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Simple, passive design for large optical trap arrays for single atoms
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We present an approach for trapping cold atoms in a two-dimensional (2D) optical trap array generated with
a 4 f filtering scheme and custom transmission mask without any active device. The approach can be used to
generate arrays of bright or dark traps, or both simultaneously with a single wavelength for forming two-species
traps. We demonstrate the design by creating a 2D array of 1225 dark trap sites, where single Cs atoms are loaded
into regions of near-zero intensity in an approximately Gaussian profile trap. Moreover, we demonstrate a simple
solution to the problem of out-of-focus trapped atoms, which occurs due to the Talbot effect in periodic optical
lattices. Using a high power yet low cost spectrally and spatially broadband laser, out-of-focus interference is
mitigated, leading to near perfect removal of Talbot plane traps.
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I. INTRODUCTION

Optical trap arrays are a key ingredient in neutral atom
based quantum technologies, including quantum computing,
quantum simulation, and quantum sensing, due to their sta-
bility and versatility [1,2]. This is the result of advances over
the past two decades in creating low-entropy arrays of single
atoms, which have made optical trap arrays ubiquitous in
quantum science. However, the optical setups for creating
these traps are often complicated, space consuming, and ex-
pensive, requiring active electro-optical devices such as liquid
crystal spatial light modulators [3], acousto-optic deflectors
[4], and digital micromirror devices (DMDs) [5]. In response
to this experimental overhead, we propose a simple method
of creating optical trap arrays using only passive components,
consisting of a mask with a custom transmission pattern and a
4 f imaging setup with a Fourier plane iris for spatial filtering.

Two major advantages exist for optical traps created with
passive rather than active components.

(1) Passive components are free from noise associated with
active devices, such as intensity flicker which can lead to short
trap lifetimes [6].

(2) They have the capability to handle high optical powers,
which enables scaling to very large trap arrays.

The approach we demonstrate uses a passive amplitude
mask, which has some advantages over a passive hologram.
Specifically, an amplitude mask can be used with a broad
range of wavelengths, and can also be used with incoherent
light, which we show can be used for mitigating the Talbot
effect for periodic trap arrays. We show how the same basic
working principle can be used to create both bright and dark
traps, where atoms are trapped in regions of high and low
intensity, respectively. Moreover, this approach can be used
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to create a dual grid of both dark and bright traps for confin-
ing two different atomic species [7] using only one passive
optical mask and a single trapping wavelength. We show as
a proof of principle the creation of a two-dimensional (2D)
1225-site array which is used for trapping single Cs atoms
in blue-detuned dark traps. Several other recent experiments
have demonstrated large atom arrays [5,8,9]. However, all of
these relied on active devices. A microlens array can be used
to create an array of red-detuned bright traps without requiring
any active devices [10], but cannot be easily extended to the
dark and bright-dark arrays described here.

The paper is organized as follows. In Sec. II, the working
principle is discussed for creating an array of bright red-
detuned traps, dark blue-detuned traps, or a combination of
the two. In Sec. III, we discuss an experimental demonstration
of trapping single Cs atoms in a dark trap array, and show that
the Talbot effect can be mitigated by using incoherent trap
light.

II. WORKING PRINCIPLE

A. Bright trap array

Here we discuss the case of creating an array of bright
optical dipole traps, in which atoms are trapped in regions
of maximum intensity for light which is far-detuned red of
an atomic transition. Consider a plane wave, incident on an
opaque mask with a fully transmitting aperture of radius a
(Fig. 1). If the illuminated mask is placed in the front focal
plane of a lens f1, the field in the back focal plane is the
familiar Airy disk, which is the Fourier transform of the top
hat profile of the field just after the mask. Because the Fourier
plane field gives the spatial frequency spectrum of the front
focal plane field, we can reason that filtering out higher spatial
frequencies from the Airy disk will have the effect of creating
a low-passed top hat beam after a second lens transformation.
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FIG. 1. Working principle for creating approximately Gaussian (aG) field profiles using a 4 f filtering scheme. (a) The design for producing
a bright trap from an approximately Gaussian beam. An input plane wave is apertured by an opaque mask with a transmitting hole of radius a to
create a top-hat profile. A spatial filter or iris of radius b in the Fourier plane transmits only the central lobe of the Airy disk. After transforming
through lens f2, the output field, A2, is an aG beam. (b) Dark traps can be produced with a mask which is fully transmitting with a partially
transmitting aperture, for which the output is the aG field subtracted from a plane wave. (c) Intensity profiles of bright (red) and dark (blue)
traps based on aG beams (solid lines) compared to their Gaussian (dashed lines) counterparts plotted in terms of the Gaussian waist w0 and
Rayleigh range zR = πw2

0/λ for the Gaussian bright trap. The bright traps are normalized to their respective peak focal plane intensities and
the dark traps are normalized to the asymptotic intensity at large ρ2 and z2. The inset shows a zoomed in view of the higher-order deviation
between the aG and Gaussian beam. The axial (ρ2 = 0) and radial (z2 = 0) profiles for the bright and dark aG trap are computed numerically
using Fresnel diffraction theory. The pairs of dark and light solid blue curves have ta = 0.287 and 0, respectively. For all aG beam curves,
a = 100 μm and b = f1x(1)

1 /ak, except for the light blue (ta = 0) curve, which has b = f1x(0)
1 /ak. The other simulation parameters are λ = 825

nm, and w0 = 0.974( f2/ f1)a and 0.943( f2/ f1)a for the bright and dark Gaussian beams, respectively. (d) Extension of the 4 f filtering scheme
to produce a 2D grid of dark traps, using a mask with a grid of apertures with spatial period d . (e) A dual grid of bright and dark traps with
a single wavelength can be made with a mask which has finite background transmission tb populated by a grid of fully transmitting (ta,1 = 1)
apertures and a dual grid of apertures with transmission ta,2 < tb. (f) Dark trap profiles in the ρz plane corresponding to the blue and light blue
solid curves in (c), normalized to their respective peak intensities

Placing an iris of radius b in the Fourier plane to filter the Airy
disk and transform through lens f2, the output field in the back
focal plane found from Fresnel diffraction theory is

A2(ρ2) = −A0
ak

f2

∫ b

0
dρ1J0

(
ρ2k

f2
ρ1

)
J1

(
ak

f1
ρ1

)
. (1)

