ψo(r, τ )|4 + geo

2
|ψe(r, τ )|2

× |ψo(r, τ )|2 + goe

2
|ψo(r, τ )|2|ψe(r, τ )|2}, (10)

where re = −G−1
ee (iω = 0), ro = −G−1

oo (iω = 0), Ke1 =
∂G−1

ee (iω)
∂ (iω) |iω=0, and Ko1 = ∂G−1

oo (iω)
∂ (iω) |iω=0. Ke (o)2 and K3 are

the coefficients of the second-order temporal and spatial
derivatives, respectively, which can be expressed in terms of
the Green’s function (see Appendix D for details).

Next, we introduce ησ (r, τ ) = ψσ (r, τ ) − ψ̄σ to describe
the fluctuations. After expanding the action in Eq. (10) to the
quadric order of fluctuation fields ησ , we get

S = 1

2

∑
k,ω

η̃†(k, iω)M(k, iω)η̃(k, iω), (11)

where η̃† = [η∗
e (k, iω), ηe(−k,−iω), η∗

o (k, iω), ηo(−k,

−iω)], and the matrix elements of M can be expressed as

M11 = re − iωKe1 + Ke2ω
2 + 2geeψ̄

2
e + geo

2
ψ̄2

o + goe

2
ψ̄2

o ,

M22 = re + iωKe1 + Ke2ω
2 + 2geeψ̄

2
e + geo

2
ψ̄2

o + goe

2
ψ̄2

o ,

M33 = ro − iωKo1 + Ko2ω
2 + 2gooψ̄

2
o + geo

2
ψ̄2

e + goe

2
ψ̄2

e ,

M44 = ro + iωKo1 + Ko2ω
2 + 2gooψ̄

2
o + geo

2
ψ̄2

e + goe

2
ψ̄2

e ,

M12 = M21 = geeψ̄
2
e , M34 = M43 = gooψ̄

2
o ,

M13 = M24 = M31 = M42

= −4t + K3k2 + geo

2
ψ̄eψ̄o + goe

2
ψ̄oψ̄e,

M14 = M23 = M32 = M41 = geo

2
ψ̄eψ̄o + goe

2
ψ̄oψ̄e.

Therefore, the excitation spectrum at the critical region can be
determined by solving the equation det[M(k, iω)] = 0. Eight
excitation branches can thus be obtained, which form four
positive-negative pairs due to the fact that Eq. (11) satisfies
the time-reversal symmetry [41].

Here we focus on the transition from SS to CDW. In
SS phase, there are two superfluid order parameters ψ̄σ ≡√

ns,σ eiθσ for even and odd lattice sites, where the amplitude
and phase of the order parameter emerge as two independent
degrees of freedom, instead of being conjugate to each other.
The two phase fluctuation modes will be coupled to each other
due to the presence of hopping between even and odd lattice
sites and split into one (gapless) Goldstone mode associated
with the overall phase θo + θe plus a gapped mode linking to
the relative phase θo − θe. By contrast, the amplitude fluctu-
ations lead to the Higgs modes (two higher modes obtained
from det[M(k, iω)] = 0).

At the transition from SS to CDW, we find the new fea-
ture of the gapless Goldstone mode. Previous studies show
that the slight modulation of density imbalance induced by
the superradiant cavity light has a negligible effect on the
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FIG. 2. Energy spectra for the two phase modes (a) when
V2D/Er = 9.1, �c/2π = −30.2 MHz as indicated by “∗” in Fig. 1(a),
and (b) when V2D/Er = 9.14, �c/2π = −35 MHz as labeled by “�”
in Fig. 1(a). Other parameters are the same as in Fig. 1. (c) and
(d) Density of states (DOS) defined in the main text for type I and
type II Goldstone modes, corresponding to the cases in (a) and (b),
respectively.

low-energy excitations [24]. Here we first show that at the
transition from SS to CDW, even such tiny modulation of
density imbalance will result in a dramatic effect on the exci-
tations. Distinct from several types of the mean-field approach
[24,37], such as employing the Gutzwiller ansatz, the critical
theory constructed in Eq. (10) can unveil the dominant role
of fluctuations. It is found that tuning the system along the
phase boundary between SS and CDW as shown in Fig. 1(a)
can switch between two types of Goldstone modes in its low-
energy excitation spectrum, i.e., type I and type II with odd
and even power energy-momentum dispersion (as shown in
Fig. 2), respectively.

