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A method for calculating ion-atom ionizing collisions is formulated and applied to single ionization of helium
induced by energetic proton impact. Within the frozen-core model for the residual helium ion, the four-body
problem in the exit channel is recast as an inhomogeneous Schrödinger equation for the Coulomb three-body
system (e−, He+, p+). The asymptotic behavior of its solution contains the transition amplitude. We suggest to
solve the driven equation in the representation of so-called parabolic convoluted quasi-Sturmian (CQS) basis
functions which are constructed using quasi-Sturmians (QSs) for the (e−, He+) and (p+, He+) subsystems.
By applying the corresponding Coulomb Green’s function operators, these QSs are generated from orthogonal
complements to square-integrable (L2) Sturmian functions in parabolic coordinates. In the proposed parabolic
CQS approach explicit asymptotic expressions for the basis functions provide an expansion of the transition
amplitude in terms of “basis amplitudes,” which we express analytically. The proton-electron interaction is
treated as a perturbation and is approximated by a truncated Sturmian basis-set expansion. It is found that, at least
in the high-energy limit, the ionization amplitude converges pretty fast as the number of terms in the separable
expansion for the proton-electron potential is increased. The calculated fully differential cross sections for
singly ionizing 1-MeV p-He collisions in several kinematical regimes in the scattering plane are found to be
in reasonable agreement with experimental data and with the theoretical results obtained using the first Born
approximation, the 3C model, and the wave-packet convergent close-coupling method. The theory-experiment
discrepancy over the binary peak position observed by other authors remains unexplained.
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I. INTRODUCTION

Fully differential cross sections (FDCSs) for the ionization
of helium by fast proton impact provide valuable detailed
information about the dynamics of breakup processes of
few-body Coulomb systems. Using cold target recoil ion mo-
mentum spectroscopy (COLTRIMS) [1–3], FDCSs of singly
ionizing 1-MeV p-He collisions have been measured in var-
ious kinematical regimes [4,5]. The collected high-precision
angular data stimulated several theoretical studies. The first
Born approximation (FBA) with respect to the proton-helium
interaction [4,5], being applied to the analysis of the experi-
mental data, revealed shortcomings of the method, especially
in the kinematic regime far from the Bethe ridge. The data
were also analyzed with more advanced and involved ap-
proaches. For example, the classical trajectory Monte Carlo
(CTMC) method has been applied [6]; this nonrelativistic
nonperturbative approach provides a classical description of
the dynamics of the three-body breakup processes, which
necessarily misses some quantum mechanical effects. The

well-known continuum distorted-wave–eikonal initial-state
(CDW-EIS) model [7,8] and its variations in the semiclassical
and fully quantum formulations have been used [9–11]; in this
model the relative motion of the proton and helium nucleus
is described within the straight-line version of the impact
parameter approximation, while the initial bound and final
ionized electron states are treated using the distortion factors
due to the two-center field of the projectile and target. The
special case of the quantum CDW-EIS, the so-called 3C (or
BBK) model [12,13], in which the final-state interactions in
the system (e−, He+, p+) are described by three Coulomb
continuum functions (with, in general, effective charges), has
been applied to the calculation of FDCS in Refs. [5,14]. In
addition, in Ref. [5], the Born-Faddeev approximation was
examined. A more advanced semiclassical approach (beyond
the perturbative model), called the wave-packet convergent
close-coupling (WP-CCC) method [15,16], was also imple-
mented to compute FDCSs. Within this method the helium
nucleus is assumed to be located at the origin, while the proton
is assumed to be moving along the straight-line trajectory. The
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electronic part of the wave function in a combined potential
of the projectile and target (in the framework of the frozen-
core approximation) is expanded in terms of bound states
and wave-packet pseudostates describing the active electron
of the helium atom (these wave-packet pseudostates represent
a finite interval of the active electron continuum). The time-
dependent Schrödinger equation for the total scattering wave
function is then solved using a semiclassical approximation.

In spite of these theoretical developments, none of the
approaches is capable of completely explaining the experi-
mentally observed angular distributions. Specifically, the FBA
reproduces the two-peak structure of the measured FDCSs in
the scattering plane, with the angular positions of the binary
and recoil peaks coinciding with the q and −q directions,
respectively, where q is the momentum transfer. In the mea-
surements, the positions of both peaks turn out to be visibly
shifted towards the forward direction compared to the FBA
predictions. Only a small portion of such shifts are explained
by beyond-FBA theoretical approaches. The most problematic
aspect is that the discrepancy between theory and experiment
in the kinematical regime far off the Bethe ridge still remains
in the position of the binary peak. This peak originates from
the binary encounter between the projectile proton and the
target electron, constituting the major ionization mechanism
and giving the dominant contribution to the cross section.
Therefore it is disturbing that well-established theories fail to
give a proper account of the experimentally observed binary
peak position. This points out the need for further develop-
ment of our theoretical understanding of ion-atom ionizing
collisions in particular, and the Coulomb few-body problem
in general. The refinement of the corresponding theoretical
apparatus is also important for such applications as radiation
material science [17] and ion therapy [18,19], where the ion-
atom ionizing collisions play one of the key roles.

