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The classical Keldysh-Rutherford (KR) model of the attoclock [A. W. Bray et al., Phys. Rev. Lett. 121, 123201
(2018)] was introduced to interpret attosecond angular streaking on atomic hydrogen in the low laser intensity
regime. In this model, the photoelectron acquires its final velocity immediately after exiting the tunnel and then
scatters elastically on the Coulomb field of the residual ion. In the present work, we make a dynamic extension of
the KR model and consider a gradual acceleration of the photoelectron by the driving laser field. By doing so, we
observe and explain a significant displacement of the peaks of the angular distribution of the mean photoelectron
momentum and the angular resolved ionization probability. These peaks should be close within the original KR
model.
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I. INTRODUCTION

Attosecond angular streaking (the attoclock) is a com-
monly used technique that explores the tunneling ionization
of atoms and molecules in a strong laser field. The attoclock
technique detects the position of the angular maximum of the
photoelectron momentum distribution (PMD) in the polariza-
tion plane of a slightly elliptical laser pulse. The attoclock
attempts to relate the offset angle θa of this maximum relative
to the minor polarization axis with the time the tunneling elec-
tron spends under the barrier (the tunneling time) [1–4]. The
photoelectron tunneling, as an exponentially suppressed pro-
cess, occurs predominantly at the peak electric field strength
of the driving laser pulse. At this instant, the electric field is
aligned with the major axis of the polarization ellipse. The
photoelectron emerges from the tunnel with a nearly zero
velocity and its canonical momentum captures the vector po-
tential of the laser field at the time of exit. This momentum is
carried to the detector and its angular displacement relative to
the minor polarization axis is converted to the tunneling time
τ = θa/ω, where ω is the angular frequency of the driving
field. A similar attoclock reading θa can be obtained from nu-
merical simulations with very short, nearly single oscillation,
circularly polarized pulses. The latest attoclock experiments
proved to be inconclusive as to whether the tunneling time
is finite [5] or vanishing [6], and the debates are still being
waged to resolve this issue [7–9].

An accurate theoretical description of the atomic attoclock
is provided by a numerical solution of the time-dependent
Schrödinger equation (TDSE). Such a solution is exact for the
atomic hydrogen [10,11] and is restricted by the single active
electron (SAE) approximation for noble gas atoms [12–15].
While the TDSE solution is numerically accurate, it is not
particularly revealing for qualitative aspects of tunneling ion-
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ization. In particular, it does not reveal the time and velocity
of the photoelectron when exiting the tunnel. So the most
important questions as to a finite versus vanishing tunneling
time and the adiabatic versus nonadiabatic tunneling cannot
be easily resolved. To answer these questions, various analytic
models were developed and calibrated against numerically
accurate TDSE results. Thus validated models, in turn, re-
vealed the photoelectron time and velocity at the exit from
the tunnel and thus allowed the establishment of the tunneling
time, as finite or vanishing. Several such analytic models were
proposed. Among them are the tunnel ionization in parabolic
coordinates with induced dipole and Stark shift (TIPIS) [3],
the Wigner trajectory [16], the analytic R matrix [10], the
classical back-propagation [17], and the classical-trajectory
Monte Carlo [18]. These models highlight various aspects of
the tunneling process and the subsequent interaction of the
ionized electron with the driving laser field on its way out
towards the detector.

The classical Keldysh-Rutherford (KR) model [19] sim-
plifies this interaction considerably. In the KR model, it
is assumed that the photoelectron acquires its final veloc-
ity immediately after exiting the tunnel and then it scatters
elastically on the Coulomb field of the ion remainder. The
Rutherford scattering formula is applied with the impact pa-
rameter being replaced with the tunnel width provided by the
Keldysh theory. The predictions of the KR model are numer-
ically accurate in the very low laser field intensity regime.
In addition, it correctly predicts the analytic dependence of
the attoclock offset angle on the laser intensity, the carrier
frequency, and the atomic ionization potential. However, the
KR model fails for the modestly strong laser intensities that
are commonly used in the experiment. This failure is related
to the ongoing interaction of the photoelectron with the laser
field that is ignored in the KR model. In reality, the pho-
toelectron exits the tunnel with a nearly zero velocity and
then is gradually accelerated to its final velocity by the laser
pulse.
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In the present work, we remedy this deficiency of the KR
model and develop its dynamic extension. In such an extended
DKR model, the initial conditions for the electron after exiting
the tunnel are taken from the Keldysh theory. With these initial
conditions, the classical photoelectron trajectory is calculated
by solving the Newton’s equation of motion under the ac-
tion of the laser pulse and the Coulomb field of the residual
ion. Conceptually, the DKR approach is similar to the TIPIS
model [3]. However, the latter model experiences some diffi-
culties. Agreement of the TIPIS model with the experiment
and the numerical TDSE solution was achieved only when
the polarization of the residual ions was taken into account.
Meanwhile, the TDSE solution did not include such a polar-
ization, which therefore cannot be the reason for agreement,
or lack of thereof, between the TIPIS and the experiment. In
addition, the TDSE calculations [14] clearly supported the set
of experimental angular offset values obtained with the use
of nonadiabatic calibration of the field intensity [20]. In the
meantime, the TIPIS simulations agreed with the adiabatic set
of experimental data.

