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We present numerical simulations of the reconstruction of attosecond beating by interference of two-photon
transitions (RABBITT) on lithium by solving the three-dimensional time-dependent Schrödinger equation. In
our scheme, the infrared (IR) field couples the 2s and 2p states of lithium and leads to the Rabi oscillations of
populations between these two states. We analyzed the RABBITT phases of the two peaks in the Rabi-oscillation-
induced Autler-Townes splittings. Our results show that the relative phase between these two peaks changes with
the photoelectron energy and depends on the intensity of the IR field. Moreover, in the angle-resolved RABBITT
measurement, the phases of the two peaks depend differently on the emission angle of photoelectrons. These
behaviors are traced back to the different initial phases of the electron wave packets emitted from the dressed 2p
states and the competition among different ionization channels.
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I. INTRODUCTION

The advent of attosecond extreme ultraviolet (XUV) pulses
[1,2] paved the way towards monitoring the electronic motion
on the attosecond time scale. The reconstruction of attosecond
beating by interference of two-photon transitions (RABBITT)
technique [3] utilizing the attosecond pulses is widely em-
ployed to investigate the electronic dynamics in atoms [4–6],
molecules [7–9], solids [10,11], and liquids [12]. In the RAB-
BITT measurements, an XUV attosecond pulse train (APT)
synchronized with a weak time-delayed infrared (IR) field
ionizes a target through the two-photon transitions [13,14].
Owing to the interference between the ionized electron wave
packets generated by different two-photon channels, the pho-
toelectron yield of sidebands (SBs) located between the main
peaks oscillates with the time delay between the XUV and
IR fields. From the oscillation of the SB signals, the relative
phase of the outgoing electron wave packets can be retrieved,
which contains two contributions, the phase of the XUV har-
monics and the atomic phase. So, the RABBITT technique
has been used to characterize the XUV APT [15–17] and to
reconstruct the atomic phase.

The atomic phase encodes the electronic dynamics in pho-
toionization [18]. It is related to the structure of the electron
wave packet and the target potential landscape witnessed by
the escaping electrons. In the absence of resonances [19], the
ionized electron wave packet is unstructured, and the atomic
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phase can be approximately divided into the two phases
corresponding to the bound-free transition and the free-free
transition (the continuum-continuum transition) [20], the en-
ergy derivatives of which are the Wigner time delay [21,22]
and the continuum-continuum time delay [23–25], respec-
tively. In the case of the two-photon transition through a
resonance [26], the electron wave packet is structured, re-
sulting in the rapid phase variation of the emitted electron
wave packet within a narrow energy range near the resonance
[27,28]. The modification on the phase of the electron wave
packet by the resonance has been demonstrated in the cases
of Fano resonances [29–33], shape resonances [34,35], and
giant resonances [36–38]. In addition, the sudden phase jumps
of the ejected electron wave packet have also been revealed
when the laser field is resonant with the atomic bound level
in the RABBITT measurement [39–44]. Beyond that, the po-
larization of the target ionic state also leads to an additional
term in the phase of the outgoing electron wave packet, which
has been investigated in the photoemission of polar molecules
[45] and in the shake-up ionization of helium [46–48] with the
angle-resolved photoelectron spectroscopy [40–42,48–52].

In the previous RABBITT schemes, the modulation on the
phase of the ejected electron wave packet is induced by the
special structure of the target. On the other hand, a laser field
could steer the structure of the states and thus may modulate
the phase of the outgoing electron wave packet. For example,
the IR field could induce Rabi oscillations [53] between two
atomic bound levels. The superposition of the two coupled
states forms the structured state. Rabi oscillation leads to
Autler-Townes (AT) splittings [54] in the photoelectron en-
ergy spectra, which can be understood as the formation of
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a doublet of dressed quasienergy states [55] separated by
the energy spacing of the Rabi frequency �R. The electrons
ionized from the dressed states carry different phases. It is
worthwhile to elucidate how the process of Rabi oscillations
of the structured state modulates the phase of the ionized
electron wave packet. We notice that recently the interference
of the photoelectrons from the dressed states has been studied
by inspecting the asymmetry of the AT doublet [56].

In this paper, we study the influence of Rabi oscillations on
the phase of the ionized electron wave packet using the RAB-
BITT technique. In a recent study [42], the modification of the
photoelectron spectrum of lithium when the 2s-2p transition
is resonant with the IR field of the RABBITT scheme has
been shown. It revealed that the resonance changed entirely
the ionization dynamics and modified the obtained RABBITT
phases. However, due to short pulse duration of the IR field,
and broad spectral width of the XUV field, Rabi oscillations
and AT splittings were not observed there. In our paper we
employ the IR field with much longer pulse duration and
thus multiple cycles of Rabi oscillations occur. Owing to
narrow spectral widths of both the XUV and IR fields, the
AT splittings are resolvable in SBs of the photoelectron en-
ergy spectra. We separately analyzed the oscillations in the
signals for the two peaks of the SB splittings as a function of
the time delay. Our results show that the RABBITT phases
are different between these two peaks of the doublet in the
angle-integrated spectra, and this difference varies with the
photoelectron energy and depends on the intensity of the IR
field. In the angle-resolved RABBITT measurement, abrupt
jumps appear in the retrieved phases. Interestingly, the angle
dependences of the RABBITT phases are different between
the two peaks of the doublet and their angle dependences
change with the photoelectron energy and rely on the IR inten-
sity. These different phase behaviors between the two peaks of
the doublet are traced back to the unequal initial phases of the
electron wave packets generated from the dressed 2p states,
which stem from the out-of-phase oscillations in the 2p pop-
ulation relative to the 2s-population oscillations. Moreover,
the details in these different phase behaviors between the two
peaks of the doublet reveal the competition among different
ionization channels.