The finite Bessel integral above can be expressed as a power
series in b using

∫ b

0
dzJ0(cz)J1(dz)

=
∞∑
j=0

(−1) j

j!( j + 1)!(2 j + 2)

× 2F1(− j,−1 − j; 1; c2/d2)b2+2 j (d/2)1+2 j

where 2F1 is the hypergeometric function [11]. Taking f1 =
f2 = f and setting b = f

ak x(1)
1 , where x(1)

1 = 3.8317 is the
first zero of J1, allows further simplification. This choice for
b corresponds to filtering off the lobes beyond the central
bright spot, constituting a power loss of only 16%. With these
choices, we can then express the intensity in the output plane
I2, normalized to the input intensity I0, as a power series in
ρ2/a:

I2(ρ2, z2 = 0)

I0
= 1.97 − 4.15

(
ρ2

a

)2

+ 3.92

(
ρ2

a

)4

− . . . .

(2)

To compute the on-axis expansion of the intensity, we modify
the integral in Eq. (1) by setting ρ2 = 0 and including the
quadratic phase factor exp( − iρ2

1 z2/2 f 2
2 ) in the integrand,

where z2 is the axial deviation from the back focal plane of
the second lens. Both the radial and axial expansions, renor-
malized to have peak value of 1, are

I2(ρ2, z2 = 0)

I2(0, 0)
= 1 − 2.11

(
ρ2

a

)2

+ 1.99

(
ρ2

a

)4

− . . . ,

I2(ρ2 = 0, z2)

I2(0, 0)
= 1 − 2.60

z2
2

a4k2
+ 3.28

z4
2

a8k4
− . . . . (3)

We will refer to this intensity profile as an approximately
Gaussian (aG) beam. Equating the radial profile to a Gaus-
sian intensity profile |AG(ρ2)|2 = exp(−2ρ2

2/w2
0 ) at quadratic

order, we find that the aG beam is, to a very good approxima-
tion, a Gaussian beam with 1/e2 waist w0 = 0.974( f2/ f1)a
(Fig. 1).

It is useful to recast the coefficients of the quadratic terms
for the radial and axial expansions of I2 in terms of Gaus-
sian beam parameters. This is useful for seeing how the
trap confinement compares to a pure Gaussian optical trap
at lower order in ρ and z, and for ease in modifying com-
mon expressions pertaining to Gaussian optical traps, such as
trap frequencies [see Eq. (18)]. We already showed that the
radial expansion can be fit to a Gaussian with w0 = 0.974a,
so we can then equate the quadratic coefficient of the axial
expansion in Eq. (3) to a numerical factor times 1/z2

R, where
zR = πw2

0/λ is the familiar Rayleigh range of a Gaussian
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beam. The radial and axial expansions, expressed in terms of
Gaussian parameters up to quadratic order and normalized to
the peak intensity I2(0, 0), are

I2(ρ2, z2 = 0)

I2(0, 0)
= 1 − 2

(
ρ2

w0

)2

+ 1.79

(
ρ2

w0

)4

− . . . ,

I2(ρ2 = 0, z2)

I2(0, 0)
= 1 − 0.59

(
z2

zR

)2

+ 0.17

(
z2

zR

)4

− . . . . (4)

We see that the radial confinement of the bright aG beam is
the same as that of the best-fit Gaussian beam, whereas the
axial confinement is looser by around 30%.

This 4 f filtering approach to creating an aG beam is readily
extended to create an array of aG beams. For example, a 2D
grid of n × n aG beams can be generated by making the input
mask a 2D square grid of n × n apertures. The field transmit-
ted through each aperture will be an aG pattern as derived
above, but will appear at position −ρi j in the output plane,
where ρi j is the input position of the corresponding aperture.
This is shown for a 2D square array in Fig. 1. Provided the
spatial period d of apertures on the mask satisfies d � 3a, the
interference between adjacent beams will be negligible. The
resulting array of traps can then be reimaged with relay optics
to create small traps suitable for single atom trapping.

The efficiency of the trap creation is defined as the ratio of
peak intensity of the trap in the output plane to the intensity
of the input plane wave incident on the mask. This is given
by = It/Id where Id = P/d2 is the intensity of an input d × d
unit cell, and It = I2(ρ2 = 0, z2 = 0), which is simply Eq. (2)
evaluated at ρ2 = 0, z2 = 0. Hence, independent of the aper-
ture radius a, the efficiency is given by

ε = It

Id
= I2(0, 0)

I0
= 1.97. (5)

The meaning of an efficiency greater than unity is that the
input light has been redistributed to form a more localized re-
gion of intensity with a profile suitable for trapping. Note that
this value of efficiency assumes equal focal lengths, f1 = f2.
For unequal focal lengths, ε scales as the magnification factor
for intensity, ( f1/ f2)2. The fraction of optical power transmit-
ted through the 4 f filtering system is equal to the fraction
of power transmitted through the mask, times the fraction
transmitted through the Fourier filter. This gives Pout/Pin =
0.84(πa2/d2). For example, with d = 3a, Pout/Pin = 0.29. As
we will see, the design for creating dark traps is more efficient
in terms of power transmission.

We note that a single array mask can be used with different
laser wavelengths λ simply by adjusting the Fourier filter
radius b.

It is also possible to create tighter trap profiles than those
described above, at the expense of using a more complicated
amplitude or phase mask in the Fourier plane [12]. This is
discussed in Appendix B.

B. Dark trap array

The scheme presented above can be modified to produce
dark traps, where atoms are trapped in regions of zero inten-
sity for blue-detuned trap light. Dark traps are often preferable
over bright traps for a number of reasons. For example, (1)

the trapped atoms are insensitive to laser power fluctuations;
(2) the trap light can be kept on during experiment sequences
involving laser excitation, which may be untenable in bright
traps due to large ac Stark shifts; and (3) Rydberg states, for
which the ac Stark shift is always positive, can also be trapped
[13].