Implementation of the DKR model is very simple and
transparent. It allows for some analytic derivations, in par-
ticular, an expression for the angular offset of the mean
photoelectron momentum. Predictions of DKR agree well
with numerical TDSE results for the He atom, similarly to
the TIPIS without account for the polarization. However, the
DKR model loses its accuracy for hydrogen because of a rela-
tively strong Coulomb field experienced by the photoelectron
at the exit from the tunnel.

The rest of the paper is organized according to the follow-
ing plan. In Sec. II, we give a brief account of our TDSE
technique and define the main observables such as the mean
(central) photoelectron momentum, its angular dependence,
and the positions of the angular extrema that define the atto-
clock offset angle θa. In Sec. III, we describe our numerical
DKR approach by formulating the set of initial conditions
on the photoelectron position and velocity and feeding them
to the Newton’s classical equation of motion. Some analytic
derivations for the DKR model are carried out in Sec. IV. Our
numerical and analytic DKR results are validated against the
TDSE in Sec. V. We conclude in Sec. VI by pointing to the
weaknesses of the DKR model and looking for possible ways
to strengthen it.

II. TDSE MODEL

We solve the TDSE for the hydrogen and helium atoms
driven by an elliptically polarized laser pulse. To isolate the
effect of the Coulomb field of the ionic core, we also consider
the model Yukawa atom. In this atom, the Coulomb field is
screened while maintaining the same binding energy as in the
hydrogen atom. The vector potential of the driving pulse is
represented by

A(t ) = A0√
ε2 + 1

cos4(ωt/2N )

[
ε cos(ωt ) εx

sin(ωt ) εy

]
, (1)

with the ellipticity parameter ε and the angular frequency ω.
The pulse length is parametrized with the number of optical
cycles, N , and A vanishes for |t | � Nπ/ω. In our simulations,
we consider either a short circularly polarized pulse with

FIG. 1. The electrical field strength and the absolute value of the
vector potential of the laser field. A short circularly polarized pulse
(top) and a long elliptical polarized pulse with the ellipticity ε = 0.84
(bottom).

N = 2, ε = 1 or a long elliptical polarized pulse with N = 10,
ε � 1 (see Fig. 1 for graphical illustration). The latter pulse
corresponds to typical pulse parameters used in experiments,
while the former was used in the so-called numerical attoclock
[11]. These two pulse types were previously used to calculate
the attoclock offset angle and gave approximately the same
results for it, while the use of the first type of pulses made it
possible to save computer time considerably. However, for the
momentum extremum offset angle, as we will show below, the
results of these types of impulses are fundamentally different.
With both kinds of driving pulses, the TDSE was solved by
the split-operator method [21].

The PMD is projected onto the polarization plane
P(kx, ky, kz = 0) and converted to the polar coordinates
P(k, θ ), where

k = (
k2

x + k2
y

)1/2
, θ = tan−1(ky/kx ), 0 � θ � π. (2)

In these coordinates, we define the directional probability of
the photoelectron emission,

P(θ ) =
∫

dk P(k, θ ), (3)

and the mean (central) radial momentum in the given direc-
tion,

kc(θ ) =
∫

kP(k, θ )dk/P(θ ). (4)

The integration weight in Eqs. (3) and (4) corresponds to
integration over a radially oriented narrow column of constant
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TABLE I. Offset angle definitions.

Notation Meaning Acronym

θa Attoclock offset angle AOA
θk Momentum extremum offset angle MEOA
�θ Coulomb field rotation angle CFRA

thickness starting at k = 0. An alternative is integration over a
circular sector (weight k) or a spherical segment (weight k2).
However, the difference in all these options is small, so we
used the first option everywhere.

Finally, the position of the angular maximum is found,

P(θa) = max P(θ ). (5)

The angular maximum θa counted from the minor polarization
axis defines the attoclock offset angle (AOA).

In addition, we calculate the momentum extremum offset
angle (MEOA), which satisfies the following relation:

kc(θk ) =
{

min kc(θ ), long pulse;
max kc(θ ), short pulse with ε = 1.