To further understand the underlying physics, we analyt-
ically solve the equation det[M(k, iω)] = 0 and find that in
the long wave limit, the low-energy excitation (lowest positive
branch) can be approximately expressed as (see details in
Appendix E)

E+
Goldstone  √

I2k + √
I4k2. (12)

Therefore, the switching from type I to type II Goldstone
modes can be achieved by changing the coefficients I2 and
I4. Around the transition from SS to CDW, the strong quantum
fluctuations show a dramatic effect. They make even the slight
modulation of density imbalance play a dominant role in de-
termining I2 and I4. As shown in Fig. 3, it leads to two distinct
regions: (I) I2 
= 0, and (II) I2 = 0 and I4 
= 0, which corre-
spond to type I and type II Goldstone modes, respectively.
Such an unusual effect of the fluctuation will disappear when
departing from the critical region. For instance, inside the

0

0.15

GS1 GS2

-0.5 0.1

4I

2I

-1.1

0.3

-210�

boundary CDWn n� ��

FIG. 3. The coefficients I2 and I4 in E+
Goldstone [Eq. (12)] as a func-

tion of density imbalance modulation when varying the system along
the phase boundary between SS and CDW as shown in Fig. 1(a). The
dashed line separates the regions with type I and type II Goldstone
modes, respectively. δnboundary and δnCDW describe the atom density
imbalance between even and odd sites, when considering the system
along the phase boundary and in CDW, respectively. Other param-
eters are chosen the same as in Fig. 1. For the parameter regime
considered here, the average density of even and odd lattice sites
in the CDW phase is 0 and 2, respectively, which corresponds to
|δnCDW| = 2 by definition.

SS-phase, the dispersion of the Goldstone mode will remain
as a linear function. To distinguish these two different types of
Goldstone modes, we calculate their corresponding density of
states (DOS) as N (E ) = 1

N

∑
k δ(E − E+

Goldstone), which is di-
rectly related to the Bragg spectroscopy signal [42]. As shown
in Fig. 2, with linear dispersion (type I), we find N (E ) ∝ E
when E → 0. It is distinct from the quadratic dispersion (type
II), where N (E ) is a constant when E → 0. As we propose
above, type I and type II Goldstone modes can be distin-
guished from their distinct behavior of DOS in the low-energy
limit, which is linked to the low-energy responses in the Bragg
spectroscopy experiments (typically ω/2π � 10 kHz [43]).
To compare with the realistic 87Rb experiments, we choose
the effective s-wave scattering length as as = 120a0, lattice
constant 2a = 785 nm, and other parameters to be the same as
in Figs. 2(c) and 2(d). Therefore, the energy region as shown
in Figs. 2(c) and 2(d) is below a few hundred Hz, which
makes the low-energy signal in the Bragg spectroscopy [9]
experimentally accessible.

VI. CONCLUSION

By performing two successive Hubbard-Stratonovich
transformations, we have developed an effective field theory
to study a bosonic lattice gas inside a cavity in the strongly
interacting regime. Through taking into account the quan-
tum fluctuations, we first find that the slight modulation of
density imbalance, neglected in the previous studies, leads to
dramatic changes in the behavior of low-energy excitations.
The switching between type I and type II Goldstone modes
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can be driven along the SS-CDW transition. Our findings
would bridge the cavity light and strongly interacting quantum
matters, and it may open up a new direction in this field.
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APPENDIX A: HOPPING TERM

The hopping term in Eq. (1) can be written as

Hhop =
∑
r,r′

− Tσσ ′ (r − r′)ψ†
σ (r)ψσ ′ (r′)

= −
∑

r

�†(r)T0�(r) −
∑

r

�†(r)T1x�(r + ex )

−
∑

r

�†(r)T ′
1x�(r − ex ) −

∑
r

�†(r)T1z�(r + ez )

