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Determination of transition dipole moments of solids with high-order harmonics
driven by multicycle ultrashort pulses
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We propose an all-optical method to reconstruct the transition dipole moment of solid materials. Our method
is realized by high-order harmonic generation driving by a multicycle laser pulse. The relations between the
transition dipole moment and the harmonic yield are established. It is found that the transition dipole phase is
related to the intensity ratio of the neighboring odd and even harmonics, and the modulus of the transition dipole
moment is related to the odd harmonics. We investigate the high-order harmonic generation in symmetric crystals
and asymmetric crystals by solving the semiconductor Bloch equations and use these relations to successfully
reconstruct their relative transition dipole moments.
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I. INTRODUCTION

The optical properties of solid materials are determined
by the transition dipole moment (TDM), which describes the
transition ability of electrons. The TDM texture reflects the
nature of the electronic states, such as atomic orbital and
interatomic bonding, and provides crucial insight into crys-
tallographic structures, such as the band structure.

Accompanied by the rapid theoretical and experimental
progress, many methods have been developed to measure the
modulus and direction of TDM. The single-frequency hole
burning spectrum [1] is used to measure the modulus of the
TDM (mTDM). By using transient absorption spectroscopy
with polarized probing in combination with different tech-
niques such as Fourier-transform infrared spectroscopy [2] or
fluorescence spectroscopy [3], one can obtain the orientation
of the TDM in isotropic samples. However, it is difficult
to determine the full orientation distribution function from
measuring electronic transitions or the spatial orientations of
fluorescence polarizing angles alone. Thus one uses magne-
tophotoselection effects [4] to obtain a precise determination
of the 3D orientation of the TDM directly from isotropic
samples. Using these methods, one can obtain the mTDM and
the orientation of the TDM. However, there are few studies on
measuring the distribution of TDM in the momentum space.

Recently, high-order harmonic generation (HHG) has been
observed experimentally from a wide variety of solid media
[5–10]. This suggests new approaches [11–19] for crystal-
lographic analysis and probing the electronic properties of
solids. By using HHG spectra driving by subcycle laser
pulses [20], one can reconstruct the distribution of mTDMs
in the momentum space. By using the interband resonance

*liangl@hust.edu.cn
†pengfeilan@hust.edu.cn

high-order harmonic, one can reconstruct the structure of the
two-dimensional TDM of black phosphorus at the isoenergy
line in the momentum space [21]. However, the previous
scheme requires sub-optical-cycle, carrier-envelope-phase-
stable light pulses. It is challenging to accurately control
and measure the carrier-envelope phase in experiments [22].
Moreover, the transition dipole phase (TDP) is not recon-
structed, which plays an important role in solid HHG [23].
For asymmetric crystals, the TDP cannot be ignored and these
schemes are no longer applicable.

In this work, we propose to use the HHG spectrum driving
by multicycle laser pulses to reconstruct TDM. We theoret-
ically establish the relationships between mTDM, TDP, and
the harmonic yield. We numerically simulate HHG in sym-
metrical crystals and asymmetrical crystals, respectively, and
successfully reconstruct their relative mTDMs and TDP by
using these relationships. In addition, we verify the robustness
of this scheme under various laser amplitudes.

This paper is organized as follows. In Sec. II A, we intro-
duce the semiconductor Bloch equations for studying solid
HHG. Then we establish the relationship between TDM and
the harmonic yield in Sec. II B. The HHG process is nu-
merically simulated. The results are shown in Sec. III. We
reconstruct the TDMs of symmetric crystals (Sec. III A) and
asymmetric crystals (Sec. III B), respectively. The summary is
given in Sec. IV.

II. THEORETICAL MODEL

A. Semiconductor Bloch equations

The HHG spectra can be obtained from the semiconductor
Bloch equations (SBEs) [24–30], which have been proved
to describe HHG well. We consider thin-layer materials that
are not strongly correlated. When the degree of excitation
is low, the electron-electron correlation [25,31–33] and the
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propagation effects [34] can be neglected. Based on the single-
active electron approximation and dipole approximation [26],
the SBEs are given by (atomic units are used throughout this
article unless stated otherwise)

dπ (K, t )

dt
= −π (K, t )