In this paper, we wish to investigate the ionization process
under consideration with our quantum approach outlined in
Ref. [20] that accounts for the total energy spectrum of the
active electron. The scope here is twofold. The first, method-
ological, aim is to provide the analytical details of the method,
together with the implemented numerical strategy, and to test
its robustness and efficiency in various kinematic situations.
The second aim is to find out whether the proposed approach
can provide an overall better description of the measured
angular data, and in particular if it can help in shedding
some light on the origin of the binary peak position discrep-
ancy. Since we are dealing with high-energy protons, their
plane-wave boundary conditions are conveniently described
in parabolic coordinates with the axis ẑ chosen along the
incident proton momentum K0. Our treatment of the transi-
tion amplitude assumes that the state of the residual He+ ion
is frozen in the exit channel of the ionization reaction and
therefore the calculation of the amplitude is cast as an inho-
mogeneous Schrödinger equation for the Coulomb three-body
system (e−, He+, p+): the asymptotic behavior of its solution
contains the sought-for amplitude. We propose to solve this
driven equation by expanding in convolutions of adequate
quasi-Sturmian functions corresponding to the two (e−, He+)
and (p+, He+) subsystems. In doing this, we introduce an
auxiliary proton plane wave (with a momentum Q � K0) into
the basis functions in order to avoid numerical evaluations of

the integrals of very rapidly oscillating functions. The proton-
electron interaction, treated as a perturbation, is approximated
by a truncated expansion on the basis of square-integrable (L2)
Sturmian functions in parabolic coordinates. The efficiency of
such a representation of the Coulomb potential is tested in the
high-energy limit, in particular by comparing the calculated
cross sections with the results obtained in the framework
of the 3C model [14], which obeys correct leading-order
Coulomb asymptotic conditions.

The paper is organized as follows. In Sec. II A, within
the frozen-core model for the residual helium ion the ion-
ization problem is cast in the form of a driven equation. In
Sec. II B, we discuss the details of constructing the parabolic
convoluted quasi-Sturmian (CQS) functions from one-particle
quasi-Sturmians (QSs). For the latter we derive analytically
the leading asymptotic behavior and identify what we name
basis amplitudes. The solution of the driven equation is then
proposed as an expansion on CQS: from the asymptotic analy-
sis, the transition amplitude to the ionization process is finally
expressed in terms of these basis amplitudes. In Secs. II C
and II D we use finite Sturmian-expansion representations of
the proton-electron interaction and Green’s function of the
two noninteracting hydrogenlike subsystems (e−, He+) and
(p+, He+) to convert the driven equation into a matrix equa-
tion. The numerical solution of the algebraic problem provides
then the coefficients of the CQS expansion. In Sec. III, the
results of our numerical calculations are presented. First,
we examine convergence issues of the differential ionization
cross sections, in particular with respect to the number of
terms in the representation of the proton-electron potential.
Then, we make a comparison with the experimental data and
theoretical cross sections obtained by other authors. Finally,
Sec. IV provides a summary of this work.

Atomic units (a.u.) in which h̄ = e = me = 1 are used
throughout unless otherwise specified.

II. THEORY

We wish to describe the ionization of helium in its ground
state by energetic proton impact,

He(1s2) + p+ → e− + p+ + He+(1s), (1)

leaving the target in the hydrogenic ground state ψHe+
1s .

A. Transition amplitude

Using the frozen-core model for the residual helium ion,
we have a factorized final-state wave function of the form

�
(−)
K,ke

(R, r)ψHe+
1s (r′), (2)

r, r′, and R being the electrons and the proton coordinates
with respect to the origin (the helium nucleus), and

ψHe+
1s (r′) =

√
8/π exp(−2r′) (3)

is the frozen electron wave function. Assuming this, we can
then write down the following expression for the amplitude:

TK,ke = 〈
�

(−)
K,ke

, ψHe+
1s

∣∣V̂i|K0,�
(0)〉. (4)

Denoting Ĥ the Hamiltonian of the three-body system
(e−, He+, p+), the final-state wave function �

(−)
K,ke

satisfies the

062818-2



PARABOLIC QUASI-STURMIAN APPROACH TO … PHYSICAL REVIEW A 105, 062818 (2022)

Schrödinger equation

[E − Ĥ ]|� (−)
K,ke

〉 = 0, (5)

where ke and K are the momenta of the electron and proton,
respectively. Assuming the helium nucleus to be at rest during

the process, the energy of the system is given by E = k2
e
2 + K2

2mp

(mp � 1836.15 is the mass of the proton).
In the amplitude (4), V̂i is the incident channel interaction:

Vi = 2

R
− 1

|R − r| − 1

|R − r′| . (6)

Let F denote the matrix element

F (R, r) = 〈
ψHe+

1s

∣∣V̂i|�(0)〉, (7)

where the correlated ground-state wave function �(0)(r, r′)
is obtained by diagonalizing of the full helium Hamiltonian
(see details in Sec. III). The amplitude, symmetrized in the
coordinates r and r′ of the two target electrons, then reads

T S
K,ke

=
√

2〈� (−)
K,ke

|K0, F 〉, (8)

where |K0〉 denotes the plane wave

〈R|K0〉 = eiK0·R (9)

for the projectile with the momentum K0.
It follows from the property of the Green’s function

operator Ĝ(+)(E ) ≡ [E − Ĥ ]−1 [21,22] that the sought-for
amplitude is contained in the leading asymptotic form—for
large values of the hyperradius ρ = √

mpR2 + r2—of the so-
lution of the inhomogeneous equation [20]

[E − Ĥ ]|�(+)〉 = |K0, F 〉, (10)

satisfying outgoing boundary conditions. Indeed, the solution
can be formally written as

|�(+)〉 = Ĝ(+)(E )|K0, F 〉. (11)

In order to make this formal approach numerically practi-
cal, we use parabolic quasi-Sturmians described hereafter to
search the solution �(+) of Eq. (10), and from its asymptotic
behavior we extract the transition amplitude.