−
∑

r

�†(r)T ′
1z�(r − ez ) −

∑
r

�†(r)T2�(r + ex − ez )

−
∑

r

�†(r)T ′
2�(r − ex + ez ), (A1)

where �(r) = [ψe(r) ψo(r)]T , and σ = e, o stands for even
and odd sites, respectively. Tσσ ′ is the hopping matrix, and
r, r′ label the location of the unit cell as shown in Fig. 4. The
hopping matrices can be expressed as

T0 =
(

0 t
t 0

)
,

T1x = T ′
1z = T2 =

(
0 t
0 0

)
,

T ′
1x = T1z = T ′

2 =
(

0 0
t 0

)
. (A2)

In the momentum space, the hopping term Hhop can be
written as

Hhop(k) =
∑

k

[ψ†
e (k), ψ†

o (k)]

[
0 εeo(k)

εoe(k) 0

][
ψe(k)
ψo(k)

]
,

(A3)

where a is the lattice constant, and the band dis-
persion εeo(k) = −t{1 + eikx

√
2a + e−ikz

√
2a + eikx

√
2a−ikz

√
2a},

εoe(k) = −t{1 + e−ikx

√
2a + eikz

√
2a + e−ikx

√
2a+ikz

√
2a}.

even site

odd  site

A

AA

AA

B

B

B

B

ex

ez

FIG. 4. Schematic picture of a two-dimensional checkerboard
lattice. Here A and B stand for two different sites in one unit cell
(even and odd sites), and ex and ez are the primitive unit vectors.

APPENDIX B: LOCAL SINGLE-PARTICLE AND
TWO-PARTICLE GREEN’S FUNCTION

In the absence of hopping, i.e., t = 0, the local Hamiltonian
can be defined from Eq. (1) as H0 = U

2

∑
r,σ nσ (r)[nσ (r) −

1] − ∑
r,σ μσ nσ (r) − δc|α|2 with the energy detuning δc.

Then, the local single-particle Green’s function can be calcu-
lated in the operator representation via the occupation number
basis, for instance,

Gee(τ ) = −〈
Tτ ψ̂e(τ )ψ†

e (0)
〉 = − 1

Z0
Tr[e−(β−τ )H0ψ̂ee−τH0ψ†

e ],

(B1)

where Z0 = Tr e−βH0 and |neno〉 = (ψ̂†
e )ne (ψ̂†

o )no√
ne!no!

|0〉 is the
eigenbasis of the local Hamiltonian H0 with eigen-
value εne,no = U

2 no(no − 1) + U
2 ne(ne − 1) − μono − μene −

δc|α|2. After implementing the Fourier transform, the above
correlator can be expressed as

Gee(iω) =
∫ β

0
dτ eiωτ Gee(τ )

= − 1

Z0

∑
ne,no

(ne + 1)
e−βεne+1,no − e−βεne ,no

iω + εne,no − εne+1,no

. (B2)

In the low -temperature limit T → 0(βU � 1), the exponen-
tial term in Eq. (B2) selects out the ground state of the local
Hamiltonian, and contributions of other states are suppressed.
Therefore, Gee can be calculated as

Gee(iω) = n̄e + 1

iω + εn̄e,0 − εn̄e+1,0
− n̄e

iω + εn̄e−1,0 − εn̄e,0
, (B3)
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where n̄e and n̄o can be determined through minimizing the
ground-state energy εn̄e,n̄o = minne,noεne,no . In the same way,
we can also obtain the local Green’s function Goo as

Goo(iω) = n̄o + 1

iω + ε0,n̄o − ε0,n̄o+1
− n̄o

iω + ε0,n̄o−1 − ε0,n̄o

.