It is possible to form an aG dark trap, in which an atom can
be trapped at the intensity minimum, and axial confinement
is provided by the diffraction of the field out of focus. This
can be done with a mask which is somewhat complemen-
tary to that above, having partially transmitting apertures on
a fully transmitting background. Denoting the aperture and
background transmission amplitudes as ta and tb, respectively,
the field after transforming to the Fourier plane is

A1(ρ1) = −i
A0k

f1

[
ta

∫ a

0
dρ0 ρ0J0

(
kρ0ρ1

f1

)

+ tb

∫ ∞

a
dρ0 ρ0J0

(
kρ0ρ1

f1

)]

= −i
A0k

f1

[
(ta − tb)

∫ a

0
dρ0 ρ0J0

(
kρ0ρ1

f1

)

+ tb

∫ ∞

0
dρ0 ρ0J0

(
kρ0ρ1

f1

)]
. (6)

The second term in the square brackets, after filtering in the
Fourier plane and a second lens transformation, gives a plane
wave with amplitude −tbA0. The first term gives the same
result derived for the field in Eq. (1) multiplied by ta − tb, such
that the total field is a plane wave minus an aG near-Gaussian
profile. For f1 = f2 = f , the on-axis field in focus is given by

A2(0) = −A0

{
tb + (ta − tb)

[
1 − J0

(
kab

f

)]}
. (7)

This leads to the condition for the field to be zero:

ta = −tb
J0

(
kab

f

)
1 − J0

(
kab

f

) . (8)

Choosing b = f
ak x(1)

1 gives ta = 0.287tb. For a fully trans-
mitting background, |tb| = 1, which implies an aperture
transmission Ta = |ta|2 = 0.082 to make a dark near-Gaussian
trap with a zero intensity minimum. It should be clear that f1

need not equal f2 for this result for the aperture transmission
amplitude to hold true. The sensitivity of this zero intensity
condition to the iris radius and relative phase between ta and
tb is discussed in Appendix A.

The radial and axial expansions of the dark aG trap are

I2(ρ2, z2 = 0)

I0
= −1.04 × 10−6

(
ρ2

w0

)2

+1.11

(
ρ2

a

)4

− . . . ,

I2(ρ2 = 0, z2)

I0
= 4.44

a4k2
z2

2 − 8.04

a8k4
z4

2 + . . . . (9)

The quadratic term in the radial expansion is very close to
zero, and will be dropped going forward. Following the anal-
ogy between the Gaussian and aG fields, this trap profile is
similar to |1 − AG|2, for which the first nonvanishing term in
the radial expansion at z2 = 0 is quartic. Matching the quartic
term of Eq. (9) to that of the Gaussian-based equivalent, we
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find w0 = 0.943a( f2/ f1), where the focal lengths have been
left arbitrary. Again, we can compare the expansion with a
Gaussian-based trap by recasting the coefficients in terms of
Gaussian parameters as was done for the bright trap:

I2(ρ2, z2 = 0)

I0
=

(
ρ2

w0

)4

− . . . ,

I2(ρ2 = 0, z2)

I0
= 1.01

(
z2

zR

)2

− 0.33

(
z2

zR

)4

+ . . . . (10)

The trap profiles from Eqs. (4) and (10) are plotted in Fig. 1
alongside their Gaussian counterparts.

The dark aG trap radial profile in the focal plane is nearly
quartic. One consequence is that the distribution of atoms will
therefore be different than for a harmonic trap, as discussed
in Sec. II D. A trapping potential which is harmonic to low-
est order may be desirable in some cases, for example to
allow for the implementation of sideband cooling [14]. For
particular values of finite ta, the traps generated with this
design can be made harmonic by imposing a finite phase
difference φab between the transmitting mask background and
choosing a suitable iris radius b. This is discussed further in
Appendix D1.

An attractive modification of the dark aG trap is to use a
mask which has ta = 0, corresponding to opaque disks on the
fully transmitting background (the complement of the bright
trap mask), which may be easier to fabricate reliably com-
pared to the version requiring a specific finite value for ta. This
could be implemented with either a passive optical element or
an active amplitude spatial light modulator such as a DMD.
From the condition for a dark trap center given in Eq. (8),
we find that the iris radius should be set to bn = ( f /ka)x(0)

n ,
where x(0)

n is the nth zero of Bessel J0 and n > 0. In the limit
of large n, the trap radial profile approaches a square well of
radius a, which is simply the reimaged mask aperture with no
Fourier filtering. For iris radius b1 and a = w0( f 1/ f 2)/0.943,
the radial and axial trap profiles in terms of Gaussian beam
parameters are given by

I2(ρ2, z2 = 0)

I0
= 0.31

(
ρ2

w0

)4

− 0.12

(
ρ2

w0

)6

. . . ,

I2(ρ2 = 0, z2)

I0
= 0.31

(
z2

zR

)2

− 0.03

(
z2

zR

)4

+ . . . (11)

and shown in Fig. 1.
The efficiency of the dark aG trap for all variations consid-

ered is given approximately by

ε = It

Id
= Id

Id
= 1, (12)

which follows from the fact that the input plane wave is fully
transmitted through the Fourier filter. For the dark traps with
ta = 0.287 and 0 shown in Fig. 1, the efficiency is about 1.1
and 1.2, respectively, due to diffraction effects. For an array of
dark traps, this efficiency is valid when interference between
neighboring traps is negligible with d � 6a. The efficiency
of the dark trap variants is lower than for the bright trap, but
compares favorably with dark traps created with a Gaussian
beam array using diffractive optical elements which has ε �
0.51 [15] or a line array which has ε � 0.97 [16].

The fractional power transmission through the 4 f filtering
setup for the dark trap array is more favorable than that of the
bright trap, which has a mask with an opaque background. For
a mask with arbitrary background and aperture transmissions,
we have Pout/Pin = η[|tb|2(d2 − πa2) + |ta|2πa2]/d2 where
η is the fractional transmission of the Fourier filter, which
depends on the optimal filter radius for the choice of ta. For
ta = 0, η = 0.73, found by integrating the Airy disk up to
radius b1 as defined above. For a mask with either |ta| = 0
or 0.287 and d = 3a, Pout/Pin ≈ 0.50.

C. Combined bright and dark trap array

An interesting application of this technique is a grid of both
bright and dark traps for trapping two atomic species with a
single trapping wavelength. There has been interest in such
two-species trap arrays as they have potential applications
for error-corrected quantum computing [17]. While a large
array of Rb and Cs atoms was recently demonstrated [7],
the proposed approach requires only one trapping wavelength
and a single passive optical element to create the intensity
pattern for both traps, which simplifies the complexity of
the experimental setup. Such a trap can be made utilizing
transitions in two species which have dynamic polarizabilities
of comparable magnitude but opposite sign for the chosen
wavelength.