(6)

Various definitions of the MEOA are used for short and long
pulses for the following reason. In a long elliptic pulse, the
peak electric field corresponds to the minimum vector poten-
tial, while in a short pulse, the vector potential at this instant
is at its maximum (see Fig. 1).

In Sec. III, we also introduce the Coulomb field rotation
angle (CFRA). This angle is not defined in TDSE and can
only be determined in DKR. For convenience, we summarize
all three definitions of the offset angles in Table I. In the
conventional KR model, θk = θa = �θ . The identity θa = �θ

follows from the basic premise of the KR in which the angular
offset of the ionization probability is caused by the Coulomb
scattering, while the shape of the angular distribution is not
affected. As will be shown in Sec. IV B, there is a significant
distortion of this distribution due to the phase volume change
during the post-tunneling photoelectron motion. This leads to
deviation of θa from �θ . The identity of θk = �θ in the KR
follows from the elasticity of the Coulomb scattering which
preserves the photoelectron momentum modulus. Hence, the
angular offset of the photoelectron momentum is the same
as the offset of the ionization probability. In reality, and as
follows from the numerical solution of the TDSE, the angles
θk and θa differ significantly, not only in magnitude but also in
their signs. This strong qualitative effect is explained in DKR.

III. NUMERICAL DKR MODEL

We subject an atom to a laser pulse with a vector potential,

Ax(t ) = −Ax0 f (t ) cos ωt,

Ay(t ) = +Ay0 f (t ) sin ωt,

Az(t ) = 0. (7)

Here the envelope function f (0) = 1, f (t → ∞) = 0 and the
vector potential magnitudes,

Ax0 = εA0/
√

1 + ε2 < Ay0 = A0/
√

1 + ε2, (8)

define an elliptic polarization in the (xy) plane. The attoclock
offset angle θa is read relative to the minor polarization y axis.
The electric field vector is determined as

E(t ) = ∂A(t )/∂t . (9)

We write the initial conditions under the assumption that the
exit from the tunnel is in the direction of the laser electric field
at the instant of tunneling and the longitudinal velocity at the
exit point is zero,

r0 = r0nE (t0),

v0 = (ki + pp)np(t0) + pznz. (10)

Here, t0 is the time of the electron exit from the tunnel,
nE (t ) = E(t )/E (t ) is the instantaneous electric field vector,
and np(t ) is a vector in the plane of polarization, perpen-
dicular to the direction of the field, [np(t ) · nE (t )] = 0, and
directed approximately against the direction of the vector
potential, i.e., [np(t ) · nA(t )] < 0, where nA(t ) = A(t )/A(t ).
Also defined is a vector perpendicular to the plane of po-
larization, nz(t ) = (0, 0, 1). An additional initial momentum
p⊥ = (ppnp, pz ) is introduced to account for the momentum
spread (see Sec. IV C for more details).

The coordinate of the exit point is determined by the tun-
neling width given by Eq. (63) of Perelomov et al. [22] in the
limit γ � 1:

r0 = Ip + p2
⊥/2

E (t0)
[1 − (1/4 − ε2/9)γ 2(t0)]. (11)

However, unlike the original work [22], we substitute the
static Keldysh parameter γ = ωκ/Emax with its dynamic
equivalent γ (t ) = ωκ/E (t ). Here and throughout, κ = √

2Ip

is the mean momentum of the bound electron. The photo-
electron initial velocity v0 (10) contains the photoelectron
momentum at the tunnel exit determined according to [22] in
the same limit γ � 1 as

ki = A(t0)γ 2(t0)/6 + O(γ 4). (12)

We note that v0 is a dynamic quantity which depends on
the electric field strength at the instant of tunneling. The
parameters pp and pz are introduced via p⊥ to account for
the photoelectron distribution in the radial and cylindrical
directions.

The initial conditions (10) are fed into the Newton’s equa-
tion of motion,

r̈ = −Zr
r3

+ E(t ), (13)

which is solved for a set of initial times t0 = φ/ω, where
parameter φ was in the range from −90◦ to +90◦ with a step
of 1◦. From each solution, we determine the photoelectron
exit angle θ = − tan−1 ky/kx and the corresponding final mo-

mentum magnitude k =
√

k2
x + k2

y . Here, k = ṙ(tfin), and tfin

is selected sufficiently large such that both the laser and the
Coulomb fields are weak enough and can be neglected. From
the exit angle θ , we find the Coulomb field rotation angle
(CFRA) �θ = θ (t0 = 0) for the electrons emitted at the peak
values of the electric field.
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IV. ANALyTIC DKR MODEL