(B4)

The two-particle Green’s function can be calculated in a
similar way as

χσσ ′ (τ1, τ2, τ3, 0) = 〈
Tτψσ (τ1)ψ†

σ (τ2)ψσ ′ (τ3)ψ†
σ ′ (0)

〉
, (B5)

where σ = e, o. To calculate the parameter gσσ ′ in the static
limit, we only consider the time average of the connected part
of χσσ ′ . Then, the diagonal part can be calculated as

χ̄ee =
∫ β

0
dτ1dτ2dτ3

〈
Tτψe(τ1)ψ†

e (τ2)ψe(τ3)ψ†
e (0)

〉c
=

∫ β

0
dτ1dτ2dτ3χee(τ1, τ2, τ3, 0) − 2β[Gee(iω = 0)]2

= −4(n̄e + 1)(n̄e + 2)(
εn̄e,0 − εn̄e+1,0

)2(
εn̄e,0 − εn̄e+2,0

) + −4n̄e(n̄e − 1)(
εn̄e,0 − εn̄e−1,0

)2(
εn̄e,0 − εn̄e−2,0

) + −4n̄e(n̄e + 1)(
εn̄e−1,0 − εn̄e,0

)2(
εn̄e+1,0 − εn̄e,0

)
+ 4n̄e(n̄e + 1)(

εn̄e,0 − εn̄e+1,0
)2(

εn̄e,0 − εn̄e−1,0
) + 4(n̄e + 1)2(

εn̄e,0 − εn̄e+1,0
)3 + −4n̄2

e(
εn̄e−1,0 − εn̄e,0

)3 , (B6)

with the upper index “c” labeling the connected part of the two-particle Green’s function, and

χee(τ1, τ2, τ3, 0) = 1

Z0

∞∑
ne=0

e−βεne ,0{θ (τ1 − τ2)θ (τ2 − τ3)eτ1(εne ,0−εne+1,0 )+τ2(εne+1,0−εne ,0 )+τ3(εne ,0−εne+1,0 )(ne + 1)2

+ θ (τ1 − τ3)θ (τ3 − τ2)eτ1(εne ,0−εne+1,0 )+τ2(εne+2,0−εne+1,0 )+τ3(εne+1,0−εne+2,0 )(ne + 1)(ne + 2)

+ θ (τ3 − τ1)θ (τ1 − τ2)eτ1(εne+1,0−εne+2,0 )+τ2(εne+2,0−εne+1,0 )+τ3(εne ,0−εne+1,0 )(ne + 1)(ne + 2)

+ θ (τ2 − τ1)θ (τ1 − τ3)eτ1(εne−1,0−εne ,0 )+τ2(εne ,0−εne−1,0 )+τ3(εne ,0−εne+1,0 )(ne + 1)ne

+ θ (τ2 − τ3)θ (τ3 − τ1)eτ1(εne ,0−εne+1,0 )+τ2(εne ,0−εne−1,0 )+τ3(εne−1,0−εne ,0 )(ne + 1)ne

+ θ (τ3 − τ2)θ (τ2 − τ1)eτ1(εne ,0−εne+1,0 )+τ2(εne+1,0−εne ,0 )+τ3(εne ,0−εne+1,0 )(ne + 1)2}.
Similarly, the other diagonal part can also be calculated as follows:

χ̄oo =
∫ β

0
dτ1dτ2dτ3χoo(τ1, τ2, τ3, 0) − 2β[Goo(iω = 0)]2

= −4(n̄o + 1)(n̄o + 2)(
ε0,n̄o − ε0,n̄o+1

)2(
ε0,n̄o − ε0,n̄o+2

) + −4n̄o(n̄o − 1)(
ε0,n̄o − ε0,n̄o−1

)2(
ε0,n̄o − ε0,n̄o−2

)
+ −4n̄o(n̄o + 1)(

ε0,n̄o−1 − ε0,n̄o

)2(
ε0,n̄o+1 − ε0,n̄o

) + 4n̄o(n̄o + 1)(
ε0,n̄o − ε0,n̄o+1

)2(
ε0,n̄o − ε0,n̄o−1

)
+ 4(n̄o + 1)2(

ε0,n̄o − ε0,n̄o+1
)3 + −4n̄2

o(
ε0,n̄o−1 − ε0,n̄o

)3 . (B7)