Consider a mask with a background of transmission tb,
populated with a grid of fully transmitting apertures for bright
traps and a dual grid of apertures with transmission amplitude
ta = 0.287tb for forming dark traps, with |ta| < |tb| (Fig. 1).
The peak intensity of the bright trap occurs at (ρ2, z2) =
(0, 0), and that of the dark trap occurs off axis for large ρ2,
where the intensity is simply that of the plane wave transmit-
ted through the mask. Assuming f1 = f2 for simplicity, and
using Eq. (7), the peak intensity of the output bright traps
relative to the background intensity and that of the dark traps
are given by

Ibright(ρ2 = 0, z2 = 0) = ∣∣(tb − 1)
[
1 − J0

(
x(1)

1

)]−tb
∣∣2−|tb|2,

(13)

Idark (ρ2 → ∞, z2 = 0) = |tb|2 (14)

where Ibright (ρ2 = 0, z2 = 0) and Idark (ρ2 → ∞, z2 = 0) are
found from Eqs. (2) and (9), respectively. These relative in-
tensities are equal for tb ≈ 0.77.

The condition for one species to be trapped in the bright
spots and one in dark traps, with equal trap depths, is
|αbIbright| = |αd Idark|. Choosing λ = 810 nm, we can create
bright traps for Rb and dark traps for Cs. The dynamic ground-
state polarizability at 810 nm for Rb is αb = 847 Å3 and for
Cs is αd = −433 Å3, from which we obtain tb = 0.86 to have
equal trap depths for Rb and Cs. For the case of using fully
opaque dark apertures, i.e., ta = 0, the dark trap efficiency is
about 1.2 and we get tb = 0.84 for the bright and dark mask.
Note that in this case the dark apertures should have radius
adark = abright(x

(0)
1 /x(1)

1 ) so that the same Fourier filter radius
is optimal for both the bright and dark traps.
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TABLE I. Comparison of normalized intensity profiles I , atom distribution standard deviations σ , and vibrational frequencies ω for the
bright and dark aG (ta = 0.287) trap potentials, and a standard Gaussian bright trap. For ease of comparison, the expressions have all been cast
in terms of the best-fit Gaussian waist w0 and corresponding zR. Numerical values for the standard deviations are given using λ = 808 nm and
w0 = 1 μm, and a ratio of atom kinetic energy to trap potential kBT/U0 = 1/10.

Parameter Gaussian Bright aG Dark aG

I (ρ, 0)/I (0, 0) 1 − 2( ρ

w0
)
2 + 2( ρ

w0
)
4 − . . . 1 − 2( ρ

w0
)
2 + 1.79( ρ

w0
)
4 − . . . ( ρ

w0
)
4 − . . .

I (0, z)/I (0, 0) 1 − ( z
zR

)
2 + ( z

zR
)
4 − . . . 1 − 0.585( z

zR
)
2 + 0.166( z

zR
)
4 − . . . 1.01( z

zR
)
2 − 0.330( z

zR
)
4 + . . .

ωρ
2

w0

√
U0
m

2
w0

√
U0
m Ill defined

ωz
1
zR

√
U0
m

1
1.307zR

√
U0
m

1
0.997zR

√
U0
m

σρ w0( kBT
2U0

)
1/2 = 0.22 μm w0( kBT

2U0
)
1/2 = 0.22 μm w0( 2

3
kBT
U0

)
1/4 = 0.28μm

σz zR( kBT
2U0

)
1/2 = 0.87 μm 1.307zR( kBT

2U0
)
1/2 = 1.14 μm 0.997zR( kBT

2U0
)
1/2 = 0.87 μm

D. Atom confinement

The figures of merit for trapping a particle, such as an
atom or molecule, are the depth of the trapping potential
and the spatial confinement of the particle. Assuming the
particle to be in a low-energy motional state, we can ap-
proximate the trap as a harmonic potential by keeping only
up to the quadratic terms in spatial coordinates. For a bright
trap, where atoms are trapped at the peak intensity, we have
U = U0(1 − ε⊥ρ2 − ε‖z2 + . . .), where ρ and z are the radial
and axial coordinates of the particle, respectively, and z is
along the axis of optical propagation of the trap light. For a
dark trap, where atoms are trapped at the minimum intensity,
U = U0(ε⊥ρ2 − ε‖z2 + . . .). Because the equations of motion
are not affected by constant terms in the potential, the equa-
tions for trap frequencies and confinement that follow are
valid for either bright or dark potentials.

We can obtain the spread in a trapped particle’s position
by using the Virial theorem to relate the potential and kinetic
energy of the trapped particle. For a particle of temperature T ,
the standard deviations of the particle position are given by

2U0ε⊥〈ρ2〉 = 2kBT,

2U0ε‖〈z2〉 = kBT
(15)

with kB the Boltzmann constant. The standard deviations of
the particle position are therefore

σρ =
√

〈ρ2〉 = 1

ε
1/2
⊥

(
kBT

U0

)1/2

,

σz =
√

〈z2〉 = 1

(2ε‖)1/2

(
kBT

U0

)1/2

(16)

where kB is the Boltzmann constant.
For a Gaussian beam with waist parameter w0 we have

ε⊥ = 2/w2
0, ε‖ = λ2/(π2w4

0 ) = 1/z2
R. The bright aG has sim-

ilar atom distributions but with numerical corrections close to
unity. The results for Gaussian, aG, and dark aG potentials are
summarized in Table I.

For the dark aG trap, the potential is dominated by a quartic
term to lowest order in the radial direction. Using the Virial

theorem again, we obtain

〈ρ4〉 = 2

3

kBT

U0ε⊥
, σρ =

(
2

3

kBT

U0ε⊥

)1/4

(17)

where ε⊥ is the coefficient of the quartic term in the radial
expansion of the potential.

