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Tunneling ionization in ultrashort laser pulses: Edge effect and remedy
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Tunneling ionization of an atom in ultrashort laser pulses is considered. When the driving laser pulse is
switched on and off with a steep slope, the photoelectron momentum distribution (PMD) shows an edge effect
because of the photoelectron diffraction by the time slit of the pulse. The trivial diffraction pattern of the edge
effect consisting of fast oscillations in the PMD disguises in the deep nonadiabatic regime the physically more
interesting features in the spectrum, which originate from the photoelectron dynamics. We point out the precise
conditions for how to avoid this scenario experimentally, and if unavoidable in theory we put forward an efficient
method to remove the edge effect in the PMD. This allows us to highlight the nonadiabatic dynamical features
of the PMD, which will be indispensable in additional investigations in complex computationally demanding
scenarios. The method is first demonstrated with a one-dimensional problem, and further applied in three
dimensions for the attoclock. The method is validated by a comparison of analytical results via the strong-field
approximation with numerical solutions of the time-dependent Schrödinger equation.

DOI: 10.1103/PhysRevA.105.063109

I. INTRODUCTION

Modern state-of-the-art laser techniques allow for full con-
trol over the wave form of a laser pulse, and in particular the
generation of few-cycle strong laser pulses [1–6] and even
half-cycle pulses [7–10]. Few-cycle laser pulses of sufficient
strength are an efficient tool in attoscience [11–13]. They
have been employed for the generation of isolated attosecond
pulses via high-order harmonic generation (HHG) [14–17],
for molecular imaging and laser-induced electron diffraction
[18–21], as well as for the time-resolved study of strong-field
phenomena, such as nonsequential double ionization [22–29]
and dissociative ionization [30,31]. The theoretical descrip-
tion of strong-field phenomena in few-cycle pulses within the
strong field approximation (SFA) is outlined in Ref. [32].

In ultrashort laser pulses, an abrupt switch on and off of
the laser pulse can induce a diffraction effect of the pho-
toelectrons by the time slit of the pulse due to the pulse
edges, the so-called edge effect. The edge effect is exhibited
as oscillations in the photoelectron momentum distribution
(PMD), in addition to the dynamical features of PMD, and
it disappears in the case of a smooth laser pulse. The edge
effect distorts the most important dynamical physical signal
in strong-field ionization, and for this reason one tries to avoid
or separate it. The distortion is especially conspicuous at low
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laser intensities when the ionization signal is weak, but just
in this deeply nonadiabatic regime the dynamical features of
PMD are nontrivial. We underline that there are observed
unexplained features in PMD in elliptically polarized laser
fields in the weak-field regime [33,34], and the edge effect
hinders their analysis.

In an experiment, the role of edge effects could be dimin-
ished using increasingly smooth laser pulses. In a theoretical
description via numerical solution of the time-dependent
Schrödinger equation (TDSE), as well as within the SFA,
different forms of laser pulses with a smooth switch on and
off are employed. The simplest description of a short N-cycle
laser pulse is via a cos2 envelope: f (t ) = cos2(ωt/N ), with
the laser frequency ω; see, e.g., [32,35]. Smoother pulses are
obtained via cosn envelopes with n = 4 or larger (in this case,
one needs to take into account the change of the effective
frequency of the laser field). A better description is obtained
with the use of a Gaussian pulse with a long tail [36], which,
however, requires rather time-consuming computationally ex-
pensive calculations. As the laser pulse shaping technique is
presently well advanced, one cannot exclude the generation
of the edge effect in experiments (e.g., using a laser pulse
similar to a cos2 pulse), although up to now there has been
no confirmed report on this point.

In this paper, we put forward a simple method to separate
the edge effect and single out the PMD dynamical signal in
SFA calculations as well as in the numerical solution of the
TDSE, while using laser pulses with no-smooth switching.
The (U-contour) method mimics the saddle-point integration,
but without explicitly finding and classifying all relevant sad-
dle points for the given PMD. We demonstrate the method
in a one-dimensional (1D) model of tunneling ionization in
half-cycle pulses of cos2 and truncated-Gaussian form, and we
confirm its accuracy in comparison with the numerical TDSE
solution. Finally, we apply the method in a 3D example of the
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attoclock. The U-contour method in 3D has a clear advantage
with respect to the saddle-point integration, as the latter would
require the calculation of a large data set of saddle points.