A. Angular shift of the central momentum extrema

We derive an analytic expression for the angular shift of
the central momentum extrema due to the Coulomb field of
the residual ion. We suppose that the photoelectron departs
from the nucleus starting from the initial distance r0. We also
assume that most of the photoelectron momentum change
due to the Coulomb field occurs before the distance from the
nucleus is not very large. We quantify it by the time of travel,
t1, during which the distance to the nucleus doubles to 2r0.

a. Strong field limit. In the strong laser field limit, the
photoelectron is accelerated very fast such that t1 � 1/ω. In
this limit, the electric field of the laser pulse, E(t ), can be
considered constant before r � r0. Thus,

t1 =
√

2r0/E (t0) 	 κ/E (t0),

where we note that r0 	 Ip/E (t0). The Coulomb force during
this time interval is of the order of ∼1/r2

0 and directed ap-
proximately in the direction opposite to E(t0). This force will
impart the momentum

qE ∼ −nE (t0)

r2
0

t1 ∼ E(t0)

κ3
. (14)

A more accurate estimate returns

qE = −nE (t0)
∫ ∞

0

Z

[r0 + E (t0)t2/2]2
dt (15)

= − πZ√
8r3

0E (t0)
nE (t0) = − πZ

ξ 3/2κ3
E(t0).

Here we set r0 = ξ Ip/E (t0), where the coefficient ξ is intro-
duced to account for the difference between the true r0 and its
Keldysh model estimate Ip/E (t0).

At the instant t0 = 0, the vector qE is orthogonal to A and
thus makes the strongest contribution to the photoelectron
rotation angle due to the Coulomb field,

�θ 	 qE

A

∣∣∣
t0=0

∼ ω

εκ3
.

Here we noted that E (0) = ωA(0)/ε. This means that in the
DKR model, �θ tends to a constant in the limit of large laser
field intensity. This is very different from the KR model in
which �θ ∼ 1/A(0) and tends to zero in this limit.

Let us estimate the correction due to a finite initial veloc-
ity of the photoelectron. Because ki ⊥ E, the photoelectron
trajectory deviates from the radial direction by acquiring an
additional momentum,

qp ∼ −np(t0)

r3
0

kit
2
1 ∼ np(t0)

E (t0)

κ4
ki ∼ (ω/κ2)np(t0).

A more accurate estimate at a small ki leads to

qE = −np(t0)
∫ ∞

0

Zkit

(r0 + E (t0)t2/2)2
dt

= − Zki

2r2
0E (t0)

np(t0) = −2ZkiE (t0)

ξ 2κ4
np(t0). (16)

Because np ‖ A at t0 = 0, the Coulomb field rotation angle
(CFRA) can be approximated by

�θ = tan−1 qE

A + ki + qp

∣∣∣∣
t0=0

. (17)

As ki decreases with a growing laser intensity and qp tends to
a constant, CFRA is also approaching a constant value given
by the above expression.

Now we estimate the angular direction of the momentum
maximum. For convenience, we convert the instant of tunnel-
ing to an angular variable φ = ωt0. We also introduce

qE = −aA′(φ), qp = −bnp(φ), ki = c
A(φ)

|A′(φ)|2 np(φ),

(18)
where A′(φ) = E(t0)/ω and a, b, and c are constants:

a = πZω

ξ 3/2κ3
, b = 2Zεω

ξ 2κ4
c, c = κ2

6
. (19)

In these notations, the CFRA

�θ = tan−1 a

ε

[
1 + ki − b

A

]−1∣∣∣∣
φ=0

. (20)

The total final momentum becomes k = −A + ki + qE + qp
and its modulus squared is

k2(φ) = A2 + a2|A′|2 + (ki − b)2 (21)

+ 2a(A · A′) − 2(ki − b)(A · np).

At the instant of tunneling ti = 0, the vector potential and
the electric field strength are at their peak values and their
directions are orthogonal,

A′(0) = 0; |A′|′(φ = 0) = 0;

(A · A′)|φ=0 = 0; (A · np)|φ=0 = −A(0). (22)

We also note that |A′(0)| = A(0)/ε and, for a long pulse,
A′′(0) 	 −A(0).