In practice, the radial and axial confinement provided by a
trap potential is found by a parametric heating experiment to
deduce the vibrational frequencies of the trapped atoms. These
are well defined along directions for which the potential is har-
monic to lowest order. For a trap which closely approximates
a Gaussian potential of waist w0, with trap depth U0 for an
atom of mass m, we have

ωρ = 2

w0

√
U0

m
, ωz = 1

hzR

√
2U0

m
. (18)

For a perfect Gaussian beam, h = 1. For the bright aG beam,
which diverges somewhat slower in the axial direction, h =
1.307, and for the dark aG trap h = 0.997. In the case of
the dark aG trap, the radial profile is dominated by a quartic
term, so the radial motion of trapped atoms will obey the un-
forced Duffing equation [18]. Hence, a particular vibrational
frequency is not well defined in this case. A summary of the
trap frequencies and spatial confinement is given in Table I.

III. EXPERIMENT

We demonstrate the proposed method of creating a blue-
detuned dark trap array with up to 1225 sites for trapping
single Cs atoms, and compare the use of an incoherent laser
versus a coherent laser. The trap array is formed using a
commercially fabricated (by LaserOptik) custom mask con-
sisting of a 35 × 35 grid of partially transmitting disks of
radius a = 100 μm (|ta|2 = 0.49; see Appendix D1) and spa-
tial period d = 430 μm, positioned on a 25.4-mm-diameter
glass blank antireflection (AR) coated for a design wavelength
of 825 nm. The experimental setup, shown in Fig. 2, is the
same for trapping with both coherent and incoherent lasers
except for the lasers themselves and the optics that precede
the array mask. The array mask and 4 f telescope are followed
by an intermediate pickoff for imaging the trap intensity with
a magnification of roughly 1/10, and the array is imaged into
the science chamber to have a spatial period of 3 μm at the
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FIG. 2. Schematic of the experimental apparatus for trapping
laser-cooled cesium atoms in a dark trap array made with a broad-
band, spatially multimode 808-nm laser. Atoms are loaded into a
magneto-optical trap (MOT), then transferred into a blue-detuned
dark trap array which overlaps the MOT. The trap array pattern is
formed using a passive optical mask and 4 f filtering scheme, and the
trap is imaged onto the atoms using a 0.55 NA custom objective. The
dashed outline denotes a removable mirror which is used for imaging
the trap at low power onto a CCD camera. An EMCCD camera
captures 852-nm fluorescence from the atoms, which is collected
through the same objective lens used for focusing the trap light and
picked off with a long-pass dichroic. The labeled lenses have focal
lengths f1–8 = (4.5, 500, 250, 75, 200, 30, 150, 22.8) mm.

atoms. We emphasize that for a given array mask the period
of the array at the atoms and the trap depth can be tuned by
changing the magnification of the imaging system.

A. Incoherent trap

First, we present single atom trapping in a 2D 1225-
site dark trap array with a high power spatially multimode,
broadband 808-nm laser (Aerodiode CCMI, 35 W), which is
blue-detuned with respect to the Cs D lines. Going forward,
we will simply refer to this laser as the “incoherent” laser.

The incoherent light is used in order to form the optical
trap array without incurring the formation of Talbot plane
traps, as shown in Fig. 3. For an explanation of the dom-
inant mechanism in destroying the Talbot interference, see
Appendix C. The entire array mask was illuminated and im-
aged onto a CCD following a 4 f filtering setup. In order
to have uniform trap depths across the array, it is crucial to
uniformly illuminate the mask, which we do by reimaging
the core of a 200-μm multimode fiber onto the mask. This
is a good approximation to illuminating the mask with a top
hat intensity profile. An adjustable iris was used as the spatial
filter in the 4 f setup, and tuned to a radius of about 0.5 mm
to minimize the trap center intensities as viewed on a CCD
camera. To characterize the trap, we begin by stochastically
loading single Cs atoms from a magneto-optical trap into the
array, for which we observe up to about 50% filling of the
array. The trap light is switched on by controlling the laser
current, instead of using an acousto-optic modulator (AOM),
due to poor diffraction efficiency with the multimode light.
Fluorescence images of atoms loaded into the array are shown
in Fig. 4, with an average single atom loading rate in excess
of 30% for the data shown. The loading rate observed with
coherent trapping light, discussed below, was about 50%. We
attribute the increase in loading rate with coherent light to the
difference in relative intensity noise (RIN) between the two
lasers (see Appendix D2).

The axial and radial frequencies of the atoms in the trap
were measured to be about 6 and 44 kHz, respectively, by

FIG. 3. Dark trap intensity profile with broadband, spatially multimode light. (a) The focal plane of traps imaged onto a CCD, formed
with a 4 f filtering system with a magnification of 1/10, giving an array period of 43 μm in the imaging plane. For the λ = 805 nm light used,
(b) the Talbot plane is located at z = 4.6 mm, where the reimaged traps have been strongly suppressed. (c) and (e) show a single trap site with
808-nm multimode light projected on the focal plane and along the propagation plane intersecting ρ = 0. For qualitative comparison, (d) and
(f) show numerical simulations of the trap using coherent single mode light.
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FIG. 4. Single atom loading in a 1225-site array of dark traps formed with a broadband, spatially multimode laser. See Sec. III. (a) Single
fluorescence image, showing stochastic loading of the trap array. The spacing between trap sites is about 3 μm. (b) Averaged fluorescence
image processed with independent component analysis (see Appendix D3). (c) Histograms of photocounts from regions of interests defined
for the central 49 sites in (a) and (b), showing the well-separated background (pink) and single atom (dark red) distributions.

parametric heating from modulating the laser current with a
sinusoidal source. For the particular mask used, we expect
a trap which diverges faster in the axial direction compared
to the expansion given in Eq. (10), providing tighter axial
confinement. For the radial direction, the trap closely matches
a harmonic potential, and therefore the standard radial fre-
quency relation [see Eq. (18)] for a harmonic potential applies
(see Appendix D1). Hence there are three free parameters
in the pair of trap frequency equations: the best-fit Gaussian
waist w0, trap depth U0, and divergence parameter h. It is not
straightforward to predict h due to the unknown M2 for the in-
coherent light, so we use the two trap frequencies to solve for
h and U0, given a value of w0 found using the known imaging
magnification and a calibrated fit of the trap intensity. For a fit
waist of 1.6 μm, the trap frequencies imply U0/kB = 462 μK
and h = 0.647. The polarizability of the Cs 6S1/2 states is
α0 = 0.66 × 10−6 μK/(W/m2) at 808 nm, and the estimated
intensity at the atoms is 7.06 × 108 W/m2 (with about 20 W
of light), giving an expected trap depth of U0/kB = 466 μK.
This agrees with the value implied by the trap frequencies
to within a few percent, and h is of the same order as the
numerical prediction with coherent light.