In a similar way, we can obtain the off-diagonal part in the static limit as

χ̄eo = n̄e f1 + (n̄e + 1) f2 + n̄e f3 + (n̄e + 1) f4, (B8)

with

f1 =
{

−n̄o(
εn̄e,n̄o − εn̄e,n̄o−1

)2(
εn̄e,n̄o − εn̄e−1,n̄o−1

) + −n̄o(
εn̄e,n̄o − εn̄e−1,n̄o

)2(
εn̄e,n̄o − εn̄e−1,n̄o−1

)
+ n̄o(

εn̄e,n̄o − εn̄e,n̄o−1
)2(

εn̄e,n̄o − εn̄e−1,n̄o

) + n̄o(
εn̄e,n̄o − εn̄e−1,n̄o

)2(
εn̄e,n̄o − εn̄e,n̄o−1

)
+ −2n̄o(

εn̄e,n̄o − εn̄e−1,n̄o

)(
εn̄e,n̄o − εn̄e,n̄o−1

)(
εn̄e,n̄o − εn̄e−1,n̄o−1

)}
,

f2 =
{

−n̄o(
εn̄e,n̄o − εn̄e,n̄o−1

)2(
εn̄e,n̄o − εn̄e+1,n̄o−1

) + −n̄o(
εn̄e,n̄o − εn̄e+1,n̄o

)2(
εn̄e,n̄o − εn̄e+1,n̄o−1

)
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+ n̄o(
εn̄e,n̄o−1 − εn̄e,n̄o

)2(
εn̄e,n̄o − εn̄e+1,n̄o

) + n̄o(
εn̄e,n̄o − εn̄e+1,n̄o

)2(
εn̄e,n̄o − εn̄e,n̄o−1

)
+ −2n̄o(

εn̄e,n̄o − εn̄e+1,n̄o

)(
εn̄e,n̄o − εn̄e+1,n̄o−1

)(
εn̄e,n̄o − εn̄e,n̄o−1

)}
,

f3 =
{

−(n̄o + 1)(
εn̄e,n̄o − εn̄e−1,n̄o

)2(
εn̄e,n̄o − εn̄e−1,n̄o+1

) + (n̄o + 1)(
εn̄e,n̄o − εn̄e−1,n̄o

)2(
εn̄e,n̄o − εn̄e,n̄o+1

)
+ (n̄o + 1)(

εn̄e,n̄o − εn̄e,n̄o+1
)2(

εn̄e,n̄o − εn̄e−1,n̄o

) + −(n̄o + 1)(
εn̄e,n̄o − εn̄e,n̄o+1

)2(
εn̄e,n̄o − εn̄e−1,n̄o+1

)
+ −2(n̄o + 1)(

εn̄e,n̄o − εn̄e−1,n̄o

)(
εn̄e,n̄o − εn̄e,n̄o+1

)(
εn̄e,n̄o − εn̄e−1,n̄o+1

)}
,

f4 =
{

(n̄o + 1)(
εn̄e,n̄o − εn̄e,n̄o+1

)2(
εn̄e,n̄o − εn̄e+1,n̄o

) + (n̄o + 1)(
εn̄e,n̄o − εn̄e+1,n̄o

)2(
εn̄e,n̄o − εn̄e,n̄o+1

)
+ −(n̄o + 1)(

εn̄e,n̄o − εn̄e,n̄o+1
)2(

εn̄e,n̄o − εn̄e+1,n̄o+1
) + −(n̄o + 1)(

εn̄e,n̄o − εn̄e+1,n̄o

)2(
εn̄e,n̄o − εn̄e+1,n̄o+1

)
+ −2(n̄o + 1)(

εn̄e,n̄o − εn̄e+1,n̄o

)(
εn̄e,n̄o − εn̄e+1,n̄o+1

)(
εn̄e,n̄o − εn̄e,n̄o+1

)}
.

Up to this point, we have obtained the two-point and four-point correlators from the local Hamiltonian. Then, gσσ ′ in Eq. (6) of
the main text can be determined by the two-particle vertex in the static limit, which can be written as

gσσ ′ = −χ̄σσ ′

(Ḡσσ Ḡσ ′σ ′ )2 + (Ḡσσ )4δσσ ′
, (B9)

where Ḡσσ = Gσσ (iω = 0).