This paper is structured as follows. In Sec. II, we introduce
the numerical methods in our calculations, including nu-
merically solving the three-dimensional (3D) time-dependent
Schrödinger equation (TDSE) (Sec. II A) and the calculation
of the ionization amplitudes within the perturbation frame-
work (Sec. II B). Sections III and IV show the numerical
results in the angle-integrated and angle-resolved RABBITT
measurements, respectively. We finish with a summary in
Sec. V. Atomic units are used throughout this paper unless
otherwise stated.

II. METHODS

A. Numerically solving the three-dimensional time-dependent
Schrödinger equation

To uncover the effects of Rabi oscillations on the phase of
the ejected wave packet, we solve the 3D TDSE for the lithium
atom, which has a single electron outside a closed shell.

Thus, the single-active-electron (SAE) model is reasonable
to describe the photoionization of lithium. Within the SAE
approximation, the TDSE in velocity gauge is written as

i
∂�(r, t )

∂t
=

[
p2

2
+ A(t ) · p + V (r)

]
�(r, t ), (1)

where V (r) is the effective one-electron potential of lithium
adopted from Ref. [57]. The external laser field is described
as

A(t ) = [AIR(t ) + AXUV(t ; τ )]ẑ, (2)

where AIR(t ) and AXUV(t ; τ ) are the vector potentials of the IR
and XUV fields, respectively. τ is the time delay between the
two laser fields. The IR field is expressed as

AIR(t ) = A0 cos2

(
πt

2τIR

)
sin(ωt ), (3)

where A0 is the amplitude of the IR vector potential. ω =
0.0614 a.u. and T = 2π/ω are the frequency and the period
of the IR field, respectively. Here τIR = 160T determines the
duration of the IR field, corresponding to a spectral width of
0.023 eV. The time-delayed XUV field is modeled as

AXUV(t ; τ ) =
120∑

n=−120

(−1)nAn exp

[
−2 ln 2

(t + τ − nT/2)2

τ 2
XUV

]

× sin[ωXUV(t + τ − nT/2)], (4)

where

An = An0 exp

[
−2 ln 2

(nT/2)2

τ 2
APT

]
. (5)

Here An0 is the amplitude of the XUV vector potential and
ωXUV = 15ω is the central frequency of the XUV field.
τXUV = 0.08T and τAPT = 50T determine the durations of the
XUV pulse and the APT, respectively. The spectral width of
the XUV field is 0.021 eV.

The wave function of the TDSE is expanded as a partial
wave series

�(r, t ) =
Lmax∑
l=0

l∑
m=−l

Rlm(r, t )

r
Ylm(θ, φ), (6)

where Rlm is the radial part of the wave function. Ylm(θ, φ)
denotes the spherical harmonics, where θ and φ are the polar
angle and the azimuthal angle, respectively. l and m are the an-
gular momentum quantum number and the magnetic quantum
number, respectively.

In our calculations, m = 0 due to the XUV and IR fields
are both linearly polarized along the ẑ axis and Lmax = 30
ensures convergence. Rlm is discretized by the finite-element
discrete variable representation method [58], where the box
size is Rmax = 280 a.u. The initial state is calculated by
imaginary-time propagation, which yields the ionization po-
tentials of I2s

p = 0.1978 a.u., I2p
p = 0.1364 a.u., and I3s

p =
0.0802 a.u. for the 2s, 2p, and 3s states of lithium, respec-
tively. Note that in this model the energy spacing between
the 2s and 2p levels is 1.67 eV. It deviates from the experi-
mental value given in NIST by the amount of 0.18 eV. The
time propagation of the TDSE is implemented by the split-
Lanczos method [59] with the time step 
t = 0.02 a.u. In
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the each-step propagation, we apply an absorbing mask func-
tion, F (r) = 1 − 1/[1 + e(150.0−r)/2.0], which splits the wave
function �(r, t ) into the inner part �in(r, t ) = F (r)�(r, t )
and the outer part �out (r, t ) = [1 − F (r)]�(r, t ). The inner
part �in(r, t ) evolves as Eq. (1) and the outer part �out (r, t )
is propagated by the Coulomb-Volkov propagator [60]. The
ionization amplitudes are obtained by projecting the outer part
�out (r, t ) on the set of Volkov states.

B. Perturbative treatment of the ionization amplitudes

In the previous RABBITT scheme, the ionization from the
initial state is directly treated with the lowest-order pertur-
bation theory (LOPT) [18,19,61]. In our RABBITT scheme,
because the IR field EIR(t ) is resonantly tuned to the transition
between the 2s (|ψ2s〉) and 2p (|ψ2p〉) states of lithium, the
Rabi oscillations happen, which is beyond the perturbation
scheme, and thus the previous treatment is not valid. To pro-
vide an intuitive physical picture we modified the previous
LOPT calculations, where we separately treat the Rabi oscil-
lations and the ionization as follows [56,62,63].