B. One-particle parabolic quasi-Sturmians and two-particle
convoluted quasi-Sturmians

The final channel Hamiltonian Ĥ for the three-body system
can be written as

Ĥ = Ĥ0 + Û , (12)

where we have a separable three-body Hamiltonian

Ĥ0 = − 1

2mp
∇2

R − 1

2
∇2

r + 1

R
− 1

r
, (13)

and the proton-electron interaction identified as the perturba-
tion

Û = − 1

|R − r| . (14)

If desired, the splitting (12) of the Hamiltonian can be refined
by including in Ĥ0 also short-range corrections, for example
by using Hartree potentials as done in Ref. [20].

In this work we treat the problem in parabolic coordinates
(ξ , η, φ) with the ẑ axis chosen along the incident proton
momentum K0, and we use the square-integrable Sturmians
defined by [23]

〈ξ, η, φ|n, m, κ〉 = eiκφ

√
2π

ϕ|κ|
n (ξ ) ϕ|κ|

m (η), (15)

where

ϕλ
n (ρ) =

√
2bn!

(n + λ)!
(2bρ)λ/2e−bρLλ

n (2bρ), λ = |κ|, (16)

with the basis scale parameter b; Lλ
n are the associated La-

guerre polynomials [24].
Let

|N〉 ≡ |n〉|m〉 (17)

be the product of two Sturmians

|n〉 ≡ |n1, n2, κ〉, |m〉 ≡ |m1, m2, ω〉, (18)

of the parabolic coordinates ξ1, η1, φ1 and ξ2, η2, φ2 associated
with R and r, respectively. Note that ω = −κ since we restrict
ourselves to the states with the magnetic quantum number
ML = 0. Let

|̃l〉 = |ñ, m, κ〉 = w|n, m, κ〉, w(ξ, η) = 4

ξ + η
, (19)

be the vector orthogonal to |l〉 ≡ |n, m, κ〉, that is to say,

〈ñ, m, κ|n′, m′, κ′〉 = δn,n′δm,m′δκ,κ′ . (20)

Then |Ñ〉 ≡ |̃n〉|m̃〉 represents the orthogonal complement to
|N〉 [20], such that

〈N|Ñ′〉 = δN,N′ , (21)

N denoting the set of quantum numbers N ≡ {n,m}.
We suggest for the solution to the driven Eq. (10) an ex-

pansion

|�(+)〉 =
∑
N

CN|S (+)
Q,N

〉 (22)

in terms of functions S (+)
Q,N

satisfying the equation

[E − Ĥ0]|S (+)
Q,N

〉 = |Q, Ñ〉, (23)

that is similar to Eq. (10) with Q = εK0, ε < 1.
The formal separability of Eq. (23) is based on treating the

proton-electron Coulomb interaction as a perturbation. On the
other hand, the solution of Eq. (23) can be expressed in terms
of basis functions that we call convoluted quasi-Sturmians
[25]: they are constructed as a convolution of two suited
one-particle parabolic QSs (see, e.g., Eq. (26) in Ref. [23]),
corresponding to the noninteracting hydrogenlike systems,
(p+, He+) and (e−, He+). For the present purposes, we need
to include also an auxiliary plane-wave |Q〉 state for the pro-
jectile, so that we modify the one-particle QS introduced in
Ref. [23]. These “shifted” QSs, for given charge Z and mass
M, are defined by

|Q(+)
Q,l

〉 = Ĝ(+)
C (Z, M; E )|Q〉|̃l〉, (24)
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where Ĝ(+)
C (Z, M; E ) = [E − ĤC]−1 represents the Coulomb

Green’s function for the Hamiltonian

ĤC = − 1

2M
∇2

X + Z

X
, (25)

X being the position vector.
Since in our approach the transition amplitude is eventually

extracted from the asymptotic behavior of solution (22), we
need the asymptotic behavior of |Q(+)

Q,l
〉 for large X . We were

able to show that (see Appendix A for details of the derivation)

〈X|Q(+)
Q,l

〉 � −M
eiκφ

√
2π

A(+)
l

(β, P, Q; θ )

× exp{i[PX − β ln(2PX )]}
X

, (26)

where P = √
2ME and β = MZ

P is the Sommerfeld parame-
ter; θ , φ are the polar angles of X. The amplitude A(+)

l
is

expressed as

A(+)
l

(β, P, Q; θ ) = i

P

√
n!m!

(n + λ)!(m + λ)!