The structure of the paper is the following. In Sec. II the
SFA model is introduced, and the edge effect is described.
The conditions for the appearance of the effect are discussed
in Sec. III. The U-contour method for separation of the edge
effect is introduced in Sec. IV, and its performance is tested
in comparison with numerical solutions of the TDSE. The
application of the U-contour method for the analysis of the
edge effect in the 3D case of an attoclock is presented in
Sec. V, and the conclusion is given in Sec. VI.

II. EDGE EFFECT AND THEORETICAL DESCRIPTION

We consider ionization of an electron bound in an atomic
potential V (r) in a laser pulse with electric field E(t ). The
asymptotic momentum distribution,

w(p) = |m(p)|2, (1)

is determined by the SFA direct ionization amplitude [37]:

m(p) = −i
∫

dt
〈
ψV

p (t )|Hi(t )|φ(t )
〉
, (2)

where φ(r, t ) is the bound state wave function, ψV
p (r, t ) the

Volkov wave function [38], and Hi(t ) = r · E(t ) is the electron
interaction Hamiltonian with the laser field. Atomic units are
used throughout. The integrals in the amplitudes of Eqs. (2)
are calculated in two ways: fully numerically and with the
saddle-point approximation (SPA) analytically.

We illustrate the edge effect on a 1D problem of ionization
of an electron bound in a 1D zero-range potential V (x) =
−κδ(x), in a half-cycle laser pulse with electric field E (t ) =
−E0 cos2(ωt ) along the x-coordinate, with the field vanishing
at t < ti and t > t f . The unipolar feature of the pulse is not
significant for the edge effect, but it is significant how fast the
pulse is switched on/off. The half-cycle pulse is used to avoid
recollisions and intercycle interferences, which will produce
some features in the spectrum, masking the discussed edge
effect. Here ω = 0.05 a.u., κ = √

2Ip = 1 a.u., Ip is the ioniza-
tion potential, and γ = ω̃κ/E0 is the Keldysh parameter, with
the effective frequency ω̃ ≡ √

2ω related to the cos2 pulse [the
effective frequency is defined as ω̃ = √−E ′′(0)/E (0) at the
field maximum t = 0]. We calculate PMD for different laser
fields, using the SFA amplitude of Eq. (2), with the bound
state wave function φ(x, t ) = √

κ exp(−κ|x| + iκ2/2t ). The
results are presented in Figs. 1–3.

In strong fields, the PMD is a smooth function of the
asymptotic momentum; see the case of E0 = 0.1 a.u. for the
cos2 pulse in Fig. 1(a), and for truncated Gaussian pulses
in Figs. 2(a) and 2(c). In contrast, at weak fields PMD ap-
pears to be superimposed by the diffraction pattern due to
the time slit of the pulse edges; see E0 = 0.05 and 0.025 a.u.
in Figs. 1(b) and 1(c) for the cos2 pulse, and Figs. 2(b) and
2(d) for Gaussian pulses, respectively (orange-dashed lines
in the figures correspond to the SFA, and green-dotted lines
to the TDSE numerical solutions). This effect is large in
weak fields, when the ionization dynamical signal is weak,
and strongly dependent on the pulse shape. In fact, in a

FIG. 1. PMD with a field E (t ) = −E0 cos2(ωt ). (a) E0 = 0.1,
(b) E0 = 0.05, (c) E0 = 0.025. ω = 0.05 a.u., κ = 1 a.u., and the
field is truncated at ωti = −π/2 and ωt f = π/2. The orange dashed
line: via the SFA with the edge-effect; the blue solid line: via the SFA
with the edge effect subtracted; the dotted green line: via numerical
solution of the TDSE.