The Rabi oscillation between the 2s and 2p levels is de-
scribed by the Rabi model [53]. The resulting wave function
is expressed as

|ψn〉 = cos

(
�Rt

2

)
e−iω2st |ψ2s〉 − i sin

(
�Rt

2

)
e−iω2pt |ψ2p〉,

(7)
where ω2s and ω2p are the energies of |ψ2s〉 and |ψ2p〉, respec-
tively. �R = E0 fIR(t )|〈ψ2p|z|ψ2s〉| is the Rabi frequency. Here
E0 and fIR(t ) are the amplitude and the envelope of the electric
field, respectively. In our LOPT calculations, the wave func-
tion |ψn〉 of Eq. (7) is regarded as the zeroth-order solution
of our RABBITT scheme. Thus the zeroth-order amplitude
a(0)

n (t ) is written as [56,63,64]

a(0)
n (t ) = cos

(
�R

2
t

)
δn,2s − i sin

(
�R

2
t

)
δn,2p. (8)

Then, the ionization in the RABBITT scheme is han-
dled with the LOPT. The N th-order amplitude a(N )

m (t ), which

describes the N-photon transition to state |ψm〉, can be derived
from the (N − 1)th-order amplitude as [65]

a(N )
m (t ) = 1

i

∑
ν

∫ ∫ t

−∞
dt ′eiωmν t ′

Vmν (t ′)a(N−1)
ν (t ′), (9)

where ωmν ≡ ωm − ων is the transition frequency between
the states |ψν〉 and |ψm〉. The term Vmν (t ) = −μmν · E(t ) =
E (t )〈ψm|z|ψν〉 describes the time-dependent perturbation of
the system by the linearly polarized external field E(t ) =
ẑE (t ), where μmν is the transition dipole moment between
|ψν〉 and |ψm〉.

Using the Fourier transform Ẽ (ω) = ∫ ∞
−∞ E (t )eiωt dt and

the recurrence relation in Eq. (9), the one-photon ionization
amplitude is obtained as

lim
t→∞ a(1)

f (t ) = 1

2i
〈ψ f |z|ψ2s〉Ẽ

(
ω f − ω2s + �R

2
; τ

)

+ 1

2i
〈ψ f |z|ψ2s〉Ẽ

(
ω f − ω2s − �R

2
; τ

)
− 1

2i
〈ψ f |z|ψ2p〉Ẽ

(
ω f − ω2p + �R

2
; τ

)

+ 1

2i
〈ψ f |z|ψ2p〉Ẽ

(
ω f − ω2p − �R

2
; τ

)
. (10)

It describes the one-photon transition from the initial state
|ψn〉 to the continuum state |ψ f 〉 by absorbing a photon �

from the field E(t ; τ ), where the energy-preserving condi-
tion � = ω f − ω2s,2p ± �R

2 is satisfied. Here we take t → ∞
because the photoelectrons are measured long after the inter-
action with the field is over. Note that the Fourier transform of
the time-delayed field is Ẽ (�; τ ) = e−i�τ Ẽ (�) [26].

Likewise, the two-photon ionization amplitude from the
initial state |ψn〉 to the continuum state |ψ f 〉 via the interme-
diate state |ψν〉 is given as

lim
t→∞ a(2)

f (t ) = 1

2i

∫ ∞

−∞
d�1Ẽ1(�1; τ )Ẽ2(ω f − ω2s + �R

2
− �1)

∑
ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2s〉
ω2s − �R

2 + �1 − ων

+ 1

2i

∫ ∞

−∞
d�1Ẽ1(�1; τ )Ẽ2(ω f − ω2s − �R

2
− �1)

∑
ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2s〉
ω2s + �R

2 + �1 − ων

− 1

2i

∫ ∞

−∞
d�1Ẽ1(�1; τ )Ẽ2(ω f − ω2p + �R

2
− �1)

∑
ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2p〉
ω2p − �R

2 + �1 − ων

+ 1

2i

∫ ∞

−∞
d�1Ẽ1(�1; τ )Ẽ2(ω f − ω2p − �R

2
− �1)

∑
ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2p〉
ω2p + �R

2 + �1 − ων

. (11)

It describes the two-photon transition through the absorp-
tion of a photon �1 from the field E1(t ; τ ) followed by the
absorption of a photon ω2 from the field E2(t ), where the
energy-preserving condition ω2 = ω f − ω2s,2p ± �R

2 − �1 is
satisfied. For the two-photon transition involving the emis-
sion of a photon, the ionization amplitude has a similar

form as Eq. (11), but the corresponding photon frequency is
negative.

Equations (10) and (11) indicate that the ionization from
the initial superposition state |ψn〉 can be understood to start
from the dressed quasienergy states of |ψ2s〉 and |ψ2p〉. More
specifically, the first and second lines in Eqs. (10) and (11)
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correspond to the dressed 2s states |φl
2s〉 and |φh

2s〉 with the
quasienergies of ω2s − �R

2 and ω2s + �R
2 , respectively. The

third and fourth lines in Eqs. (10) and (11) are associated to
the dressed 2p states |φl

2p〉 and |φh
2p〉 with the quasienergies

of ω2p − �R
2 and ω2p + �R

2 , respectively. Note that there is a
minus at the beginning of the third line in Eq. (11), which
means that the initial phase of the electron wave packet gen-
erated from |φl

2p〉 has an additional term of π , compared to
that for |φh

2p〉. The different initial phases between the dressed
2p states stem from the out-of-phase Rabi oscillations in the
2p population with respect to the 2s-population oscillations,
as indicated by Eq. (7).

In our calculations, the XUV and IR fields are both
spectrally narrow enough and display no spectral overlap.
Therefore, each term in Eqs. (10) and (11) can be ap-
proximately calculated by multiplying the corresponding
electric-field amplitude to the residual integration of wave
functions. Here the integration of wave functions can be
further divided into the angular and radial parts. For the
two-photon transition amplitudes in Eq. (11), the infinite sum-
mation in the radial part is evaluated with the Dalgarno-Lewis
method [66]. Then the radial part can be calculated using the
perturbed wave functions [67,68], which satisfy the inhomo-
geneous equation and the boundary conditions described in
Refs. [69,70]. Particularly, the integration of two continuum
wave functions appearing in Eq. (11) is calculated by using a
complex coordinate rotation method [71].