[
1 + (p + q)

1 − (p − q)

1

c2 + αs2

]iβ

e− πβ

2

×
[

4p

1 − (p − q)2

1

c2 + αs2

]1+λ( sin θ

2

)λ[
− 1 − (p + q)

1 + (p + q)

]n[
− 1 − (p − q)

1 + (p − q)

]m

×
n∑

ν=0

m∑
μ=0

c(n,λ)
ν c(m,λ)

μ �(iβ + λ + ν + μ + 1)

[ −4p

[1 − (p + q)][1 − (p − q)]

1

c2 + αs2

]ν+μ

(c2)ν (αs2)μ,

(27)

with

p = − iP

2b
, q = − iQ

2b
, α = 1 − (p + q)2

1 − (p − q)2
,

c = cos
θ

2
, s = sin

θ

2
. (28)

Here, λ = |κ|, and

c(n,λ)
ν = (−1)ν

(n + λ)!

(n − ν)!(ν + λ)!ν!
(29)

represent the coefficients of the expansion

Lλ
n (x) =

n∑
ν=0

c(n,λ)
ν xν . (30)

When Q = 0, results (26) and (27) reduce to the formulas
presented in Ref. [23] (note, however, a sign difference since
Ĝ(±)

C = [ĤC − E]−1 was used in Ref. [23]).
Finally, comparing the large-ρ asymptotic behavior of

Eq. (11), that is to say, the solution |�(+)〉 of the inhomoge-
neous Eq. (10), and that of

|S (+)
Q,N

〉 = Ĝ(+)
0 (E )|Q, Ñ〉, (31)

where Ĝ(+)
0 (E ) = [E − Ĥ0]−1, we can deduce the transition

amplitude T S
K,ke

. Up to a phase factor, including the loga-
rithmic one that corresponds to the Coulomb proton-electron
interaction, the amplitude is expressed in terms of the coeffi-
cients CN of expansion (22), as [20]

T S
K,ke

=
√

22π
∑
N

CNeiκ(φp−φe )A(+)
n (βp, K, Q; θp)

× A(+)
m (βe, ke, 0; θe), (32)

where βp = mp

K and βe = − 1
ke

are the Sommerfeld parameters
for the two subsystems (p+, He+) and (e−, He+). A remark-
able feature of this result is that the angular dependence of the

transition amplitude is found only in A(+)
n and A(+)

m , quantities
that we name basis amplitudes.

C. Matrix equation for the coefficients CN

Inserting expansion (22) into Eq. (10), and using Eq. (31),
gives∑

N′
[|Q, Ñ′〉 − Û Ĝ(+)

0 (E )|Q, Ñ′〉]CN′ = V̂ |K0, f 〉. (33)

Then, projecting this equation by 〈Q,N|, and inserting the
unit operator

Î =
∑
M

|M〉〈M̃|, (34)

we obtain the following matrix equation:∑
N′

[
δN,N′ −

∑
M

〈N|Û |M〉〈Q, M̃|Ĝ(+)
0 (E )|Q, Ñ′〉

]
× CN′ = DN, (35)

where

DN ≡ 〈N|K0 − Q, F 〉. (36)

In the numerical implementation of our approach the operator
Û is approximated by the truncated representation

ÛN0 =
∑
N,M

|Ñ〉〈N|Û |M〉〈M̃|, (37)

in the “inner” subset of the basis (17) whose size N0 =
(2M0 + 1)N4

0 is determined by the limits M0 and N0 to
the ranges |κ| � M0 and n j, mj < N0 ( j = 1, 2). Thus, the
infinite-matrix problem (35) reduces to a finite system of
algebraic equations for the “inner” coefficients CN (with N la-
beling the “inner” subset vectors), whereas the corresponding
“outer” coefficients CN coincide with DN given by Eq. (36).
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FIG. 1. The contour C goes from ∞ to −∞ just above the real axis. The integration path C1 in Eq. (39) is obtained by a negative angle ϕ

rotation of C, about some point E0 on the positive real axis. The bound-state poles of Ĝ(+)
C (−1, 1; E ) are shown by open circles. The unitarity

branch cuts of Ĝ(+)
C (−1, 1; E ) and Ĝ(+)

C (1, mp; E − E ) are depicted by the wavy lines lying beneath and above the contour C, respectively.

Note that the “outer” coefficients appear on the right-hand side
of the resulting system due to the second term on the left-hand
side of Eq. (35).

D. Green’s function matrix elements

In matrix equation (35) we need the Green’s function op-
erator Ĝ(+)

0 matrix elements. For their evaluation we use the
representation in the form of a convolution integral (see, e.g.,
Refs. [26,27]):

Ĝ(+)
0 (E ) = 1

2π i

∫
C

dEĜ(+)
C (−1, 1; E )Ĝ(+)

C (1, mp; E − E ).

(38)
Instead of the contour C, which runs just above the unitary cut
and bound-state poles of Ĝ(+)

C (−1, 1; E ), we integrate along

a path C1 obtained by rotation of the contour C, about some
point E0 on the positive real energy axis through a negative
angle ϕ (see Fig. 1) [27]. Thus, on the contour C1 the integra-
tion variable is set to E = E0(1 + teiϕ ) where t runs from ∞
to −∞. Explicitly we write

〈Q, Ñ|Ĝ(+)
0 (E )|Q, Ñ′〉 = 1

2π i

∫
C1

dE〈m̃|Ĝ(+)
C (−1, 1; E )|m̃′〉

× 〈̃n|〈Q|Ĝ(+)
C (1, mp; E − E )|Q〉|ñ′〉.