T2
− iξ (K, t )[2Nv (K, t ) − 1]e−iS(K,t ),

dNv (K, t )

dt
= −iξ ∗(K, t )π (K, t )eiS(K,t ) + c.c., (1)

d[Nv (K, t ) + Nc(K, t )]

dt
= 0,

where Nm(m = c, v) is the band population. π (K, t ) is the
off-diagonal element of the density matrix. ξ (K, t ) = F(t ) ·
d[K + A(t)] is the Rabi frequency and d(k) = 〈c, k|r̂|v, k〉〉
represents the Bloch states. S(K, t ) is the classical action.
K = k − A(t ) is the shifted crystal momentum and the vector
potential A(t ) satisfies [dA(t )/dt] = −F(t ). The first Bril-
louin zone is also shifted to BZ = BZ − A(t ); T2 is the
dephasing time. We focus on the intensity of the primary
plateau, which is not affected by the higher CB [20,35–37]
when we consider wide separated bands crystals. Thus we
use the two-band SBEs to calculate the harmonic spectrum
of these crystals in this work.

The harmonic spectrum is obtained from the Fourier trans-
form of the current. Their expressions are as follows:

Jra(t ) =
∑

m=c,v

∫
BZ

vm[k + A(t )]Nm(K, t )d3K,

Jer (t ) = d

dt

∫
BZ

d[k + A(t )]π (K, t )eiS(K,t )d3K + c.c., (2)

where vm(k) = ∇kEm(k) is the group velocity in band m and
Em(k) is the band dispersion. The integration is carried out
over the whole first Brillouin zone.

B. Relationship between HHG and TDM

Note that the transition dipole moments are obtained based
on the three-dimensional (3D) wave functions; we reduce the
3D problem to a 1D problem by projecting the 3D dipole
moment onto the polarization direction of the driving laser. In
this work, we consider a long-duration pulse. The ionization is
dominant near the peak of the pulse and the effect of the pulse
envelope can be ignored. With the parameters used in this
work, the harmonics with the energies above the minimum
band gap are dominated by the interband current, which has
been also verified in recent research [20,26,28,38–41]. The
generated high-order harmonic can be expressed by a series
of emissions in time domain [42]

D(t ) =
c,v∑

t ′,tr ,k0

acv (t ′, tr, k0)e−iScv (t ′,tr ,k0 ) pcv (t ′, tr, k0),

where D(t ) is the interband current, k0 is the crystal mo-
mentum for the electron, and c, v are the band indexes. t ′
is the ionization moment, tr is the recombination moment,
acv (t ′, tr, k0) is the weight of the channel, and pcv (t ′, tr, k0) is
the polarization between the electron-hole pairs when recol-
lision occurs. Note that pcv (k) = −[Ec(k) − Ev (k)]dcv (k) and

acv (t ′, tr, k0) ∝ dcv (k′) · F (t ′). Here S is the classical action,

Scv (t ′, tr, k0) =
∫ tr

t ′
εk(τ )

c − εk(τ )
v dτ

−
∫

Q

[
dk

cc − dk
vv

]
dk − [

θ k(tr )
cv − θ k(t ′ )

cv

]
, (3)

where θ k
cv is the phase of d (k); Q is the evolution path of k(t )

from t ′ to tr . This action includes the Berry connections and
TDPs. It is proved to be gauge invariant [43,44].

The harmonic spectrum can be calculated by Fourier trans-
formation of D(t ):

I (ω) =
∣∣∣∣
∫

D(t )e−iωt dt

∣∣∣∣
2

. (4)

In an optical cycle, there are two dominant emissions
[D1(t ), D2(t + T0/2)], which are contributed by the electrons
ionized around the instantaneous maximum of the driving
field. Notice that D2(t + T0/2) = D1(t )ei(π+�S). Here �S =
S2 − S1 is the phase difference between the emissions 1 and
2 and π phase shift is due to the reversal sign of the electric
field. The Fourier transform of these emissions are expressed
as

D1(ω) =
∫

D1(t )e−iωt dt

∝ d∗(kr )d (k′)F (t ′)e−iωt−iS(t ′,tr ,kr )− tr −t ′
T2 ,

D2(ω) =
∫

D2(t )e−iωt dt =
∫

D1

(
t − T0

2

)
ei(π+�S)e−iωt dt

= D1(ω)ei(π+�S−ω
T0
2 ), (5)

where F is the laser electric field, ω = Nω0, ω0 is the fre-
quency of the laser pulse, and N is the harmonic order.
Therefore, the yield of the N th harmonic can be given by

IN = |D1(ω) + D2(ω)|2

∝
∣∣∣d∗(kr )d (k′)F (t ′)e

tr −t ′
T2 (1 − ei(�S−Nπ ) )

∣∣∣2

. (6)