APPENDIX C: DOUBLE HUBBARD-STRATONOVICH TRANSFORMATION

The connected correlators of the original boson fields ψσ can be obtained from the generating function

Z[J∗, J] =
∫

D[ψ∗, ψ] exp {ψ∗
σ Tσσ ′ψσ ′ − S0[ψ∗

σ , ψσ ] + [(J|ψ ) + c.c.]}, (C1)

where J, J∗ are external sources and (J|ψ ) = ∑
σ,r

∫ β

0 dτJ∗
σ (r)ψσ (r). Introducing the first Hubbard-Stratonovich transformation

with auxiliary field φ,

Z[J∗, J] =
∫

D[ψ∗, ψ ; φ∗, φ] exp
{−φ∗

σ T −1
σσ ′φσ ′ − S0[ψ∗

σ , ψσ ] + [(φ|ψ ) + c.c.] + [(J|ψ ) + c.c.]
}
. (C2)

After a shift φσ −→ φσ − Jσ , φ∗
σ −→ φ∗

σ − J∗
σ , we obtain

Z[J∗, J] =
∫

D[ψ∗, ψ ; φ∗, φ] exp
{−(φ∗

σ − J∗
σ )T −1

σσ ′ (φσ ′ − Jσ ′ ) − S0[ψ∗
σ , ψσ ] + [(φ|ψ ) + c.c.]

}
. (C3)

Integrating ψσ fields, we then obtain

Z[J∗, J] = Z0

∫
D[φ∗, φ] exp

{−(φ∗
σ − J∗

σ )T −1
σσ ′ (φσ ′ − Jσ ′ ) + W [φ∗

σ , φσ ]
}
. (C4)

Next, applying the second Hubbard-Stratonovich transformation with auxiliary field ψ ′, we obtain

Z[J∗, J] = Z0

∫
D[φ∗, φ; ψ ′∗, ψ ′] exp {ψ ′∗

σ Tσσ ′ψ ′
σ − [(ψ ′|φ − J ) + c.c.] + W [φ∗

σ , φσ ]}

= Z0

∫
D[φ∗, φ; ψ ′∗, ψ ′] exp {ψ ′∗

σ Tσσ ′ψ ′
σ − [(ψ ′|φ) + c.c.] + [(ψ ′|J ) + c.c.] + W [φ∗

σ , φσ ]}.
(C5)

After integrating φσ fields, we get

Z[J∗, J] = Z0

∫
D[ψ ′∗, ψ ′] exp {ψ ′∗

σ Tσσ ′ψ ′
σ + W̃ [ψ ′∗

σ , ψ ′
σ ] + [(ψ ′|J ) + c.c.]}. (C6)
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From the above equation, we prove that Z[J∗, J] is also the generating function of the ψ ′
σ field, which is equal to the generating

function of the original ψ field. This proves that the connected correlators of ψ ′
σ are the same as that of ψσ . Therefore, ψ ′

σ is
identified with the original boson field ψσ . We can thus use the same notation for both fields.

APPENDIX D: COEFFICIENTS OF THE EFFECTIVE ACTION AT THE CRITICAL REGION

To obtain the effective action at the critical region, we first rewrite the action Eq. (6) in the main text in momentum space as

Sk =
∑
k,ω

ψ∗
e (k,iω)

[−G−1
ee (iω)

]
ψe(k,iω) + ψ∗

o (k,iω)
[−G−1

oo (iω)
]
ψo(k,iω)

+ψ∗
e (k,iω)εeo(k)ψo(k,iω) + ψ∗

o (k,iω)εoe(k)ψe(k,iω) + 1

2
gee|ψe(k,iω)|4

+ 1

2
goo|ψo(k,iω)|4 + 1

2
geo|ψe(k,iω)|2|ψo(k,iω)|2 + 1

2
goe|ψo(k,iω)|2|ψe(k,iω)|2. (D1)

Next, we expand the inverse local single-particle Green’s function G−1
σσ (iω) and dispersion εσσ ′ (k) to quadratic order in k and ω,

respectively, and we obtain

Sk =
∑
k,ω

reψ
∗
e (k,iω)ψe(k,iω) + Ke1ψ

∗
e (k,iω)(−iω)ψe(k,iω) + Ke2(iω)ψ∗

e (k,iω)(−iω)ψe(k,iω)