The observed atom lifetime in the incoherent trap was
about 40 ms, in comparison to about 5 s measured with the
coherent trap to be discussed next. We attribute this difference
to the RIN of each laser (see Appendix D2). Nevertheless,
we emphasize there is nothing fundamentally prohibitive for
obtaining reasonable trap lifetimes in multimode optical traps
[19,20]. Moreover, intensity-noise limited trap lifetimes can
be significantly improved using well-developed noise reduc-
tion techniques such as the method used in [21], which uses
an AOM and electro-optic modulator (EOM) for slow and fast
noise reduction, respectively. We note that the poor diffraction
efficiency of an AOM with multimode light is not a barrier
to intensity stabilization as it was to using an AOM as an
optical switch. This is because using an AOM for intensity
stabilization requires dumping a relatively small amount of
power into the diffracted order. Furthermore, the intensity sta-
bilization scheme in [21] could be modified to use two EOMs

instead of one AOM and one EOM, if diffraction efficiency is
a concern.

B. Coherent trap

The same trap characterization experiments were repeated
using a coherent 825-nm laser (Moglabs MSA003 tapered
amplifier), where the only change to the experimental setup
was the optics for collimating the trap light before the ar-
ray mask. The mask was illuminated using a Gaussian beam
which was collimated after being spatially filtered by a single
mode fiber. Despite the Gaussian illumination of the mask,
which leads to a varying trap depth across the array, we still
observe traps which go completely or near completely dark
across the array, indicating that uniform mask illumination is
not strictly required.

Again, we characterize the confinement by measuring the
trap frequencies and trap lifetime. The trap depth for differ-
ent sites varies according to the Gaussian intensity envelope
across the array. We will therefore restrict our analysis to
values near the center of the array, where the traps are deepest.
The peak intensity at the atoms is given approximately by
I = 2P/πw2

env, where P = 260 mW is the laser power and
wenv = 12 μm is the Gaussian envelope waist at the atoms.
This yields about 20 to 25 sites which are deep enough for
trapping. To parametrically heat the atoms, the trap light inten-
sity was modulated by varying the rf power to an AOM placed
before the single mode fiber delivering light to the 4 f filtering
setup. We measure radial and axial frequencies of about 52.5
and 7.2 kHz, respectively. The rate of axial divergence, which
is faster than that of a Gaussian beam, has a divergence param-
eter h = 0.65 predicted by a Fresnel diffraction simulation for
the parameters of the mask used (see). Assuming this value
of h, the trap frequencies imply a trap depth of 1.4 mK and
waist w0 = 1.81 μm. This waist is consistent with the value
of 1.89 μm deduced from fitting the trap in the intermediate
imaging plane to within a few percent, and the trap depth is
within our uncertainty in measuring the intensity. Lastly, the

063111-7



P. HUFT et al. PHYSICAL REVIEW A 105, 063111 (2022)

trap lifetime was found to be nearly 5 s, measured in the same
site for which we report the trap frequencies.

IV. CONCLUSION

We have demonstrated a simple technique for creating op-
tical trap arrays using only passive optical components. The
design lends itself to being scalable, as a larger trap array can
be created with a larger mask grid and more optical power.
This is an important point for scaling up neutral atom qubit
arrays, for which the limiting factors are optical power and
the performance of the trap imaging system [2]. As the design
is based on only passive components, it is free from noise
associated with active spatial light modulators such as DMDs.

The design presented is versatile, lending itself to several
compelling variations. First, the same working principle can
be used with a different mask to simultaneously create bright
and dark arrays for trapping two species. This can be done
using a single trapping wavelength, without requiring any ad-
ditional experimental footprint compared to one-species traps.
Second, alternative Fourier filters can be used to create traps
which provide significantly higher localization of trapped
atoms (see Appendix B).

We have also demonstrated the use of a spectrally and spa-
tially multimode trap for mitigating the Talbot effect, which
leads to unwanted out-of-focus traps. However, the secondary
array of traps formed with coherent light allows for creating a
three-dimensional trap array, which may be advantageous for
multidimensional architectures [22,23].
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APPENDIX A: ROBUSTNESS OF 4 f FILTERED TRAPS

A natural question to pose is to what extent the 4 f filtering
approach to generating traps is sensitive to parameters, such
as the mask transmission amplitudes, the Fourier filter radius,
and the intensity profile used to illuminate the mask. Here we
address this for the case of generating dark traps. The metric
we find most useful is simply to quantify the relative intensity
at the centers of the traps, that is, I2(0, 0)/I0 [Eq. (9)]. The
derivation of the dark trap found the condition for completely
dark traps given zero relative phase between the mask aper-
ture and background transmission amplitudes, ta and tb, and a
choice of filter radius b corresponding to blocking the Airy
disk beyond the first minima.

However, the trap can be made near completely dark for
other choices of these parameters. Figure 5 shows the trap
center intensity for two values of ta (and tb = 1), as a colormap
versus the relative phase φab between tb and ta and the Fourier
filter or iris radius cast in dimensionless units. For ta = 0.287,

FIG. 5. Numerical analysis of dark aG trap profile dependence
on relative mask phase φab and Fourier filter (iris) radius. The iris
radii here are given as dimensionless by dividing by the value used
in the derivation in the main text, b = x(1)

1 f1/ak. (a) Trap profile data
(purple points) from Fig. 3(a) compared to two Fresnel diffraction
calculations: one with parameters which give a similar profile (purple
dashes), and one with parameters corresponding to the expected trap
given the specified parameters of the mask used (red line). Both
parameter sets use f1 = 500mm, f2 = 50mm, λ = 805nm, with the
former using (φab, iris radius) = (160◦,0.4), and (0◦,1) for the latter.
(b) and (c) show the dark trap center intensity (log scale) vs φab

and iris radius. The choices of φab and iris radius used to gener-
ate the numerical curves in (a) are marked with rings of the same
color in (c).

as derived as optimal above, we see the trap remains dark
to within about 10% for up to around 20◦ of relative mask
phase, indicating the robustness of the design with respect to
deviance in parameters from manufacturing of a real mask.