For the symmetric crystals, the Berry connections
are zero and TDP is constant [43]. The action is
S(t ′, tr, kr ) = ∫ tr

t ′ εk(τ )
c − εk(τ )

v dτ = S(t ′ + T0
2 , tr + T0

2 ,−kr )
and �S = 0. Therefore, the yield of the N th harmonic is as
follows:

IN ∝
∣∣∣d∗(kr )d (k′)F (t ′)e

tr −t ′
T2 (1 − e−iNπ )

∣∣∣2

. (7)

Clearly IN = 0 for even harmonics; the harmonic spectrum
consists of odd harmonics only. Then we take the ratio of the
neighboring odd harmonics (I2n−1, I2n+1),

I2n−1

I2n+1
=

∣∣∣∣∣∣
d∗(k2n−1

r )d (k′2n−1)F (t ′2n−1)e
t2n−1
r −t ′2n−1

T2

d∗(k2n+1
r )d (k′2n+1)F (t ′2n+1)e

t2n+1
r −t ′2n+1

T2

∣∣∣∣∣∣
2

=
∣∣∣∣d (k2n−1

r )

d (k2n+1
r )

∣∣∣∣
2

, (8)

where the kN
r is the lattice momentum kr corresponding to the

N th harmonic. In this work, we consider the direct band-gap
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crystals where the minimum band gap is at the high-symmetry
	 point of the Brillouin zone. Driven by linearly polarized
long-duration pulses, the electrons ionized near the 	 point
contribute predominantly to the HHG because the harmonics
generated by them are constructive interference [42]. The
TDM d (k′) at ionization times are approximately equal to
TDM at the 	 point. Note that the ionization is dominant near
the peak of the pulse. The field strengths F (t ′) in the neighbor-
ing high-order harmonics are approximately equal. Moreover,
for the neighboring high-order harmonics, the electron accel-
eration time tr − t ′ is approximately equal [18,20]. Thus the

dephase time terms e− tr −t ′
T2 are approximately equal. Our re-

construction applies to the case where the excitation happens
at the localized 	 point at the moment near the peak of the
electric field. Within these conditions, we can get Eq. (8) to
reconstruct TDM. Then we can map the reconstruction result
to the momentum space according to the law of conservation
of energy.

For the asymmetric systems, since the Berry connection
and the TDP are not zero, the action S(t ′, tr, kr ) separated by
T0/2 is not equal. We set �
 = ∫

Q(dk
cc − dk

vv )dk + θ k(t ′ )
cv −

θ k(t )
cv , which is a gauge-invariant quantity [43–45]. The expres-

sions of action S(t ′, tr, kr ) become

S(t ′, tr, kr ) =
∫ ts

t ′
s

εk(τ )
c − εk(τ )

v dτ − �
,

S

(
t ′ + T0

2
, tr + T0

2
,−kr

)
=

∫ tr+ T0
2

t ′+ T0
2

εk(τ )
c − εk(τ )

v dτ + �
,

�S = 2�
. (9)

It is shown that there is always a set of basis func-
tions ϕn(k) leading to ∂kϕn(k) = dk

nn = 0 [43,46]. Now �
 =
�θ = θ (k′) − θ (kr ); then we substitute them into Eq. (6),

IN ∝
∣∣∣d∗(kr )d (k′)F (t ′)e

tr −t ′
T2 (e−i�θ − ei�θ e−iNπ )

∣∣∣2

. (10)

We can get the yield of odd harmonics and even harmonics,

I2n ∝ ∣∣d∗(k2n
r

)
d
(
k′2n

)
sin (�θ )

∣∣2
,

I2n+1 ∝ ∣∣d∗(k2n+1
r

)
d
(
k′2n+1

)
cos (�θ )

∣∣2
. (11)

Considering that the absolute value of the TDM changes
smoothly with momentum, the factor |d∗(kr )| is approx-
imately equal for the neighboring high-order harmonics.
Moreover, because the electrons are mainly excited from the
	 point, the TDP at 	 point θ (k′) is set to zero. The intensity
ratio of the neighboring odd and even harmonics is given by

I2n

I2n+1
= tan2θ (k2n+1

r ). (12)

Then by substituting Eq. (12) into Eq. (8), we can get the
relationship between mTDM and the harmonic yield,

I2n−1

I2n+1
=

∣∣∣∣d
(
k2n−1

r

)
cos

[
θ
(
k2n−1

r

)]
d
(
k2n+1

r

)
cos

[
θ
(
k2n+1

r

)]
∣∣∣∣
2

. (13)