III. ANGLE-INTEGRATED RABBITT PHASES

Figure 1(a) displays the angle-integrated photoelectron
energy spectra as a function of the time delay between the
XUV and IR fields, obtained by solving the 3D TDSE.
Here the intensities of the XUV and IR fields are 1 × 1013

and 1 × 1011 W/cm2, respectively. The frequency of the
IR field is 0.0614 a.u., which is resonant with the 2s-2p
transition. One of the most intriguing features in Fig. 1(a) is
the splittings of the main peaks and SBs in the photoelectron
energy spectra. The splittings in Fig. 1(a) are induced by
the Rabi oscillations of the populations between the bound
states of lithium. This Rabi oscillation can be intuitively
seen by projecting the time-dependent TDSE solution to the
field-free eigenstates at the zero values of the vector potential
of the field, which approximately indicates the population
evolution of the 2s and 2p states [72], as shown in Fig. 1(b).
Here, the population of the 3s state is also shown because
the frequency of the IR field is also very close to the 2p-3s
transition frequency. As shown in Fig. 1(b), the out-of-phase
oscillations of the 2s and 2p populations are drastic while very
little population is leaked to the 3s state. This Rabi oscillation
leads to the splitting of the 2s, 2p, and 3s states and thus the
AT splitting in the energy spectrum. In the following, the
lower- and higher-energy peaks of the AT splitting in each SB
are denoted as Pl and Ph, respectively.

As shown in Fig. 1(a), the photoelectron yields of the two
peaks Ph and Pl of the doublet in each SB oscillate in different
phases with the time delay τ between the XUV and IR fields.
To reveal this difference, we compare the τ dependence of
the photoelectron yields for Ph and Pl in Figs. 1(c) and 1(d).

For SB 10 [Fig. 1(c)], the relative RABBITT phase between
the two peaks is close to π . For SB 16 [Fig. 1(d)], there is a
noticeable shift as compared to SB 10.

The oscillations of the doublets Ph and Pl in SBs originate
from the interference among different ionization channels.
As an example, we display the dominant ionization path-
ways contributing to Ph with the photoelectron energy of
2qω − I2s

p + �R
2 in Fig. 1(e). As described in Sec. II B, in

our RABBITT scheme, the 2s and 2p states are both popu-
lated during Rabi oscillations, thus photoelectrons are ejected
from both the 2s and 2p states [56]. There are two pathways
initiated from |φh

2s〉. Pathways 1 and 2 denote the absorption
of one XUV harmonic photon (�2q−1 or �2q+1) followed by
the exchange of one IR photon ω. Pathway 3 indicates the
transition from |φh

2p〉 to the final state SB2q, through the ab-
sorption of one harmonic photon �2q−1. Note that, because the
IR-induced transition from 2s to 2p has already been included
in treating the Rabi oscillations, the resonant two-photon
pathway (|φh

2s〉 → |φh
2p〉 → SB2q) [42] is excluded from the

perturbative treatment here [56]. Because the 3s state (|ψ3s〉)
can also be populated with our IR field, two more pathways
initiated from the dressed 3s state (|φh

3s〉) contribute to Ph,
denoted as pathways 4 and 5 in Fig. 1(e). However, the pop-
ulation in the 3s state is very low [as shown in Fig. 1(b)],
especially when the intensity of the IR field decreases, as
shown in Fig. 2. So, the contributions of pathways 4 and 5
are relatively small.

We extract the RABBITT phase from Pl and Ph in each SB
of the angle-integrated photoelectron energy spectra, by fitting
the 2ω oscillations of the SB signals with S2ω

2q = β cos(2ωτ −
φ) after being frequency filtered by a Fourier transform [8,73].
Figures 3(a) and 3(b) respectively show the RABBITT phases
φl and φh for the lower- (Pl ) and higher-energy peaks (Ph)
as a function of the photoelectron energy. As displayed in
Fig. 3(a), the energy dependence of φl relies on the IR inten-
sity. For the IR intensities of 1 × 1010 and 3 × 1010W/cm2,
φl shows nearly no change with the photoelectron energy.
For the IR intensity of 1 × 1011W/cm2, φl increases with
the photoelectron energy. For Ph, the phases φh show an
increasing trend with the photoelectron energy for the three
IR intensities, as shown in Fig. 3(b).

To reveal these discrepancies more clearly, we display the
relative phase 
φ = φh − φl as a function of the photoelec-
tron energy in Fig. 3(c). For the IR intensities of 1 × 1010

and 3 × 1010W/cm2, 
φ is close to π . As the photoelectron
energy increases, 
φ decreases from SB 10 to SB 14 and then
increases at SB 16, as shown in Fig. 3(c). For the IR intensity
of 1 × 1011W/cm2, 
φ decreases with the photoelectron en-
ergy and it deviates more from π as the photoelectron energy
increases.