Gaussian pulse E (t ) = −E0 exp[−(ωt )2] of the same effec-
tive frequency (ω = 0.05) as a cos2 pulse, the edge effect
gradually decreases with increasing Gaussian truncation. In
particular, the edge effect vanishes, i.e., oscillations in PMD
disappear, if a rather large truncation time is applied; see
the green-dotted lines in Figs. 2(b), 2(d) and 3 correspond-
ing to ω(t f − ti ) = 16. However, the edge effect persists at
smaller truncation time at the same field strength and the same
frequency; see the dashed lines in Figs. 2(b) and 2(d) corre-
sponding to ω(t f − ti ) = 4. While the use of Patchkovskii’s
smoothly truncated Gaussian pulse of Ref. [36] decreases the
edge effect (see the red-dot-dashed line in Fig. 3), at weak
fields the boundary terms still contribute and contaminate the
physical PMD.
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FIG. 2. PMD with a field E (t ) = −E0 exp[−(ωt )2]. Left column: via the first-order SFA, Eq. (1); right column: via numerical solution
of the TDSE. (a), (c) E0 = 0.1; (b), (d) E0 = 0.05. The dashed orange line denotes short pulses with the truncation points of the Gaussian
at ωti = −2 and ωt f = 2; the dotted green line denotes long pulses with ωti = −8 and ωt f = 8; the blue solid line denotes the edge effect
subtracted; the red dot-dashed line in (b) is the SFA calculation with SPA. ω = 0.05 a.u., κ = 1 a.u.

In Figs. 1–3, we provide PMD via the SFA, as well as
via the numerical solution of the TDSE. For strong fields
E0 = 0.1 and 0.05, the SFA results are in close agreement
with the numerical ones in any pulse. Deviations mainly orig-
inate from the Stark shift, which is not accounted for in the
SFA, yielding slightly overestimated ionization probabilities.
In weak fields, E0 = 0.025, the results are still in agreement
with long Gaussian pulses, but in short truncated-Gaussian
pulses the edge effects are different in the SFA and in the
TDSE, concurring only qualitatively.

III. CONDITIONS FOR THE EDGE-EFFECT
APPEARANCE

Generally, the smoother the switching on and off of the
laser pulse is, the less pronounced are the edge effects. How-
ever, for a given smooth pulse shape, there is a threshold
intensity below which the edge effects again show up. This
is illustrated for cosn-type pulses in Fig. 4. We estimate
the condition for the edge-effect appearance as follows. The
switching on/off of the laser pulse results in the appearance
of high-energy components in the field spectrum. The edge

FIG. 3. PMD with a field E (t ) = −E0 exp[−(ωt )2], E0 = 0.025. (a) Via the first-order SFA, (b) via numerical solution of the TDSE. The
dashed orange line denotes short pulses with the truncation points of the Gaussian at ωti = −2 and ωt f = 2; the dotted green line denotes
long pulses with ωti = −8 and ωt f = 8; the blue solid line denotes the SFA with the edge effect subtracted; the dot-dashed red line is via
Patchkowsii’s truncated Gaussian [36] with parameters ωt1 = 2 and ωt2 = 2.5. ω = 0.05 a.u., κ = 1 a.u.
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FIG. 4. Determination of the threshold field strength in cosn

pulses, below which the edge effect contaminates the strong-field
ionization PMD. The edge effect is induced by the high-energy com-
ponent of the field with 	 � Ip, the probability of photoionization
W	 via such high-energy photon absorption: The blue solid line, cos2

pulse; the orange dashed line, cos4 pulse; the green short-dashed line,
cos6 pulse; the red dash-dotted line, the PPT probability WSFI. The
edge effect will be visible below the field value when W	 = WSFI.

effect is induced by the high-energy component of the field
with 	 � Ip, available in the spectrum of the pulse. We char-
acterize the edge effect by the probability of photoionization
via absorption of such a high-energy photon [39]:

W	 ∼
(E	a

	

)2

, (3)

with the field strength E	 ∼ E0(ω/	)n of the high-frequency
component 	, and the typical atomic length a = 1/κ . The
edge effect will be visible if this probability is comparable
with (or larger than) the strong-field ionization probability
[40] due to the monochromatic field of the effective frequency
of the pulse:

WSFI ∼ Ea

Es
exp

{
−2Ip

ω̃

[(
1+ 1

2γ 2

)
arcsinhγ −

√
1 + γ 2

2γ

]}
,

(4)
where Es = E0

√
1 + γ 2 is the field value at the time saddle

point. Thus, the condition of the onset of the edge effect is
W	 �WSFI. In Fig. 4, W	 = WSFI corresponds to the crossing
point of the red line representing WSFI with the corresponding
one-photon probabilities W	 for different pulses. Thus, the
edge effect will be visible in the corresponding pulses with
the field strength below the crossing points. The smoother the
laser pulse is, the smaller will be the laser intensity below
which the edge effect will emerge. The edge effect appears
at low laser intensities, when the tunneling ionization signal
is weak and becomes comparable with the diffraction signal.
This effect hinders the understanding of nonadiabatic tun-
neling at large Keldysh parameters, as it conceals specific
nonadiabatic features in PMD.

IV. SEPARATION OF THE EDGE EFFECT

In this section, we put forward a method for separation
of the edge effect and singling out the dynamical features of
PMD at given laser parameters. In the total PMD with the edge
effect, the dynamical signal is superimposed by the trivial
diffraction pattern due to the time slit of the pulse. Meanwhile,

FIG. 5. Contours of the time integration in Eqs. (5) and (17): red
horizontal line, the original contour along the real-time axis from the
pulse outset ti to the end t f ; green dashed line, the saddle-point (SP)
contour; red solid line, the proposed U-contour to remove the pulse
edge effect. The laser pulse form is illustrated via the blue dashed
line.

the dynamical signal is most interesting physically because
it provides information on the nonadiabatic dynamics of the
photoelectron in a weak-field regime. As an example, we refer
to structures inside the attoclock ring in a weak elliptically
polarized laser field [34], which also could be related to the
unexplained large attoclock offset angles in the multiphoton
regime [33].

A. U-contour method

Before introducing the method for separation of the edge
effects, let us note that the edge effect can be avoided in the
calculation of PMD within the SFA, when using the SPA for
the time integration; see, e.g., the red-dashed line in Fig. 2(b)
[41]. However, in 3D cases and for a large range of PMD, e.g.,
in the attoclock (see Sec. V), it is a cumbersome procedure
to find all saddle points of the full PMD. Moreover, there
still remains the question of how to remove the edge effect
for the TDSE. In the latter, the only possibility is to use
a Gaussian pulse with a very large truncation time, which
requires extensive computational resources.

Here we propose a simple method for the calculation of the
edge-effect-free PMD. The method mimics the saddle-point
time-integration method for the ionization amplitude. In the
first-order SFA, the integrand m(t ) of the ionization ampli-
tude,

m(p) =
∫ t f

ti

dt m(t ), (5)

has the form

m(t ) = C [p + A(t )] · E(t )

[[p + A(t )]2 + κ2]2
exp[−iS(t ) + iκ2/2t], (6)

with the classical action in the laser field S(t ) = ∫ t f

t ds[p +
A(s)]2/2, and the constant C1D = −2i

√
2
π
κ3/2 for the 1D

case, and C3D = 1/(
√

2πκ )C1D for the 3D case. In the orig-
inal Eq. (5), the time integration runs along the real-time
axis from the onset of the pulse ti to the end t f ; see Fig. 5.
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FIG. 6. The amplitude of the integrand along the vertical con-
tour, exactly (blue solid line) and approximated by the expansion of
Eq. (7) (orange dashed line).

When one applies the SPA, the original contour is deformed
to the steepest-descent contour of the saddle point. Generally,
one has to find all saddle points corresponding to the given
asymptotic momentum via an appropriate deformation of the
initial contour of the time integration. As is shown in Fig. 5,
the integral along the steepest-descent contour is equal to that
along the U-contour (red line in Fig. 5). Thus, the edge-free
PMD can be obtained adding two integrals along the vertical
contour to the main integral along the real axis (from ti to
t f ). This can be done analytically within the SFA, as well as
numerically in the TDSE solution.

Further, we note that the U-contour can also be used to
calculate half-cycle resolved ionization probabilities in long
sinusoidal fields via truncating the field at the beginning and
the end of the half-cycle of interest.