The TDP and the relative values of mTDM can be recon-
structed by using Eq. (13) and Eq. (12). Our scheme combines

FIG. 1. (a) Energy bands of symmetrical (black dashed line) and
asymmetrical crystals (red dotted line). The valence (m = v) and
conduction (m = c) band come from the energy bands in the X − 	

direction of ZnO. (b) The band gap of these materials. (c) The TDPs
of symmetrical crystal (phase 0) and asymmetric crystal (phases
1,2,3). (d) The mTDMs of symmetrical crystal (black dashed line)
and asymmetric crystal (red dotted line).

the experiment [1] that measures the average TDM size; the
magnitude of TDM can be determined.

III. RESULTs AND DISCUSSION

Similar to Refs. [12,13,35,37], we consider the HHG from
crystal with wide separated bands, where only two bands,
i.e., one CB and one VB, are dominant in the HHG process.
Figure 1(a) shows the energy bands of symmetric crystals
(black dashed line) and asymmetric crystals (red dotted line),
in which the two bands are marked by VB and CB. Figure 1(b)
shows their band gaps, in which the minimum band-gap
energy between CB and VB is Eg = 0.1213 a.u. (3.3 eV).
The mTDMs and TDPs are shown in Figs. 1(d) and 1(c),
respectively. The TDP of symmetric crystals (phase 0) is zero
for all crystal momentum due to the inversion symmetry. In
contrast, there exists nonzero TDPs for asymmetric crystals
(phase 1,2,3). To demonstrate our scheme, we set the TDPs as
sin(a0kx )π

4 (phase 1), ( 1
4 a0kx )3 (phase 2), and 1

4 a0kx (phase 3).
At the same time, the mTDMs of these crystals are set to the
same.

A. Symmetric crystal

We first demonstrate our scheme in a symmetrical crystal
[phase 0 in Fig. 1(c)]. We use the finite difference method
to solve the time evolution process. The kx axis in recip-
rocal space is discretized by 481 points. The step size of
the time grid is 0.537 a.u. The wavelength and intensity of
the laser pulses are 3.9 μm (ω0 = 0.0117 a.u.) and 7.2 ×
1011 W/cm2(F0 = 0.004 a.u.). The electric-field waveform is
a trapezoidal envelope of 30T0, where T0 = (2π/ω0) is an
optical cycle. T2 is the dephasing time, which is set to 1.2 fs
[47,48] in this work.

Figure 2(a) shows the solid harmonic spectrum generated
from multicycle laser pulses. The red line in this figure marks
the minimum band gap. We can see that the harmonic
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FIG. 2. (a) Total HHG spectrum of the symmetric crystal (blue
solid curve). (b) The HHG spectrum produced by interband (light
blue dashed curve) and intraband currents (green dash-dotted curve).
The orange dotted curve is the total HHG spectrum. The red dotted
curve is the total harmonic peak variation curve and the blue dashed
(black dash-dotted) curve is the interband (intraband) harmonic peak
variation curve.

spectrum consists of odd harmonics only. The HHG spectrum
has a falloff, of eight or nine orders of magnitude, from the
3rd to the 17th harmonic. Then a plateau appears for the 17th
to 37th harmonics, where the harmonic intensities remain ap-
proximately constant. Finally, the harmonics spectrum drops
rapidly near the 37th harmonic. To compare the contributions
of the intraband current and the interband polarization to the
total harmonic spectrum, we show their harmonic spectrum in
Fig. 2(b). Below the 15th harmonics, the intraband harmonics
(the black dash-dotted line) are three to five orders of mag-
nitude higher than the interband harmonics (the blue dashed
line). In the 15th to 17th harmonics, the two contributions be-
come comparable with intraband HHG being slightly stronger.
Above the 17th harmonics, the intensity of the interband har-
monic spectrum is two to four orders of magnitude higher than
that of the intraband. Thus the interband current dominates the
intraband contribution in the plateau. We choose the harmon-
ics in the plateau region to reconstruct TDM.

After obtaining the harmonic spectrum, the relative value
of the TDM can be calculated by Eq. (8). To get the distribu-
tion of TDM in the momentum space, we found the mapping
relationship between the harmonic order and the lattice mo-
mentum (black solid line) through the dispersion relationship,
as presented in Fig. 3(a). It can be seen that the lattice mo-
mentum corresponding to these points (the abscissa of the red
solid point) can reach near the boundary of the Brillouin zone.
Figure 3(b) shows the distribution of reconstructed TDM
in the momentum space. Since Eq. (8) calculates the rel-
ative value of TDM, we normalize the target TDM in the
same order. The target TDM is a slowly descending curve
(blue dash-dotted curve) and the solid pink points are the
reconstructed TDM. By comparing the target TDM with the
reconstructed TDM, it can be observed that the mapped k-
dependent TDM in most points is closely consistent with the
target TDM.