We make a Taylor expansion of k2(φ) near φ = 0, keep the
terms up to the second order in φ, and neglect the squares of
the small quantities ki, a, and b. In this way, we obtain

k2(φ) = A(0)2 + 2(ki − b)A(0) + 2a (A · A′)′|φ=0φ

+ [(A2)′′(0) + [2(ki − b)A]′′|φ=0]
φ2

2
. (23)

Hence we find the angular maximum of k2(φ),

φk = −a

{
P1 − 2[(ki − b)A]′′

(A2)′′

}−1∣∣∣∣
φ=0

= −a

[
1 + (ki − b)

A
+ 2k′′

i A

(A2)′′

]−1∣∣∣∣
φ=0

. (24)

This maximum corresponds to the momentum extremum off-
set angle (MEOA),

θk = θA(φk ) + �θ 	 a

ε

k′′
i

A′′

∣∣∣∣
φ=0

= acε
1 − 2εν

A2

∣∣∣∣
φ=0

, (25)
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FIG. 2. The central photoelectron radial momentum kc as a func-
tion of the exit angle θ for the Yukawa atom. A short circular pulse
(top) and a long elliptic pulse with the ellipticity ε = 0.84 (bottom).
Both pulses correspond to the field intensity of 4 × 1014 W/cm2.

where

ν = |A′|′′
A′′

∣∣∣∣
φ=0

= E ′′

ωA′′

∣∣∣∣
φ=0

=
{−ε, long pulse;

1 + f ′′(0)/ f (0)/ω2, short pulse with ε = 1.
(26)

We see that θk > 0 for a long pulse with ε � 1, while θk <

0 for a short circular pulse with ε = 1. In both cases, θk is
inversely proportional to the field intensity. Also, as a 	 ε�θ ,
|θk| � �θ when A2 � κ2/6 in the case of high laser pulse
intensities.

b. Weak field limit. In the opposite limit of a very weak field
intensity, the photoelectron gains its momentum from the laser
pulse in the vicinity of the point of the closest approach to the
Coulomb center. Hence the conventional KR model applies to
this case. The photoelectron scattering on the Coulomb field
changes its direction without any significant change of the
radial momentum. Thus, in this limit, θa 	 �θ .

B. Ionization probability angular distribution

We assume that the instantaneous ionization rate is de-
termined by a static field with the strength equal to that of
the laser field at the instant of tunneling, E (t0). According to
Perelomov et al. [22], in the absence of the Coulomb field,

FIG. 3. Same as Fig. 2 for the hydrogen atom.

this probability is proportional to

w0(E , p⊥) ∼ exp

[
−2

3

κ3

E
− κ

E
p2

⊥

]
. (27)

Here, p⊥ is the transverse photoelectron momentum in the
direction orthogonal to the polarization plane. This transverse
momentum is distributed in the initial state wave function in
the momentum space. In the case of the Coulomb field, an
additional preexponential factor should be introduced [23],

w(E , p⊥) ∼
(

2κ ′3

E

)2Z/κ

w0(E , p⊥). (28)

Here, κ ′ =
√

κ2 + p2
⊥ and Z is the charge of the residual ion.

Note that expression (28) is a combination of two different
formulas. In the preexponential factor, which is sourced from
[23], κ is replaced with κ ′, similarly to the derivation of
Eq. (27) in [23].

As previously, we convert t0 to an angular variable φ = ωt0
and define w(φ) ≡ w[E (t0), 0]. We assume that the photo-
electron exits the tunnel at the coordinate r0 when the electric
field vector E points to the direction defined by the angular
interval dθE . The ionization probability is proportional to
the time during which the E vector remains in this angular
interval, dt = dθE (dθE/dt )−1. By noting that dt0 = φ/ω, the
probability of emitting the photoelectron in the unit volume of
the initial momentum space d ppdφd pz is

dP ∼ w(φ)

[
dθE

dt

]−1

d ppdφd pz.
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FIG. 4. Directional probability of the photoelectron emission
P(θ ) for the Yukawa atom. The same pulse parameters as in Figs. 2
and 3: a short circular pulse (top) and a long elliptical pulse with
ε = 0.84 (bottom).

The corresponding probability of finding the photoelectron in
the unit volume of the final momentum space dkdθdkz is

d3P = d3P

dkdθdkz
dkdθdkz = d3P

dkdθdkz
Jd ppdφd pz.

Here we introduce a Jacobian,

J =

∣∣∣∣∣∣∣

∂k
∂ pp

∂θ
∂ pp

∂kz

∂ pp
∂k
∂φ

∂θ
∂φ

∂kz

∂φ
∂k
∂ pz

∂θ
∂ pz

∂kz

∂ pz

∣∣∣∣∣∣∣
.