In the following, we illuminate how the channel com-
petition affects 
φ. According to Eqs. (10) and (11), the
ionization amplitudes for pathways 1 to 3 can be separately
written as

A(1)
L (E±) = 1

2i
ẼXUV(�2q−1)ẼIR(ω)e−i�2q−1τ+iφ2q−1

×
∑

ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2s〉
ω2s ± �R

2 + �2q−1 − ων

, (12a)
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FIG. 1. (a) The angle-integrated photoelectron energy spectra as a function of the time delay between the XUV and IR fields, where
the intensities of the XUV and IR fields are 1 × 1013 and 1 × 1011W/cm2, respectively. The corresponding energy spacing between the AT
splittings is 0.0034 a.u. (b) The populations of the 2s (red solid line), 2p (orange dashed line), and 3s (green dotted line) states of lithium as a
function of the atom-field interaction time. (c) The normalized 2ω oscillations for the two peaks of the doublet in SB 10, which are obtained
by the Fourier transform. The pink-solid and blue-dashed lines correspond to Pl and Ph, respectively. (d) The same as (c), but for SB 16.
(e) The ionization pathways for Ph with the photoelectron energy of 2qω − I2s

p + �R
2 .

A(2)
L (E±) = 1

2i
ẼXUV(�2q+1)ẼIR(−ω)e−i�2q+1τ+iφ2q+1

×
∑

ν

∫ 〈ψ f |z|ψν〉〈ψν |z|ψ2s〉
ω2s ± �R

2 + �2q+1 − ων

, (12b)

A(3)
L (E±) = ± 1

2i
ẼXUV(�2q−1)e−i�2q−1τ+iφ2q−1〈ψ f |z|ψ2p〉,

(12c)

where L = 0, 2 is the angular momentum of the final scat-
tering state |ψ f 〉 [74]. E± = 2qω − I2s

p ± �R
2 is the energy

of |ψ f 〉 related to the doublet Ph and Pl , respectively.
Approximately, the continuum-continuum (CC) phase is inde-

pendent of the angular momentum L [19]. Hence, the phases
of the transition amplitudes for pathways 1 to 3 can be sepa-
rately expressed as

argA(1)
L (E±) = −�2q−1τ + φ2q−1 + ϕ(1)(E±), (13a)

argA(2)
L (E±) = −�2q+1τ + φ2q+1 + ϕ(2)(E±), (13b)

argA(3)
L (E±) = −�2q−1τ + φ2q−1 + ϕ

(3)
L (E±), (13c)

where φ2q±1 are the phases of the corresponding XUV har-
monics. Here ϕ(i)(E±) and ϕ

(i)
L (E±) are the atomic phases of

pathway i for the doublet Ph and Pl . The subscript of ϕ
(3)
L

denotes the L dependence of these atomic phases. The atomic
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phases of pathways 1 to 3 are separately given as

ϕ(1)(E±) = η
(+)
λ (E±) + ϕ

(+)
CC (E±) − λπ/2 + π, (14a)

ϕ(2)(E±) = η
(−)
λ (E±) + ϕ

(−)
CC (E±) − λπ/2 + π, (14b)

ϕ
(3)
L (E±) = ηL(E±) − Lπ/2 ∓ π/2, (14c)

where ηL and η
(±)
λ represent the scattering phases and ϕ

(±)
CC

denotes the CC phases [19]. The superscripts (±) refer to the
absorption or emission of the IR photon. Here λ = 1 is the
angular momentum of the intermediate state |ψν〉.

Due to the subtle energy spacing between Ph and Pl (�R),
the scattering phases and the CC phases in Eq. (14) are nearly
the same for the two peaks of each doublet, i.e., ηL(E+) =
ηL(E−), η

(±)
λ (E+) = η

(±)
λ (E−), and ϕ

(±)
CC (E+) = ϕ

(±)
CC (E−).

Hence, the atomic phases of pathways 1 and 2 are the same
for the two peaks of the doublet, i.e., ϕ(1)(E+) = ϕ(1)(E−) and
ϕ(2)(E+) = ϕ(2)(E−). However, the atomic phases of path-
way 3 [ϕ(3)

L (E±)] are different between the two peaks of each
doublet due to the existence of ∓π/2 in the last term of
Eq. (14c). This π difference between ϕ

(3)
L (E+) and ϕ

(3)
L (E−)

stems from the different initial phases of the dressed 2p states,
as indicated by Eq. (10).

The 2ω oscillations in the angle-integrated SB signals orig-
inate from the interference of pathway 2 with pathways 1 and
3. The RABBITT phase φ, retrieved from the 2ω oscillations
in the SB signals, contains the relative XUV harmonics phase

φ2q = φ2q+1 − φ2q−1 and the relative atomic phase of the
interfering pathways. In our calculations, 
φ2q equals to π

for the two peaks of the doublet in all of the SBs [Eq. (4)].
Therefore, the RABBITT phase due to the interference be-
tween pathway 2 and pathway 1 is the same for the doublet
Ph and Pl . However, for the interference between pathways
2 and 3, the relative RABBITT phase 
φ between the two
peaks of the doublet is π , which equals to the difference
between ϕ

(3)
L (E+) and ϕ

(3)
L (E−). Actually, the relative phases


φ shown in Fig. 3(c) are neither zero nor π , revealing the
competition between pathways 1 and 3.