APPENDIX B: TIGHTER TRAPS WITH ALTERNATIVE
FOURIER PLANE MASKS

It is possible to create tighter trap profiles than those
presented in the main text, by replacing the simple Fourier
plane iris with more complicated amplitude or phase masks.
For example, a higher efficiency [Eq. (5)] bright trap can be
created by using a modified Fourier plane amplitude mask
which transmits certain higher spatial frequency bands. This
amounts to adding spatial notch filters, i.e., transmitting rings,
to a low-pass filter as used in the main text. It can be shown
that the transparent rings should have inner and outer radii
equal to f1x(1)

2n /(ak) and f1x(1)
2n+1/(ak), respectively, for the nth

ring from the center, for n > 1. The central aperture has radius
f1x(1)

1 /(ak). This type of filter, which we refer to as a Fresnel
zone filter, is shown with only one ring in Fig. 6 alongside
the resulting trap profiles compared to those of a standard aG
beam. It is apparent from the figure that the resulting traps
have much stronger confinement than is obtained with the
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FIG. 6. Comparison between an aG beam produced with a low-
pass Fourier filter (see main text) and a modified version using a
“Fresnel zone” Fourier filter. The horizontal axes are scaled to the
best fit Gaussian waist w0 and corresponding Rayleigh range zR =
πw2

0/λ for the aG beam. The two Fourier filter variants are shown in
the inset, and the radii of the transmitting rings and central aperture
are given in the text.

simple low pass filter. Compared to the bright aG trap, the trap
generated with the zone filter has roughly 1.9 times higher ef-
ficiency (corresponding directly to the trap depth), with about
2.2 and 10 times tighter confinement in ρ and z, respectively.
The zone filter does introduce weak secondary traps away
from the origin. Atom trapping in the secondary traps can be
avoided, either by slowly increasing the trap power during the
loading phase, or by using atom rearrangement techniques to
place atoms in the central trap.

APPENDIX C: TALBOT TRAP MITIGATION

In cold atom experiments using periodic optical trap arrays,
it is a known problem that secondary traps, which form due to
the Talbot effect, lead to out-of-focus trapped atoms. This con-
tributes additional background in fluorescence measurements
used for atom state detection and atom rearrangement [24].
The Talbot effect is a well-known phenomenon in optics, in
which a field which is spatially periodic in the transverse plane
will be reimaged after propagating a distance equal to

zTalbot = 2d2

λ

where d is the transverse spatial period of the field and λ

is the wavelength of the field. Numerical simulations of the
first Talbot planes for dark and bright trap arrays are shown in
Fig. 7. We propose a solution using a spatially and spectrally
incoherent laser field.

The Talbot effect can be mitigated by use of a spatially
multimode laser, which has a limited spatial coherence. In
what follows we will limit the numerical analysis to the case
of a dark trap array, although much of the discussion is equally
applicable to bright traps. In addition to being spatially mul-
timode, it is desirable to have many frequency components
as well. This ensures that the bright region of the trap does
not exhibit a speckle pattern, which could create additional
unwanted traps. This section will outline results of numerical

FIG. 7. Comparison of simulated Talbot plane trap formation
for a 10 × 10 dark aG array formed with (a) spatially coherent
monochromatic light and (b) spectrally and spatially incoherent field.
For the incoherent light, there are 21 frequency components spanning
�λFWHM = 3 nm, each with 200 Hermite-Gaussian modes with ran-
dom phases. The insets show the the focal plane intensity. The plot
axes are scaled to the best fit Gaussian waist, w0 = 0.943a( f2/ f1).
(c) Line profile comparison of a row of traps from (a) and (b),
showing the washed out Talbot interference for the multimode light.
For both simulations, λ0 = 825 nm, d = 430 μm, and a = 100 μm,
with a magnification of 1/100.

simulation. The experimental confirmation of these predic-
tions is shown in Sec. III of the main text.

The models presented here use Fresnel diffraction theory,
which is readily computed using fast Fourier-transform algo-
rithms that are available in modern programming languages
[25]. This modeling can be done efficiently on a typical laptop.
For computational efficiency, the results presented below are
for 10 × 10 trap arrays. All of the Talbot plane intensity plots
shown are normalized to the respective peak focal plane inten-
sity, to provide a clear sense of the relative trap depth. For the
simulations discussed, the laser wavelength is λ = 825 nm,
mask grid period d = 430 μm, mask spot radius a = 100 μm,
and aperture transmission ta = 0.287. However, the results
are presented in a way that is independent of the choice of
parameters such as focal lengths and wavelength.

Let us first consider an array of optical traps formed by
a laser which has many frequency components, but is spa-
tially coherent. Far-off resonance optical traps do not require
narrow-linewidth lasers, and hence the use of a free-running,
broadband laser is feasible. Naively, we may assume that if the
coherence length of the laser is less than the Talbot length of
the trap array, the Talbot traps will be suppressed. To quantify
how short the coherence length must be in order for the Talbot
traps to be washed out, we need to consider (1) the axial
displacement of the Talbot plane for a given �λ from the
central trap wavelength λ0 and (2) the axial depth of the Tal-
bot traps. The depth of the Talbot plane is δZTalbot ∼ πw2

0/λ

where w0 = 0.947a f2/ f1 is the waist of the trap (for the case
of the bright array), and the amount that the Talbot plane is
displaced for a change in λ is 2�λd2/λ2. Combining these,
we find that in order to displace the Talbot plane by half of its
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axial depth we require a laser with a spectral full width of

�λ1/2 = πλ

2

a2

d2

f 2
2

f 2
1

. (C1)

For a = 100 μm and a magnification of 1/100, a laser with a
full width at half maximum of more than 10 nm is required to
sufficiently wash out the Talbot plane. Typically, even lower
quality laser diodes have linewidths of at most a few nm,
insufficient for mitigating Talbot trap formation for the trap
parameters considered. However, as we will show, spectral
incoherence still plays an important role in the demonstrated
solution to the Talbot problem.