B. Calculation of the time integral along the vertical contour

The calculation of the time integrals along the vertical
contours in Fig. 5, Ci and Cf , is facilitated by the fact that
the integrand is exponentially suppressed at large imaginary
times, see Fig. 6, and only the beginning of the contour close
to the real axis gives the main contribution to the integral. This
is the case when the complex continuation of the functional
form of the laser pulse is analytical within the U-contour.
This is particularly valid for the cosn pulses and a truncated
Gaussian.

To account for the edge effect analytically, we approximate
the prefactor and the exponential of the integrand m(t ) near
the truncation points ti and t f :

mCi (t ) ≈ C
∑

n

[p + A(ti )]A(n+1)(ti )(t − ti )n

n!([p + A(ti )]2 + κ2)2

× exp[−iS(ti) + iκ2/2ti

+ i{κ2/2 + [p + A(ti )]
2/2}(t − ti )], (7)

mCf (t ) ≈ C
∑

n

[p + A(t f )]A(n+1)(t f )(t − t f )n

n!([p + A(t f )]2 + κ2)2

× exp[−iS(t f ) + iκ2/2t f

+ i{κ2/2 + [p + A(t f )]2/2}(t − t f )], (8)

where the summation over n begins from the first nonvanish-
ing derivative of the function A′(t ) up to the next high orders at
weak fields, and terms of the order of A′(ti )2 or A′(t f )2 are ne-
glected. These approximated integrands can now be integrated
along the steepest-descent contour at the truncation points.
Since κ2/2 + [p + A(ti )]2/2 and κ2/2 + [p + A(t f )]2/2 are
real numbers, the contour is vertically aligned in the complex
plane starting at ti or t f , respectively. The integration yields

mCi (p) = C
∑

n

2n+1 exp[−iS(ti ) + iκ2/2ti]

× [p + A(ti )]An+1(ti )

{[p + A(ti )] + κ2}n+3
, (9)

mCf (p) = C
∑

n

2n+1 exp[−iS(t f ) + iκ2/2t f ]

× [p + A(t f )]An+1(t f )

{[p + A(t f )] + κ2}n+3
. (10)

The approximated integrand function of Eq. (9) is shown in
Fig. 6. It coincides with the analytical one. Thus, using ex-
pressions of Eqs. (9) and (10), the contribution of the vertical
contours Ci, Cf can be subtracted analytically, which corre-
sponds to the subtraction of the edge effect.

C. Edge-effect subtraction in the numerical solution
of the TDSE

The PMD according to numerical solution of the TDSE can
be written as

w(p) = |m(p)|2 = ∣∣〈ψV
p (x, t f )

∣∣U (t f , ti )
∣∣φ(x, ti )〉

∣∣2
, (11)

where the time evolution operator U (t f , ti ) can be obtained
through the normal Schrödinger equation

U (t f , ti ) = T exp

[
−i

∫ t f

ti

dt H (t )

]
, (12)

with H (t ) = p̂2/2m + r · E(t ) + V (r), and T being the time
ordering operator, or based on the Dyson equation

U (t f , ti ) = U0(t f , ti ) − i
∫ t f

ti

dt U (t f , t )Hi(t )U0(t, ti ), (13)

with Hi(t ) = r · E(t ) being the interaction Hamiltonian, and
U0 being the field-free time evolution operator.

The ionization amplitude m(p) along the real axis is calcu-
lated as

mCr (p) = 〈
ψV

p (t f )
∣∣T exp

[
−i

∫ t f

ti

dt H (t )

]
|φ(ti)〉 (14)

employing the traditional time-splitting operator method.
Along the vertical contours (Ci and Cf ), on the other hand,
the amplitude is obtained through

mCi (p) = −i
∫

Ci

dt
〈
ψV

p (t f )
∣∣U (t f , t )Hi(t )U0(t, ti )|φ(ti)〉,

(15)

mCf (p) = −i
∫

Cf

dt
〈
ψV

p (t f )
∣∣U (t f , t )Hi(t )U0(t, ti )|φ(ti)〉.

(16)
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FIG. 7. PMD in the attoclock: (a), (b) via the first-order SFA; (c), (d) via numerical solution of the TDSE; (a), (c) PMD with the edge
effect included, (b), (d) PMD with the edge effect subtracted. The laser field in (a)–(c) is given by Eq. (18), while in (d) it is given by Eq. (19).
E0 = 0.025 a.u., ω = 0.05 a.u., κ = 1 a.u., and the field truncation is at ωti = −3π/ω and ωt f = 3π/ω.