This leads us to

d3P

dkdθdkz
∼

[
J

dθE

dt

]−1

w[φ(θ )]. (29)

In the above expression, φ = φ(θ ) is the inverse function
connecting the instant of tunneling t0 with the photoelectron
direction. The dominant contribution to the Jacobian is given

by its diagonal terms, J 	 ∂k

∂ pr

∂θ

∂φ

∂kz

∂ pz
. In the absence of the

Coulomb field Z = 0, the derivative
∂kz

∂ pz
= 1, while the time

derivative of the angle is found in the Appendix. The angle
itself can be approximated as

θ (φ) = θA(φ) + �θ (φ), (30)

where θA(φ) is the emission angle in the absence of the
Coulomb field and the zero initial velocity (see the Appendix),

FIG. 5. Same as in Fig. 4 for the hydrogen atom.

and �θ (φ) is the photoelectron rotation angle due to the
Coulomb field. The attoclock offset angle θa will coincide
with the Coulomb rotation angle �θ (0), while the angular dis-

tribution will be Gaussian if, and only if, [J
dθE

dt
]−1 = const.

C. The root-mean-square momentum deviation

Besides the central photoelectron momentum kc, the root-
mean-square deviation D(θ ) = (k − kc)2 can also be extracted
from the photoelectron momentum distribution. It can be cal-
culated by assuming that the initial longitudinal momentum
spread p⊥ satisfies Eq. (27). Note that in the case of a close-
to-circular polarization, the component p⊥ in the plane of
polarization ppnp is directed approximately parallel to A, and
thus the spread in the values of pp leads to the scatter in the
radial component of the final momentum.

Equation (27) can be rewritten as w0[E (t0), p⊥] ∼
exp[−(p⊥/�p)2], where the width of the distribution over pp

is

�p(φ) =
√

E (t0)

κ
=

√
ω

γ (t0)
. (31)

In the presence of a Coulomb field, due to the dependence on
pp of the preexponential factor in Eq. (28), the width becomes
somewhat larger,

�p(φ) =
[

κ

E (t0)
− 3Z

κ3

]−1/2

. (32)

Suppose that the distribution over the final radial momentum
is P(k) ∼ exp[−(k/�k)2] and there is a one-to-one corre-
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FIG. 6. The angular maximum rotation angle θk as a function
of the field intensity for the hydrogen atom. A short circular pulse
(top) and a long elliptical pulse with ε = 0.95 (middle) and ε =
0.84 (bottom). The field intensity scale is in units of PW/cm2 =
1 × 1015 W/cm2.

spondence p ↔ k. In this case, if we calculate the finite radial
momenta k± with initial conditions pp = ±η�p, then �k
can be expressed as �k = (k+ − k−)/2η. Taking into account
the assumed Gaussian distribution of the final photoelectron
momentum, we obtain

D(θ ) = (�k)2

2
= [k+(θ ) − k−(θ )]2

8η
. (33)

In the calculations below, we assume η = 1/
√

2 so that k±
corresponds to momenta at which the emission probability is
equal to exp(−1/2) of the maximum corresponding to kc.

FIG. 7. Same as Fig. 6 for the He atom. A short circular pulse
(top) and a long elliptical pulse with ε = 0.84 (bottom).

V. VALIDATION OF THE DKR MODEL

We start validating our DKR model against the TDSE re-
sults by evaluating the central photoelectron momentum in the
radial direction kc. This momentum is determined according
to Eq. (4) in TDSE. In DKR, it corresponds to the zero initial
transverse momentum p⊥ = 0. Results of this comparison are
presented in Figs. 2 and 3 for the Yukawa and hydrogen atoms,
respectively. Here the central radial momentum is plotted in
various photoelectron emission directions.

The two pulse durations T = NTopt are considered. The
first case is a very short circular pulse with N = 2 and the
photon energy ω = 1.55 eV = 0.057 a.u. (the wavelength
800 nm). The second case is a moderately long elliptical pulse
with N = 10 and carrier frequency ω = 1.61 eV= 0.0592
a.u. (wavelength 770 nm). These pulses are taken at the field
intensity of 4 × 1014 W/cm2 corresponding to the Keldysh
parameter γ = 0.7. For the short circular pulse, there is a
nearly perfect agreement between the DKR and TDSE. For
a longer pulse with a larger ellipticity, ε = 0.84, the DKR
results slightly exceed that of the TDSE. This can be explained
by the fact that the present version of DKR assumes that
ionization occurs only during the period with the maximum
amplitude, near the center of the pulse. In fact, periods with
lower field intensity also make a significant contribution, due
to which the real average momentum is slightly lower.