(39)

It turns out that both factors in the integrand can be expressed
analytically, as a finite summation involving Gauss hyper-
geometric functions 2F1 [24]. The useful formula reads (the
derivation is given in Appendix B):

〈̃l|〈Q|Ĝ(+)
C (Z, M; E )|Q〉|̃l′〉 = −δκ,κ′

2iM

P
(1 − ζ )(−χ )n′+m(−δ)n+m′

√(
n + λ

n

)(
m + λ

m

)(
n′ + λ

n′

)(
m′ + λ

m′

)

×
u+v∑
�=0

c� ζ−� �(λ + � + 1 + iβ )�(L + 1 − 2�)

�(L + λ + 2 − � + iβ )

× 2F1(L − 2� + 1,−λ − � + iβ; L + λ + 2 − � + iβ; ζ ). (40)

Here P = √
2ME , β = MZ

P , λ = |κ|, L = n + m + n′ + m′,
and the coefficients c� are

c� =
min(�,u)∑

j=max(�−v,0)

(m1

j

)(m′
1
j

)( m2

�− j

)( m′
2

�− j

)( j+λ

j

)(
�− j+λ

�− j

) , (41)

with u = min(n, n′) and v = min(m, m′). The argument of 2F1

is defined by

ζ = χδ, χ = 1 − (p + q)

1 + (p + q)
, δ = 1 − (p − q)

1 + (p − q)
, (42)

with

p = − iP

2b
, q = − iQ

2b
. (43)

Note that when Q = 0, the mathematical result (40) coincides
with that published in Appendix A of Ref. [23].

Setting Q = K0 would allow us to ideally incorporate the
proton plane wave into the Green’s function matrix element.
However, we found out that for the contour integral (39) to be

independent of the angle of rotation ϕ, a necessary condition
is

E − E0 >
Q2

2mp
. (44)

Note that E − E0 is the energy of the pair (p+, He+) when the
energy of (e−, He+) is equal to E0.

III. RESULTS

From the CQS ionization amplitude, we calculate the
FDCS which, in the laboratory frame, reads

d5σ

dEed�ed�p
= ke

m2
p

(2π )5

K

K0

∣∣T S
K,ke

∣∣2
. (45)

We investigate here the coplanar geometry, and consider the
kinematic conditions explored experimentally [4,5]: the inci-
dent proton energy is Ep = 1 MeV, the electron of the target
is ejected with energies Ee � 20, and the momentum-transfer
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FIG. 2. Convergence behavior of the 2C-like FDCS as the upper limit: (a) N of the summation in Eq. (51) over nj and mj ( j = 1, 2)
is varied at fixed M = 3; (b) M of the summation in Eq. (51) over κ is varied at fixed N = 21. The kinematic conditions are Ep = 1 MeV,
Ee = 6.5 eV, and q = 0.75 a.u. The arrow indicates the direction of the momentum transfer.

values are relatively small, q � 2 a.u. Specifically, we plot
the calculated differential cross sections versus the electron
scattering angle θe. It is well known that these FDCSs have a
typical two-peak structure: a peak close to the direction of the
momentum transfer q = K0 − K (called the binary peak), and
another peak close to the opposite direction (called the recoil
peak).

The calculations have been carried out using a quite accu-
rate ground-state wave function �(0)(r, r′) represented by an
expansion

|�(0)〉 =
�max∑
�=0

nmax∑
n,n′=0

C�
n,n′ |n, n′, �〉 (46)

in terms of the orthonormal basis functions

〈r, r′|n, n′, �〉 ≡ χ�
n (r)χ�

n′ (r′)
rr′ Y��

00 (r̂, r̂′). (47)

The angular part of Eq. (47) is given by the bispherical har-
monics

Y��′
LM (r̂, r̂′) =

∑
m+m′=M

(�m�′m′|LM )Y�m(r̂)Y�′m′ (r̂′), (48)

while the radial part consists of the square-integrable Laguerre
basis functions

χ�
n (r) =

√
2b0[(n + 1)2�+2]−

1
2 (2b0r)�+1e−b0rL2�+2

n (2b0r).
(49)

The coefficients C�
n,n′ are obtained (see, e.g., Ref. [28]) by

diagonalizing of the matrix of the Hamiltonian

ĤHe = −1

2
∇2

r − 1

2
∇2

r′ − 2

r
− 2

r′ + 1

|r − r′| . (50)

Taking up to �max = 3 and nmax = 25, and choosing the basis
parameter b0 = 1.688, we obtain E0 = −2.9033 a.u. for the
ground-state energy. This energy is the same as the one corre-
sponding to the bound state built and used in the (e, 3e) study
[29], so that we can expect both initial-state descriptions to
be of comparable good quality; in that reference it was shown
that sufficient convergence was reached with respect to the tar-
get state. In order to further confirm this we increase �max and
nmax to 5 and 35, respectively. Even though the extension of

the basis set yields a better energy value (E0 = −2.9035 a.u.),
we have checked that this more correlated initial-state wave
function does not affect the differential cross-section results
[possibly for the reason that the decisive contribution comes
from the basis vectors (47) with � = 0]. Note that the role
played by the initial helium ground state has been investigated
within the 3C model in Ref. [14]. While the level of accuracy
of the corresponding wave function modifies the binary/recoil
peaks ratio it does not provide any shift in their position. We
should mention that the best correlated helium wave function
used in the FBA and 3C calculations [14] has an energy just a
little better (2.9037 a.u.).