FIG. 3. (a) Mapping relationship between the harmonic order
and the lattice momentum. The red solid points are the sampling
points and the black solid line is derived from band gap. (b) For
comparison, the target TDM (blue dash-dotted line) and the recon-
struction of the TDM (pink solid point) by using the total HHG
spectrum of Fig. 2 are presented here.

B. Asymmetric crystal

Next, we discuss the reconstruction in asymmetric crystals,
in which their TDPs correspond to phases 1, 2, and 3 in
Fig. 1(c). The laser parameters are the same with Sec. III A.
Their total harmonic spectra are shown in Fig. 4. The blue,
red, and black lines correspond to the harmonic spectra of
phase 1, 2, and 3, respectively. These harmonic spectra still
have a rapid decline below the 17th order, and then form a
plateau in the 17th to 37th order, and cut off above the 37th
order. In addition, even harmonics appear in these harmonic
spectra.

According to Eq. (13) and Eq. (12), the TDP and the
mTDM corresponding to each order can be calculated. Same
as Fig. 3, we can get the distribution of reconstruction results
in the momentum space. Figure 5(b) shows the reconstruction
results of our three forms of TDP. The solid line is the target
TDP and the points (black circle, pink square, and green
diamond) are the reconstructed TDPs. We can see that whether

FIG. 4. Total harmonic spectrum from the two-band calculation
when TDP is phase 1,2,3, respectively. The laser parameters are
3900 nm in wavelength, 7.2×1011 W/cm2 in intensity, and the wave-
form of the electric field is a trapezoidal envelope of 30 optical
cycles.

063101-4



DETERMINATION OF TRANSITION DIPOLE MOMENTS OF … PHYSICAL REVIEW A 105, 063101 (2022)

FIG. 5. (a) Target TDM (blue solid line) and the reconstructed
mTDMs under different TDPs (black circle, pink square, and green
diamond). (b) The target TDPs (blue solid line, orange dashed line,
and red dash-dotted line) and the reconstructed TDPs (black circle,
pink square, and green diamond).

it is a saturated, linear, or cubic TDP, the reconstruction results
are in good agreement with the target TDP. In Fig. 5(a), the
solid line is the target mTDM and the dashed lines are the re-
construction results. In these three cases, the mapped mTDMs
(black circle, pink square, and green diamond) in most points
is consistent with the target mTDM (blue solid line).

To examine the robustness of our scheme under the
laser amplitude, we reconstruct the TDM under various field
strengths. Through numerical simulation, the field strength
range in this work is 0.0038 a.u. to 0.0052 a.u. We choose
phase 3 and keep other parameters (except electric-field
strength) consistent with Sec. III A. Figures 6(a) and 6(b)
respectively show the reconstructed mTDMs and TDPs. It can
be seen that most reconstruction points do not change much
with intensity and they are all near the target curve except
for the points near the boundary of the Brillouin zone. The
harmonics corresponding to the points on the boundary of
the Brillouin zone are close to the cutoff and are sensitive
to changes in electric-field strength, resulting in some small
changes in the reconstruction results. Therefore, our scheme
can accurately reconstruct TDM in a large field strength range.

FIG. 6. Reconstruction results under various field strengths.
(a) The target mTDM (black solid line) and the reconstructed mT-
DMs under different field strengths (dark red cross, orange diamond,
green square, and blue solid circle). (b) The target TDP (black
solid line) and the reconstructed TDPs under different field strengths
(dash-dotted lines with different data point symbols).

IV. SUMMARY

In this work, we successfully reconstruct the relative dis-
tribution of mTDM and TDP in one-dimensional momentum
space. In our scheme, the reconstruction is based on the rela-
tion between the mTDM, TDP, and the intensity of harmonics
in the plateau region, in which solid high-order harmonics
are driven by multicycle laser pulses. Our scheme applies
to both symmetric crystals and asymmetric crystals and can
accurately reconstruct the relative mTDM and TDP in a large
field strength range. The success of the all-optical method
would pave the way for exploring the distribution of TDM
in two-dimensional momentum space.
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