Figure 4 displays the directional probability of the pho-
toelectron emission P(θ ) given by Eq. (3) for the Yukawa
atom. In all cases, agreement of the TDSE and DKR results
is good. An analogous set of the hydrogen data is displayed
in Fig. 5. The agreement between the DKR and TDSE is
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FIG. 8. The attoclock offset angle θa as a function of the field
intensity for the hydrogen atom. A short circular pulse (top) and a
long pulse with ε = 0.95 (middle) and ε = 0.84 (bottom).

significantly worse than for the Yukawa atom. The angular
width is substantially smaller and the attoclock offset angle θa

is larger than that in the TDSE.
Figures 6 and 7 display the angular maximum rotation

angle θk as a function of the laser field intensity for the H and
He atoms, respectively. Both the numerical DKR and analytic
DKR (ADKR) results returned by Eq. (25) are compared with
the TDSE. In the case of He, the TDSE with SAE approxima-
tion was used for calculations marked as TDSE. We see that
the prediction of the opposite signs of θk for a short circular
and long elliptical pulses is supported by both sets of calcula-
tions. At a large field intensity, a good quantitative agreement
is also reached with the TDSE results. In the very low field
intensity limit, tunneling ionization turns into a multiphoton
process which is not expected to be reproduced by a classical
model.

FIG. 9. Same as Fig. 8 for the helium atom. A short circular pulse
(top) and a long elliptical pulse with ε = 0.84 (bottom). Experimen-
tal data for ε = 0.78 [3] and ε = 0.87 [20], and theoretical results
TDSE-V from [14], are also shown.

Figure 8 displays the attoclock offset angle θa as a func-
tion of the laser pulse intensity for the hydrogen atom. The
TDSE results are compared with the DKR predictions. For
the latter model, the photoelectron rotation angles in the field
direction �θ are also plotted. The DKR dependence is very
different from that of the TDSE. Indeed, the attoclock offset
angle θa is growing with the pulse intensity in the DKR,
while it is falling in the TDSE. Meanwhile, the difference
of θa and �θ is of the same order in DKR as the difference
between the DKR and TDSE. Thus, the effect of changing
the volume element of the momentum space [which, in the
present model, is described by the factor in square brackets in
Eq. (29)] has a significant impact on the results of the DKR
and its more accurate account may eventually improve this
model.

Most troubling is the disagreement of the DKR and TDSE
for a short pulse. To demonstrate that θa �= �θ in this case, we
carried out yet another TDSE calculation for a longer N = 4
circular pulse. As seen in Fig. 8 (top), this doubling of the
pulse duration reduced the corresponding offset angles θa.
These angles turned negative at the top end of the intensity
scale. Changing pulse duration does not change the peak
vector potential and the electric field values. Thus it cannot
change the photoelectron rotation angle �θ either in the KR
or the DKR model. This indicates the presence of another
factor which affects the photoelectron angular distribution and
which depends on the pulse duration, but is not accounted for
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FIG. 10. Dependence of the root-mean-square deviation of the
radial momentum on the emission angle for the Yukawa atom. A
short circular pulse (top) and a long pulse with the polarization ε =
0.84 (bottom).

in Eq. (29). This factor emulates the Rutherford-like depen-
dence of θa on the photoelectron momentum in the KR model.

Meanwhile, for the helium atom, Fig. 9 displays a very
good agreement of the attoclock offset angles θa calculated
by both the numerical and analytic DKR, the latter based
on Eq. (29), with the TDSE. These values are close to the
earlier TDSE calculations[14]. Most probably, such a good
agreement for He is related to a larger ionization potential of
the He atom and the correspondingly larger r0 at the same
field intensity. Hence, �θ is small for He. We note that our
θa values are close to the experiment and theoretical TIPIS
results presented in [3].

We offer the following explanation of the difficulties of
the present version of DKR when calculating θa. This model
fairly well predicts the mean momentum and MEOA θk in
close agreement with TDSE. The photoelectron momentum is
gained due to the combined action of the laser and Coulomb
fields after leaving the classically forbidden region, while
MEOA depends on the initial conditions at the exit point.
This indicates that the initial conditions and the photoelectron
trajectory after the tunneling are described rather accurately
in our approach. We also notice that our account of the cur-
vature of photoelectron trajectories after the tunneling due to
the Coulomb field does not improve the agreement between
DKR and TDSE for the angular probability distribution and,
consequently, θa. These observations lead us to believe that the
source of the error lies in calculating the tunneling probability.

FIG. 11. Same as Fig. 10 for the hydrogen atom.

Namely, the assumption that the instantaneous ionization rate
is determined by a static field with the strength equal to that
of the laser field at the instant of tunneling is not valid in the
presence of the Coulomb field. From the results for He, we
can conclude that the accuracy of the approximation of the
instantaneous ionization rate improves with the increasing dis-
tance to the exit point r0 and, accordingly, with the decreasing
Coulomb field near it.