A. Convergence tests

In order to make an estimate of the rate of convergence
of the expansion (32), and determine limits M and N to the
ranges |κ| � M and n j, mj < N , j = 1, 2, we take as a nu-
merical testbed the following 2C-like model approximation

FIG. 3. Convergence behavior of FDCS as more terms are in-
cluded in the Sturmian representation (37) of the proton-electron
potential. The kinematic conditions are Ep = 1 MeV, Ee = 6.5 eV,
and q = 0.75 a.u.
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FIG. 4. FDCS for single ionization of helium by 1-MeV protons in the collision plane as a function of the ejected-electron angle. (a) The
results on a logarithmic scale, and (b) the results in polar coordinates to highlight discrepancies between the theoretical and experimental
electron angular distributions. The electron emission energy is Ee = 6.5 eV, and the total momentum transfer is q = 0.75 a.u. The solid curve
shows the results obtained with our method of convoluted quasi-Sturmians (CQS). The experimental data are shown by solid circles with
error bars, the FBA and 3C calculations (using a strongly correlated ground-state wave function of helium [30]) by dashed and dotted lines,
respectively, and the dash-dotted line represents the WP-CCC results.

for the transition amplitude:

T 2C
K,ke

=
√

22π
∑
N

〈N|0, F 〉eiκ(φp−φe )

× A(+)
n (βp, K, K0; θp)A(+)

m (βe, ke; θe), (51)

which is obtained by neglecting in Eq. (33) the operator Û
[see Eq. (14)]. Here we put Q = K0. In all calculations, we set
the basis scale parameter b = 1 in Eq. (16) (other values do
not change substantially the numerical aspects).

We successively extended the limits of summation in
Eq. (51) up to M = 4 and N = 21, and examined the FDCS
convergence behavior as the number of parabolic Sturmian
basis functions used to describe the driven term (33) is in-
creased. As shown in Fig. 2 satisfactory convergence of the
cross section can be achieved with N ≈ 20. In turn, the value
of M turns out to be limited due to the extremely small pro-
ton scattering angle θp = 0.0035902◦, so that convergence is
observed already at M = 3.

Now that we have outlined the boundary for the set of basis
functions involved in the transition amplitude computation,
we proceed to Eq. (33) which is solved numerically using
separable expansions for both Û and Ĝ(+)

0 . In order to suppress
oscillations of the driven term in Eq. (33) (due to the presence
of the fast projectile plane wave |K0〉), we have introduced an
auxiliary proton plane wave |Q〉 into the basis functions (31).
While complete elimination of the rapidly oscillating factor
corresponds to the case of Q = K0 [see Eq. (33)], constraint
(44) rules out this choice. Thus, the only way to bring Q
to K0 as close as possible is to minimize E0. In doing this,
one should not bring E0 > 0 too close to the origin, since
this can reduce the accuracy of the numerical computation of
the Green’s function matrix elements (39). In our case, the
energy of the incident proton is Ep � 36749.33 a.u., so that
the total energy of the scattered proton and the ejected elec-
tron is E = Ep + εHe

0 − εHe+
0 � 36748.42 a.u. Then putting

E0 = E × 10−5 � 0.36748 a.u. enables us to choose Q =

0.999945K0 and get the value 0.63893 a.u. for the difference
K0 − Q.

The convergence behavior of the transition amplitude (32)
is also examined as the number of terms in the representation
(37) of the proton-electron potential is increased. Specifically,
based on the above convergence study of the 2C-like ampli-
tude (51), we put M0 = 3. As shown in Fig. 3, the convergence
of the cross section is achieved at N0 = 9. The total number
N0 of the Sturmians (17) coupled by the matrix-truncated
proton-electron potential is equal to 45 927. Note that taking
into account the attractive Coulomb potential Û leads to a
shift of the recoil peak in the forward direction by approxi-
mately 30◦, whereas the position of the binary peak remains
practically unchanged: it shifts in the opposite direction by
about 3◦. As indicated in Sec. II B, the splitting (12) in the
Hamiltonian can be chosen differently. To explore this pos-
sibility, we have modified the final channel interaction by
replacing the Coulomb potential 1/R for the proton and −1/r
for the electron by, respectively, the Hartree potentials for the
(e−, He+) and (p+, He+) systems [20]. It can be seen from
Fig. 3 that such S-wave short-range additions predictably do
not affect the peak positions, but only slightly change their
intensities.