We calculate the relative ionization contributions
|A(i)|/|Atot| for the doublet Ph and Pl in all of the SBs.
Here A(i) is the ionization amplitude of pathway i and Atot is
the total ionization amplitude. Figure 4 displays the results
for the three IR intensities. The top and bottom rows in
Fig. 4 correspond to Ph and Pl , respectively. Owing to the
subtle energy spacing between the doublet Ph and Pl , the
relative contributions of each pathway are nearly the same for
the two peaks of the doublet. At low photoelectron energies,
the contributions of the 3s state (pathways 4 and 5) are
small, thus we only consider the interference among pathways
1 to 3 for simplicity. As shown in Fig. 4, for the SBs 10 to
14, pathway 3 dominates over pathway 1 for the three IR
intensities. This dominance results in the approximate π value
of 
φ for the SBs 10 to 14 at all of the three IR intensities
in Fig. 3(c). As the IR intensity increases, pathway 3 is less
dominant over pathway 1. This explains why 
φ for the SBs
10 to 14 departs more from π as the IR intensity increases,
as shown in Fig. 3(c). At each IR intensity, the dominance of
pathway 3 over pathway 1 decreases with the photoelectron
energy for the SBs 10 to 14. Accordingly, as the photoelectron
energy increases, 
φ at each IR intensity deviates more from
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FIG. 4. From left to right: The relative contributions from different pathways as a function of the photoelectron energy, for the IR intensities
of (a), (d) 1 × 1010, (b), (e) 3 × 1010, and (c), (f) 1 × 1011W/cm2. The top (a)–(c) and bottom (d)–(f) rows correspond to Ph and Pl , respectively.
The red circles, yellow triangles, green squares, blue rhombuses, and purple crosses correspond to pathways 1, 2, 3, 4, and 5, respectively.

π for the SBs 10 to 14 in Fig. 3(c). In addition, the ionization
contribution of the 3s state rises with the photoelectron energy
and these contributions are non-negligible for the SBs with
higher photoelectron energies, which also modifies the energy
dependence of 
φ for SB 16 in Fig. 3(c).

IV. ANGLE-RESOLVED RABBITT PHASES

Figure 5 shows the RABBITT phases as a function of the
emission angle θ of photoelectrons. Here the angle-resolved
phases are plotted relative to the polarization direction θ = 0.
The top and bottom rows display the results for the doublets Pl

and Ph, respectively. The angle dependences of the RABBITT
phases are different between Pl and Ph. For Pl , as shown in
Figs. 5(a)–5(c), there is only one phase jump around θ = 60◦
for the SBs 10 to 14, while for SB 16 two phase jumps

successively occur at θ < 60◦ and θ = 80◦. For Ph, as shown
in Figs. 5(d)–5(f), only one phase jump occurs near θ = 65◦
for all of the SBs.

It has been demonstrated in previous studies that the phase
jumps originate from the interference between different partial
waves [40–42,48–51,75]. In our case, the s and d partial waves
can be generated through three pathways because the popula-
tions are transferred among the 2s and 2p states. Figure 4 has
shown that the relative contributions of different pathways are
identical for the two peaks of the doublet, and they depend on
the IR intensity and the photoelectron energy. Furthermore,
our calculations show that the relative contributions of the two
partial waves in each pathway are also identical for the two
peaks of the doublet and they are independent of the IR inten-
sity. As a demonstration, Fig. 6 shows the amplitude ratios of
the d wave to the s wave (|A(i)

2 |/|A(i)
0 |) for Ph, as a function
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FIG. 5. From left to right: The angle-resolved RABBITT phases (relative to the polarization direction) as a function of the emission angle
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FIG. 6. (a) The amplitude ratios of the d-wave channel to the
s-wave channel for pathways 1 (red circles), 2 (yellow triangles),
4 (blue rhombuses), and 5 (purple pluses), as a function of the
photoelectron energy. (b) The same as (a), but for pathway 3 (green
squares).

of the photoelectron energy. Here A(i)
2 and A(i)

0 are the ampli-
tudes for pathway i as given in Eq. (12). Figure 6(a) shows the
ratios for the two-photon pathways through the continuum in-
termediate state. It shows that the energy dependence of these
ratios relies on whether the IR photon is absorbed (pathways
1 and 4) or emitted (pathways 2 and 5), which is consistent
with the results in Refs. [25,75,76]. As shown in Fig. 6(b), in
pathway 3, the d wave dominates over the s wave for all of the
SBs, which coincides with the Fano propensity rule [77].

In the following, we analyze the origin of the phase jumps
shown in Fig. 5. For simplicity, we only consider pathways 1
to 3 for the SBs with lower photoelectron energies (the SBs
10 to 14), owing to the small ionization contribution from
pathways 4 and 5 and the little population in the 3s state. In
the LOPT [19], the angle-resolved SB signal for the doublet
Ph and Pl can be described as

P2q(E±, θ, τ ) = 2π

∣∣∣∣ ∑
L=0,2

Y 0
L (θ ) × [

A(1)
L (E±)

+A(2)
L (E±) + A(3)

L (E±)
]∣∣∣∣2

, (15)

where E± = 2qω − I2s
p ± �R

2 is the photoelectron energy re-
lated to Ph and Pl , respectively. The 2ω oscillation of the
angle-resolved SB signal is written as

P2ω
2q (E±, θ, τ )

= B(E±, θ ) cos[2ωτ − 
φ2q − ϕ(2)(E±) + ϕ(1)(E±)]

+ C(E±, θ ) cos
[
2ωτ − 
φ2q − ϕ(2)(E±) + ϕ

(3)
0 (E±)

]
+D(E±, θ ) cos

[
2ωτ − 
φ2q − ϕ(2)(E±)+ϕ

(3)
2 (E±)

]
,

(16)

where ϕ(i) and ϕ
(i)
L are the atomic phases of pathway i and

they are given in Eq. (14). Here 
φ2q = π is the relative phase
between the neighboring XUV harmonics, which is identical
for the two peaks of the doublet in all of the SBs [Eq. (4)].
The three 2ω-oscillation components in Eq. (16) separately
describe the partial-wave interference of pathway 2 with path-
ways 1 and 3. The coefficients of these three 2ω-oscillation
components are expressed as