Finally, we display our results for the root-mean-square
deviation of the radial momentum. For the Yukawa atom, as
seen from Fig. 10, there is a good agreement between the
results of the analytic DKR theory and the numerical TDSE
results. In general, for the Yukawa atom, angular distributions
of all values are well reproduced by theory.

However, for the hydrogen atom, as seen from Fig. 11,
the agreement of the numerical and analytic results for D
is considerably worse, both in the shape and magnitude. Of
particular note is a 25% underestimation of the analytic results
for the case of ε = 0.84, which is observed despite the fact
that we took into account the increase in the momentum distri-
bution width due to the presence of the preexponential factor.
Without this factor taken into account, the difference from
the TDSE results is generally almost twofold. As expected,
with an enforced increase in r0, the value of D grows and
its distribution approaches the distribution for the Yukawa
atom. With an enforced increase in the initial velocity ki, the
asymmetry of the peak of the D distribution increases. Thus,
the distribution of D can serve as an independent test for
determining r0 and ki.
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VI. CONCLUSION

We have developed a dynamic extension of the Keldysh-
Rutherford model. The DKR model takes the initial conditions
from the Keldysh theory of tunneling ionization in the γ �
1 limit. These initial conditions are actually applicable to a
wider range of tunneling conditions γ � 1 as was tested by
the saddle-point method calculations [15]. We plug the initial
r0 and ki into the classical Newton’ equation of motion for the
photoelectron in the Coulomb field of the ionic core and the
electric field of the driving laser pulse. This equation is solved
numerically. Such a numerical DKR model correctly predicts
the central radial momentum, its angular distribution, and the
position of the angular extrema. In addition, an analytic DKR
theory is developed. The model is based on the assumption of
the straight motion and a uniform acceleration of the electron
in the laser field in the region where the Coulomb force of the
residual ion is sufficiently strong.

We attempted to extend the DKR model by driving it with
the instantaneous ionization rate in a static field equated with
the electric field of the laser pulse at the instant of tunnel-
ing. For the Yukawa and helium atoms, this extended DKR
model works rather well. However, for the hydrogen atom,
the angular distribution of the emission probabilities and the
position of the angular extrema are poorly described. For the
root-mean-square deviation of the radial momentum, the ac-
curacy of this model for the hydrogen atom is also not entirely
satisfactory.

Nevertheless, the mean photoelectron momentum, gained
after the tunneling, is predicted by the DKR model rather well
for all the considered targets. This points us to the tunnel-
ing stage, which presents the difficulty for the present DKR
model. More specifically, the presence of a Coulomb field
invalidates the assumption that the instantaneous ionization
rate is determined by a static field with the strength equal
to that of the laser field at the instant of tunneling. The
Coulomb field distorts the angular emission pattern already
at this early tunneling stage. For an enhanced DKR model,
an improved expression for the ionization rate is required,
taking into account both the time-dependent laser and static
Coulomb fields. Such an expression can be derived using the
saddle-point method. This extension goes beyond the scope of
the present work and will be attempted in the future.

APPENDIX: DIRECTIONS OF THE ELECTRIC FIELD
AND THE VECTOR POTENTIAL

The direction of the vector potential A(t ) is

θA(t ) = tan−1[tan(ωt )/ε],

dθA

dt
= ω

ε

(ε2 − 1) cos2 ωt + 1

= ω[ε2 + (1 − ε2) cos2 θA]/ε. (A1)

Hence, the dependence of the absolute value of the momen-
tum of the emitted electron on the angle (counted from the
direction of the most probable ejection in the absence of a
long-range field) is

|k0(θ )|2 = k2
min

1

(1 − ε2) cos2 θ + ε2
. (A2)

The direction of the electric field vector E(t ) = dA(t )/dt
(neglecting the derivative of the envelope) is

θE (t ) = − tan−1[cot(ωt )/ε], (A3)

dθE

dt
= ω

ε

(1 − ε2) cos2 ωt + ε2
. (A4)

From this, we obtain the relationship between the departure
angle (in the absence of the nuclear field) and the direction of
the electric field at the time of tunneling,

θE = − tan−1[cot θA/ε2] = tan−1[tan(θA − π/2)/ε2]. (A5)

In the case of a short circularly polarized laser pulse, the
maximum strength modulus E (t ) and maximum A(t ) coincide
in time. If we set |A(t )| = A0 f (t ), where f (t ) is the pulse
envelope, then the direction of A(t ) in this case is

θA(t ) = ωt (A6)

and

k0(θ ) = f (θ/ω)kmax. (A7)

The direction of the electric field vector E(t ) = dA(t )/dt ,
assuming the first derivative of the envelope to be small, is

θE (t ) = ωt − π/2 − f ′(t )

ω f (t )
. (A8)
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