+ roψ
∗
o (k,iω)ψo(k,iω) + Ko1ψ

∗
o (k,iω)(−iω)ψo(k,iω) + Ko2(iω)ψ∗

o (k,iω)(−iω)ψo(k,iω)

+ψ∗
e (k,iω)(−4t )ψo(k,iω) + K3(−ik)ψ∗

e (k,iω)(ik)ψo(k,iω)

+ψ∗
o (k,iω)(−4t )ψe(k,iω) + K3(−ik)ψ∗

o (k,iω)(ik)ψe(k,iω)

+ 1

2
gee|ψe(k,iω)|4 + 1

2
goo|ψo(k,iω)|4

+ 1

2
geo|ψe(k,iω)|2|ψo(k,iω)|2 + 1

2
goe|ψo(k,iω)|2|ψe(k,iω)|2, (D2)

where re = −( n̄e+1
εn̄e ,0−εn̄e+1,0

− n̄e
εn̄e−1,0−εn̄e ,0

)−1, ro = −( n̄o+1
ε0,n̄o−ε0,n̄o+1

− n̄o
ε0,n̄o−1−ε0,n̄o

)−1, Ke1 = μ2
e−(n̄2

e+n̄e−1)U 2+2μeU
(μe+U )2 , Ko1 =

μ2
o−(n̄2

o+n̄o−1)U 2+2μoU
(μo+U )2 , Ke2 = n̄e(n̄e+1)U 2

(μe+U )3 , Ko2 = n̄o(n̄o+1)U 2

(μo+U )3 , and K3 = 2ta2. Then, we can obtain the effective action Eq. (10)
in the main text by transforming the action Eq. (D2) back to real space.

APPENDIX E: THE LOW-ENERGY EXCITATION

To investigate the low-energy excitation of the system in an analytical way, we solve the equation det[M(k, iω)] = 0 in the
E → 0 limit via the following relation:(

C9k4 + C8k2 + C7
)
E4 + (

C6k4 + C5k2 + C4
)
E2 + (

C3k4 + C2k2 + C1
) = 0, (E1)

where the coefficients are defined as C1 = (4t )4 − 2 × (4t )2[D1D2 + D3D4] + [(D2
1 − D2

3)(D2
2 − D2

4)], C2 = −4 × (4t )3K3 +
4 × (4t )K3[D1D2 + D3D4], C3 = 6 × (4t )2K2

3 − 2K2
3 [D1D2 + D3D4], C4 = 2 × (4t )2[Ke2D2 + Ko2D1 − Ke1Ko1] − K2

e1(D2
2 −

D2
4) − K2

o1(D2
1 − D2

3) − 2Ke2[D1(D2
2 − D2

4)] − 2Ko2[D2(D2
1 − D2

3)], C5 = −4 × (4t )K3Ke2D2 − 4 × (4t )K3Ko2D1 + 4 × (4t )K3

Ke1Ko1, C6 = −2K2
3 Ke1Ko1 + 2K2

3 Ke2D2 + 2K2
3 Ko2D1, C7 = −2 × (4t )2Ke2Ko2 + K2

e1K2
o1 + 2K2

o1Ke2D1 + 2K2
e1Ko2D2 + 4Ke2Ko2

D1D2 + K2
e2(D2

2 − D2
4) + K2

o2(D2
1 − D2

3), C8 = 4 × (4t )K3Ke2Ko2, and C9 = −2K2
3 Ke2Ko2 with D1 = re + 2geens,e, D2 = ro +

2goons,o, D3 = geens,e, D4 = goons,o. By analytically solving the above equation and expanding the energy dispersion to the
quartic order of the momentum, the low-energy excitation (lowest positive branch) can be approximately determined in the
long-wave limit as

E+
Goldstone  √

I2k + √
I4k2, (E2)

where I2 = C1C5

C2
4

− C2
C4

, I4 = −C1C2
5

C3
4

+ C2C5+C1C6

C2
4

− C3
C4

.
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