B(E±, θ ) = 4π (Y 0
0 )2

∣∣A(2)
0

∣∣∣∣A(1)
0

∣∣
× [

1 + ab
(
Y 0

2 /Y 0
0

)2 + (a + b)
(
Y 0

2 /Y 0
0

)]
, (17a)

C(E±, θ ) = 4π
(
Y 0

0

)2∣∣A(2)
0

∣∣∣∣A(3)
0

∣∣[1 + b
(
Y 0

2 /Y 0
0

)]
, (17b)

D(E±, θ ) = 4π
(
Y 0

2

)2∣∣A(2)
2

∣∣∣∣A(3)
2

∣∣[1 + b−1
(
Y 0

0 /Y 0
2

)]
, (17c)

where a = |A(1)
2 |/|A(1)

0 | and b = |A(2)
2 |/|A(2)

0 |. The coeffi-
cients B(E±, θ ), C(E±, θ ), and D(E±, θ ) are determined by
the magnitudes of the partial waves in different pathways.
Because the competition among the pathways varies with the
IR intensity (Fig. 4), the values of these coefficients depend
on the IR intensity.

As explained in previous studies [48,49,75], the phase
jump occurs near the angle where the amplitude of P2ω

2q
changes sign. In our case, for the SBs 10 to 14, the phase
jumps originate from the sign changes of B(E±, θ ) (near
θ = 80◦) and D(E±, θ ) (near θ = 55◦), which are determined
by the competition between the s and d waves in pathways
1 and 2 (Fig. 6). Moreover, the location and the steepness
of these phase jumps are determined by the specific values
of the phases [Eq. (14)] and the coefficients [Eq. (17)] of the
three 2ω-oscillation components in Eq. (16). Therefore, due to
the different atomic phases of pathway 3 [Eq. (14c)] between
the doublet Ph and Pl in each SB, i.e., ϕ

(3)
L (E+) 
= ϕ

(3)
L (E−),

the steepness of the phase jumps is different between Ph and
Pl . In addition, the relative values of the coefficients are deter-
mined by the competition between pathways 1 and 3 (Fig. 4),
which depends on the IR intensity and the photoelectron en-
ergy, thus the steepness of the phase jumps varies with the IR
intensity and the photoelectron energy.

To compare these phase jumps more directly, we replot the
RABBITT phases of the doublets Ph and Pl in SB 10 and SB
12 for the three IR intensities, as shown in Fig. 7. At each
IR intensity, the phase jumps for Ph of SB 10 and SB 12 are
more sharp than those for Pl . As the IR intensity increases, the
phase jumps for Ph become more sharp while the phases for
Pl undergo more gentle jumps. This IR-intensity dependence
is traced back to the varying competition between pathways 1
and 3 (Fig. 4).

V. CONCLUSION

We have demonstrated the influence of Rabi oscillations
on the phase of the emitted electron wave packet, utilizing
the RABBITT technique by solving the 3D TDSE for lithium.
In our scheme, the IR field induces the Rabi oscillations in
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FIG. 7. The relative angle-resolved phases of Pl (dashed line)
and Ph (solid line) in SB 10 (rhombuses) and SB 12 (circles) as a
function of the emission angle of photoelectrons, for the IR intensi-
ties of (a) 1 × 1010, (b) 3 × 1010, and (c) 1 × 1011W/cm2.

the populations of the 2s and 2p states of lithium and AT
splittings are resolvable in the photoelectron energy spectra by
using the spectrally narrow laser fields. In the angle-integrated
RABBITT measurement, the two signals of the doublet in
each SB oscillate in different phases with the time delay
between the XUV and IR fields and this relative phase varies
with the photoelectron energy and the IR intensity. In the
angle-resolved RABBITT measurement, the retrieved phases
display rapid jumps as a function of the emission angle of
photoelectrons, which originates from the interference among
different continuum partial waves. The angle dependences of
the RABBITT phases exhibit an obvious distinction between
the two peaks of the doublet, the details of which depend
on the photoelectron energy and the IR intensity. These dif-
ferent behaviors of the angle-integrated and angle-resolved
phases stem from the unequal initial phases of the electron
wave packets ionized from the dressed 2p states, which are
further traced back to the out-of-phase oscillations in the 2p
population with respect to the oscillations in the 2s population.
Moreover, the details of the different phase behaviors between
the two peaks of the doublet reveal the channel competition in
the RABBITT process, which is sensitive to the photoelectron
energy and the IR intensity. With the development of the
spectral resolution in experiments, we believe these effects
could be experimentally observed in the future.
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O. Plekan, K. C. Prince, R. J. Squibb, S. Zhong, P. V. Demekhin
et al., Studying ultrafast Rabi dynamics with a short-wavelength
seeded free-electron laser, arXiv:2201.10950 (2022).