We find that a practical and cost-effective approach to
mitigating Talbot traps is using a laser which is both spectrally
and spatially incoherent, which is readily available at high
power. By using a spatially multimode field, there is no longer
spatial coherence which is required for forming the Talbot
planes. A monochromatic but spatially incoherent field, as
can be made by passing a laser with a single spatial mode
through a multimode fiber, has a speckled intensity and hence
is not a good solution for creating trap arrays. A spectrally and
spatially multimode field will, however, not be speckled. This
is explained by thinking of each spectral component as having
its own associated speckle pattern. These speckle patterns
add incoherently, i.e., the intensities rather than the fields are
summed, resulting in a more uniform intensity pattern.

We model spatially incoherent fields by summing Hermite-
Gaussian fields Ai, j from A0,0 to some highest-order Am,n,
with each spatial mode being given a random phase pulled
from a flat distribution. This process is done for each spectral
component of the field and scaled by

√
L(ν, ν0) where L is

the Lorentzian function describing the spectral width of the
laser. Each speckle field is then propagated through the 4 f
array generator and the intensities at the output are summed,
yielding the output shown in Fig. 7(b).

APPENDIX D: EXPERIMENTAL DETAILS

1. Array mask and observed trap profiles

The experimental demonstration of the proposed trap de-
sign used a commercially fabricated array mask consisting
of partially transmitting disks (what we have previously been
calling “apertures”) set on an AR-coated 1-in.-diameter glass
blank. The requested transmission of the disks was |ta|2 =
0.49 ± 0.04, with a relative phase of 0◦ ± 10◦ between the
disks and AR coated background, designed for λ = 825 nm.
The disks have radius a = 100 μm and are arranged in a 2D
square grid with spatial period d = 430 μm. The expected
trap profile for these mask parameters yields traps which are
only about 50% dark [Fig. 5(a)]. However, given the observed
nearly dark traps and numerical analysis, we infer that the
relative phase imparted on the light between the fully and
partially transmitting regions must be outside of the specified
tolerance in order to explain the observed trap profiles.

Because a direct phase measurement of the array mask
is difficult, we present numerical analysis to explain the ob-
served trap profile. These results are summarized in Fig. 5.
The observed traps can be made dark to within 10% of the
peak intensity by adjusting the iris radius. This constrains

FIG. 8. A row of adjacent trap site profiles from the data shown
in Fig. 2, where each site has been fit to a form aρα + b. The data
were clipped above the 1/e intensity to ensure fitting to the lower
order portions of the traps. It is clear that the experimentally observed
radial profiles are nearly quadratic, rather than the quartic profiles
expected for ta = 0.287tb with zero relative mask phase.

the possible values of φab and iris radius that are consistent
with the trap we observe. For example, a Fresnel diffraction
calculation for ta = 0.7, iris radius b = 0.4x(1)

1 f1/ak, and φ =
160◦ gives a result that agrees well the observed trap profiles
[Fig. 5(a), purple dashes]. This choice of parameters is marked
with a purple ring in Fig. 5(b).

Moreover, the axial divergence rate of the trap is in good
agreement with the measured trap frequencies. It can be
shown that the quadratic term of the axial expansion for
φab = 160◦ and b = 0.4x(1)

1 f1/ak is equal to 2.356(z/zR)2,
giving a divergence parameter h = 1/

√
2.356 = 0.65. This is

an additional advantage conferred by the mask parameters,
as the axial confinement is ≈30% tighter compared to the
expansion rate using ta = 0.287 and φab = 0. As stated in the
main text, the measured trap frequencies predict a trap waist
and depth consistent with estimates of this value of h assumed
in Eq. (18).

Lastly, the measurement of well-defined vibrational fre-
quencies discussed in the main text is a result of the quadratic
profile of the observed traps. This is shown with power fits
to a row of adjacent sites in Fig. 8. It can be shown that the
quadratic coefficient in the radial expansion of the trap profile,
for ta = 0.7, is only finite and positive for certain values of the
relative mask phase φab and iris radius, including φab = 160◦
and b = 0.4x(1)

1 f1/ak.

2. Atom lifetime in an incoherent trap

We attribute the observed characteristic lifetime of atoms
in the incoherent trap, about 40 ms, to the RIN measured
on the laser, shown in Fig. 9. While the level of the RIN
near 68 kHz (twice the measured observed radial resonance)
implies a lifetime of over 8 s [26], there is a lower frequency
bump nearby and several high amplitude spikes. Because the
atom is heated by these other components as well, we take
this noise to be the explanation of the observed poor lifetimes.
The RIN for a coherent laser used for trapping is shown for
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FIG. 9. RIN spectrum for the incoherent 808-nm laser and coher-
ent 825-nm lasers used for atom trapping. The atom lifetime in the
incoherent trap was measured to be 40 ms, in contrast to a lifetime
of at least 5 s measured with the coherent trap. The dashed blue line
corresponds to twice the measured radial vibration frequency, where
the 808-nm RIN level implies a lifetime in excess of 8 s. However,
the many large frequency spikes can induce off-resonant heating.

comparison, for which we measured a lifetime around 5 s.
Note that the seed laser for the coherent tapered amplifier

used for experiments described in the main text (for which
a 7-s trap lifetime was observed) died before RIN data could
be measured.

3. Fluorescence imaging

The fluorescence images of trapped atoms were captured
on a Hamamatsu C9100-13 EMCCD with 100-ms exposure
time. The imaging light was 852 nm, red detuned from the
D2 line cooling transition F = 4 ↔ F ′ = 5 by about nine
times the natural linewidth, with an intensity around three
times the saturation intensity. The single shot image of trapped
atoms in Fig. 2(a) is divided by the average background for
the stack of 300 shots taken for those data to account for an
uneven intensity pattern on the shots due to a gain variation
on the EMCCD sensor itself. The large image was processed
with independent component analysis, which has the effect
of deblurring the trapped atoms. However, due to the size of
the image (512 × 512 pixels), this process was only effective
when the image was broken into smaller chunks. Ultimately,
25 subregions in the image stack were processed, and the the
summed projected images were stitched back together. The
result exhibited a uniform background in each subimage, with
a slight variation between the background level in adjacent
subregions. Hence, for visual purposes only, the resulting
image was plotted with the pixels valued less than 20% of
the maximum intensity clipped.
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