B. Comparison with available theoretical and experimental data

We now turn to the comparison of our results with ex-
periment and other theoretical calculations. We present in
Fig. 4 the laboratory frame FDCSs in the case of Ee = 6.5 eV
and q = 0.75 a.u. Theoretical values are obtained using our
approach (CQS), the WP-CCC method [15] [multiplied by
(mp/μ)2 = 25/16], and the FBA and 3C model [14]. The
experimental values are due to Ref. [4] with normalization of
Ref. [14]. The theoretical FDCSs presented in Fig. 4 differ
in the recoil/binary ratio and in the peaks’ positions. In this
respect, the FDCS calculated using our approach somewhat
better agrees with the measured angular distribution. At the
same time, common to all these theoretical approaches is their
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FIG. 5. FDCSs for single ionization of helium by 1-MeV protons in the collision plane in different kinematical regimes in the scattering
plane. The ejected-electron energies and momentum transfer values are indicated in the legend. Solid curves show the results obtained with
our method of convoluted quasi-Sturmians (CQS). Experiment is shown by solid circles with error bars, the FBA and 3C calculations (when
available) by dashed and dotted lines, respectively, and the dash-dotted line represents the WP-CCC results.

inability to explain the experimental angular position of the
binary peak; the discrepancy reaches 10◦, of which hardly 2◦
can be attributed to experimental uncertainties (see Fig. 9 of
Ref. [5] and the relevant discussion therein).

To further test our approach, we calculated the FDCSs in
the collision plane for the 12 sets of the Ee and q values
considered in Ref. [5]. Our calculations are shown in Fig. 5 in
comparison with experiment, and the FBA, 3C, and WP-CCC
results. Three general features should be pointed out. First, the
recoil/binary ratio obtained within our CQS approach agrees
better with the WP-CCC results and experiment than those ob-
tained within the FBA. Second, similarly to what we observed
in Fig. 4, our CQS calculations yield practically the same
binary-peak position as the 3C and WP-CCC approaches;
this backs up the reliability of both our CQS approach and
its numerical implementation. Third, the theoretical binary

peak in the kinematical regime where Ee = 20 eV and q = 0.5
a.u. is shifted by almost 10◦ towards larger angles with re-
spect to the experimental one. As discussed in Ref. [5], this
particular kinematical regime most strongly departs from the
kinematics of the free proton-electron collision, or the Bethe
ridge, and the corresponding FBA calculation most strongly
disagrees with experiment. The 10◦ discrepancy between the
more advanced theoretical calculations (3C, WP-CCC, and
CQS) and experiment clearly indicates that the discussed the-
oretical treatments may miss some important ingredients of
the ionization dynamics.

IV. SUMMARY

We have put forth a fully quantum-mechanical method for
calculating fully differential cross sections for the proton-
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impact ionization of helium. We calculate the transition
amplitude as a sum of products of basis amplitudes associated
to the asymptotic behavior of quasi-Sturmian basis functions
in parabolic coordinates. In the framework of the frozen-core
model, we transform the driven equation for the final-state
three-body system (e−, He+, p+) into a matrix equation, con-
sidering the proton-electron potential Û as a perturbation.
This algebraic approach is obtained by using Sturmian-
expansion representations of the potential Û and Green’s
function operator Ĝ(+)

0 of the two noninteracting hydrogenic
subsystems (e−, He+) and (p+, He+). The matrix elements
of the Green’s functions are obtained in analytic form. This
allows for an efficient calculation of their convolution and thus
ensures a proper treatment of the energy spectrum of active
electrons. In the considered high-energy limit the numerical
method is robust in all kinematical situations explored; more-
over, the method turns out to be numerically efficient since
convergence of the cross sections is achieved with a moderate
number of terms of the expansions. It should be noted that a
single set of the coefficients CN (determined by the energy
E and the difference K0 − Q) is used in the calculations of
all these cross sections. This feature demonstrates another ad-
vantage of our approach from the viewpoint of computational
efficiency.

In spite of their diversity, none of the theoretical ap-
proaches proposed in the literature—including the present
CQS—is capable of describing satisfactorily the binary-peak
location in the measured electron angular distributions. At the
same time, the differences between the theoretical results are
insignificant compared to their discrepancy with the exper-
imental data. Interestingly, the position of the binary peak
(in contrast to the recoil peak) turns out to be practically
insensitive to switching on or off the Coulomb proton-electron
potential. This suggests that the discussed advanced quantum-
mechanical treatments may miss some important feature of
the binary-encounter mechanism, and therefore the devel-
opment of more sophisticated methods and approaches is
required. In this work, we tested a model of the Hartree po-
tential for the projectile-ion and electron-ion interactions and
found, in the considered high-energy regime, no appreciable
effect on the cross section.

Note that one of the possible explanations for the marked
discrepancy between theory and experiment might be the use
of the frozen-core model for describing the residual helium
ion in the final channel. This feature is common for our
approach, the FBA and 3C calculations [5,14], and also for
the WP-CCC approach [15,16], which uses of the frozen-core
approximation for the ionization dynamics. Therefore, we
have also analyzed the effects beyond the model of the frozen
He+ state in the final channel of the discussed process. For this
purpose we have performed the FDCS calculations accounting
for the polarization of the recoil-ion state in the presence of
the slow ejected electron: the intensity and angular distribu-
tion of the electron are only marginally affected. Specifically,
we have found that the magnitude of the perturbation of the
electronic wave function ψHe+

1s induced by the dipole part of
the polarization potential [31,32] is only a few percent. We
plan to explore more advanced approaches of accounting for
the electron correlations in the final channel. In particular,
the full Green’s function for the subsystem (e−, He+) can be

obtained at any energy argument by solving the corresponding
Lippmann-Schwinger equation, for example, using the Stur-
mian function (15) representation (in a fashion analogous to
that presented in Ref. [33]). This enables one both to appro-
priately modify the wave function of the bound electron and
to refine the asymptotic behavior of the ejected electron. We
also intend to investigate further the effect of the short-range
part of the projectile-target interaction. One lead would be
to replace the pure Coulomb potential by screened or model
potentials as done, e.g., in Ref. [6]. These improvements are
probably necessary if one wishes to investigate ionization at
lower incident proton energy (E = 75 keV), which provides
further challenges; indeed, the calculated cross sections were
seen [34] to be very sensitive to the details of the account for
the interaction between the projectile and the target core.