063110-10

https://doi.org/10.1364/OPTICA.2.000405
https://doi.org/10.1126/science.abb0979
https://doi.org/10.1063/1.4977933
https://doi.org/10.1088/2040-8986/aa8f56
https://doi.org/10.1063/1.5053661
https://doi.org/10.1103/PhysRevA.94.013411
https://doi.org/10.1103/PhysRevResearch.3.013195
https://doi.org/10.1088/0953-4075/45/18/183001
https://doi.org/10.1016/j.chemphys.2012.01.017
https://doi.org/10.1103/PhysRevA.95.043426
https://doi.org/10.1103/PhysRev.98.145
https://doi.org/10.1103/PhysRev.118.349
https://doi.org/10.1103/PhysRevA.103.022834
https://doi.org/10.1364/OPTICA.378639
http://arxiv.org/abs/arXiv:2109.01581
https://doi.org/10.1103/PhysRevA.93.023429
https://doi.org/10.1103/PhysRevLett.122.253203
https://doi.org/10.1103/PhysRevLett.113.263001
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.1038/s41467-018-03009-1
https://doi.org/10.1126/science.aah5188
https://doi.org/10.1038/ncomms10566
https://doi.org/10.1103/PhysRevLett.123.133203
https://doi.org/10.1103/PhysRevLett.117.093001
https://doi.org/10.1103/PhysRevLett.106.093002
https://doi.org/10.1038/s41567-020-0887-8
https://doi.org/10.3390/app8030322
https://doi.org/10.1038/s41467-020-18847-1
https://doi.org/10.1103/PhysRevLett.104.103003
https://doi.org/10.1103/PhysRevA.103.L011101
https://doi.org/10.3390/atoms9030066
https://doi.org/10.1103/PhysRevA.104.L021103
https://doi.org/10.1103/PhysRevA.105.L011101
https://doi.org/10.1126/sciadv.abl7594
https://doi.org/10.1103/PhysRevLett.104.043602
https://doi.org/10.1103/PhysRevLett.108.163001
https://doi.org/10.1038/nphys3941
https://doi.org/10.1103/PhysRevA.102.033112
https://doi.org/10.1103/PhysRevA.94.063409
https://doi.org/10.1103/PhysRevA.97.063404
https://doi.org/10.1103/PhysRevA.96.013408
https://doi.org/10.1007/s11467-021-1084-7
https://doi.org/10.1103/PhysRev.100.703
https://doi.org/10.1364/JOSAB.2.001707
http://arxiv.org/abs/arXiv:2201.10950


RECONSTRUCTION OF ATTOSECOND BEATING BY … PHYSICAL REVIEW A 105, 063110 (2022)

[57] A. Sarsa, F. Gálvez, and E. Buendía, At. Data Nucl. Data Tables
88, 163 (2004).

[58] T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 62, 032706
(2000).

[59] W.-C. Jiang and X.-Q. Tian, Opt. Express 25, 26832 (2017).
[60] D. G. Arbó, J. E. Miraglia, M. S. Gravielle, K. Schiessl, E.

Persson, and J. Burgdörfer, Phys. Rev. A 77, 013401 (2008).
[61] F. H. Faisal, Theory of Multiphoton Processes (Springer, New

York, 1987).
[62] F. C. Spano, J. Chem. Phys. 114, 276 (2001).
[63] W.-C. Jiang, H. Liang, S. Wang, L.-Y. Peng, and J. Burgdörfer,

Phys. Rev. Research 3, L032052 (2021).
[64] C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, Atoms in

Intense Laser Fields (Cambridge University, New York, 2011).
[65] R. W. Boyd, in Nonlinear Optics, 4th ed., edited by R. W. Boyd

(Academic, New York, 2020), pp. 137–202.
[66] A. Dalgarno, J. T. Lewis, and D. R. Bates, Proc. R. Soc. A 233,

70 (1955).
[67] L.-W. Pi and A. F. Starace, Phys. Rev. A 90, 023403 (2014).

[68] L.-W. Pi and A. F. Starace, Phys. Rev. A 82, 053414 (2010).
[69] M. Aymar and M. Crance, J. Phys. B 14, 3585 (1981).
[70] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, J. Opt. Soc.

Am. B 10, 988 (1993).
[71] B. Gao and A. F. Starace, Comput. Phys. 1, 70 (1987).
[72] M. Dörr, O. Latinne, and C. J. Joachain, Phys. Rev. A 55, 3697

(1997).
[73] Y. Liao, Y. Zhou, L.-W. Pi, Q. Ke, J. Liang, Y. Zhao, M. Li, and

P. Lu, Phys. Rev. A 104, 013110 (2021).
[74] L. Landau and E. Lifshitz, Quantum Mechanics: Non-

Relativistic Theory, Course of Theoretical Physics (Elsevier,
Amsterdam, 1991).

[75] D. Busto, J. Vinbladh, S. Zhong, M. Isinger, S. Nandi,
S. Maclot, P. Johnsson, M. Gisselbrecht, A. L’Huillier, E.
Lindroth, and J. M. Dahlström, Phys. Rev. Lett. 123, 133201
(2019).

[76] M. Bertolino, D. Busto, F. Zapata, and J. M. Dahlström, J. Phys.
B 53, 144002 (2020).

[77] U. Fano, Phys. Rev. A 32, 617 (1985).

063110-11

https://doi.org/10.1016/j.adt.2004.07.003
https://doi.org/10.1103/PhysRevA.62.032706
https://doi.org/10.1364/OE.25.026832
https://doi.org/10.1103/PhysRevA.77.013401
https://doi.org/10.1063/1.1328381
https://doi.org/10.1103/PhysRevResearch.3.L032052
https://doi.org/10.1098/rspa.1955.0246
https://doi.org/10.1103/PhysRevA.90.023403
https://doi.org/10.1103/PhysRevA.82.053414
https://doi.org/10.1088/0022-3700/14/19/011
https://doi.org/10.1364/JOSAB.10.000988
https://doi.org/10.1063/1.4903436
https://doi.org/10.1103/PhysRevA.55.3697
https://doi.org/10.1103/PhysRevA.104.013110
https://doi.org/10.1103/PhysRevLett.123.133201
https://doi.org/10.1088/1361-6455/ab84c4
https://doi.org/10.1103/PhysRevA.32.617