Here U (t f , t ) is the exact time-evolution operator in the nu-
merical simulation rather than the time-evolution operator in
the laser pulse only, which is used in the SFA calculations.

Finally, the total PMD is calculated as

w(p) = |mCr (p) + mCi (p) + mCf (p)|2. (17)

V. ATTOCLOCK

The proposed U-contour method proves very efficient for
the calculation of PMD of the attoclock at weak laser inten-
sities. We calculate PMD via the 3D first-order SFA in the
attoclock case for a hydrogen atom with a circularly polarized
laser field given by the vector potential

Ax(t ) = E0

ω
sin(ωt ) cos2(ωt/6),

Ay(t ) = −E0

ω
cos(ωt ) cos2(ωt/6), (18)

with E0 = 0.025 a.u., ω = 0.05 a.u., κ = 1 a.u., a Coulomb
atomic potential, and the laser field truncation at ωti =
−3π/ω and ωt f = 3π/ω. The time integral in Eq. (5) is

calculated numerically, and the edge terms are subtracted
analytically as shown above. The corresponding momentum
distributions via the SFA are presented in Figs. 7(a) and 7(b).
We compare the latter with the numerical TDSE calculations;
see Figs. 7(c) and 7(d). To eliminate the edge effect in the
numerical TDSE case, we employ a smooth pulse of the
form

Ax(t ) = E0

ω
sin(ωt ) cos8(ωt/12),

Ay(t ) = −E0

ω
cos(ωt ) cos8(ωt/12). (19)

Note that in a long Gaussian pulse, the PMD coincides
with the edge-effect-free result of the U-contour method. One
can see that the edge effects significantly disturb PMD. In
particular, the edge effect is seen in Fig. 7(a) as a diffraction
pattern on the time slit of the pulse, which is superim-
posed over the attoclock typical distribution [Fig. 7(b)]. The
diffraction pattern is also distinguishable in the TDSE calcu-
lations [Fig. 7(c)], which disappears in a smooth laser pulse
[Fig. 7(d)]. The U-contour method efficiently removes the
edge effect [Fig. 7(b)], and its result is similar to that in a
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smooth laser pulse. Note that the PMD in the TDSE calcula-
tions shows a non-negligible offset angle due to the Coulomb
field of the atomic core. The latter is not accounted for in the
first-order SFA calculation, which, consequently, exhibits no
offset angle.

The edge effect is usually prominent in weak laser fields,
where it dominates over the weak ionization signal. In the
example of Fig. 7, the total ionization probability is of the
order of 5 × 10−6, which is still observable being comparable
with the ionization yield at weak fields in the experiment [42].

The edge effect is produced by the time slit of the laser
pulse. When the laser pulse is described via the vector poten-
tial, the pattern of the edge effect in PMD follows the vector
potential, similar to that due to tunneling ionization. However,
if the laser pulse is described via the field, the pattern of the
edge effect will follow the field structure, and the created
PMD pattern of the edge effect in a circularly polarized laser
field will be rotated with respect to that of tunneling ionization
by the π/2 angle.

VI. CONCLUSION

We have developed a method to remove the edge effect
of the laser pulse because of the diffraction from the time
slit created by the edges in PMD of tunnel-ionized elec-
trons. The method consists of replacing the original time
integral in the ionization amplitude along the real-time axis
with the so-called U-contour, adding two integrals along the
imaginary-time axis, starting at the time edges of the laser
pulse. The method can be applied analytically for the SFA
as well as for the numerical solution of the TDSE. The edge
effect adds a trivial diffraction pattern that originated from the
time edges of the laser pulse, which disappear when using
smoother laser pulses (long-truncated-Gaussian pulse) of the
same frequency and intensity. The edge effect hides the phys-
ical structures in PMD due to nonadiabatic processes in weak
laser fields that underline the important application of the
proposed method to reveal the dynamical signal of strong-field
ionization in the deep nonadiabatic regime.
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