Finally, we plan to apply our parabolic quasi-Sturmians
approach to study proton- and antiproton-impact ionization of
heavier atoms, still treated as one-electron targets.
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APPENDIX A: ASYMPTOTIC BEHAVIOR
OF THE SHIFTED QUASI-STURMIANS

In this Appendix, we derive the X → ∞ asymptotic be-
havior of the quasi-Sturmian

〈X|Q(+)
Q,l

〉 = 〈X|Ĝ(+)
C (Z, M; E )|Q〉|̃l〉, (A1)

where the plane wave 〈X|Q〉 = eiQ·X = ei Q
2 (ξ ′−η′ ) since Q is

along the ẑ axis. For this purpose, we use the following ex-
pansion of the Coulomb Green’s function kernel:

G(+)
C (Z, M, P; X, X′) = 1

2π

∞∑
κ=−∞

eiκ(φ−φ′ )

× Gλ(+)(Z, M, P; ξ, η; ξ ′, η′), (A2)

where λ = |κ|. After performing the trivial φ′ integration, we
are left with

〈X|Q(+)
Q,l

〉 = eiκφ

√
2π

∫ ∞

0
dξ ′

∫ ∞

0
dη′

× Gλ(+)(Z, M, P; ξ, η; ξ ′, η′) ei Q
2 (ξ ′−η′ ) ϕλ

n (ξ ′)ϕλ
m(η′).

(A3)

The components Gλ(+) are expressed as the convolution inte-
gral (see Eq. (16) in Ref. [23])

Gλ(+)(Z, M, P; ξ, η; ξ ′, η′) = −2M
P

2π i

∫ ∞

−∞
dτ

× g(+)(τ ; ξ, ξ ′) g(+)(β − τ ; η, η′), (A4)
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where β = MZ
P is the Sommerfeld parameter, and g(+) is given

in terms of the Whittaker functions M and W [36],

g(+)(t ; ρ, ρ ′) = �
(

1+λ
2 + it

)
�(1 + λ)

1

(−iPρ<)
1
2

M−it, λ
2
(−iPρ<)

× 1

(−iPρ>)
1
2

W−it, λ
2
(−iPρ>), (A5)

with ρ< = min(ρ, ρ ′), ρ> = max(ρ, ρ ′). Expressing the
Whittaker functions in terms of the Kummer functions M and
U [24], we have

g(+)(t ; ρ, ρ ′) = �
(

1+λ
2 + it

)
�(1 + λ)

1

(−iPρ<)
1
2

eiPρ</2(−iPρ<)
1+λ

2

× M

(
1 + λ

2
+ it, 1 + λ,−iPρ<

)
× 1

(−iPρ>)
1
2

eiPρ>/2(−iPρ>)
1+λ

2

× U

(
1 + λ

2
+ it, 1 + λ,−iPρ>

)
. (A6)

We are interested in the physical asymptotic limit corre-
sponding to ξ → ∞ and ξ ′ bounded, so that ρ> = ξ and ρ< =
ξ ′. Taking the leading term U (a, b, z) � z−a of the |z| → ∞
limit [24], we get

g(+)(τ ; ξ, ξ ′) � �
(

1+λ
2 + iτ

)
�(1 + λ)

e−px

(2px)1/2
(2px)−iτ e−px′

(2px′)1/2

× (2px′)
1+λ

2 M

(
1 + λ

2
+ iτ, 1 + λ, 2px′

)
,

(A7)

where we have set p = − iP
2b and introduced the reduced vari-

ables x = bξ , and x′ = bξ ′. In the same way, the η → ∞ and
η′ bounded limit of g(+)(β − τ ; η, η′) is given by Eq. (A7),
where we have to replace τ by β − τ , x by y = bη, and x′ by
y′ = bη′.

Inserting the convolution integral (A4) into Eq. (A3), using
the asymptotic expressions of g(+), and reordering the three
integrations, we find

〈X|Q(+)
Q,l

〉 = − eiκφ

√
2π

2M
P

2π i

∫ ∞

−∞
dτ In(τ )Jm(τ ), (A8)

where

In(τ ) = In �

(
1 + λ

2
+ iτ

)
e−px

(2px)1/2
(2px)−iτ , (A9)

Jm(τ ) = Jm �

(
1 + λ

2
+ i(β − τ )

)
e−py

(2py)1/2
(2py)−i(β−τ ).

(A10)

The quantities In (respectively Jm) stand for the integrals on
ξ ′ or equivalently x′ (respectively η′ or y′), which can be
performed analytically. Making use of the explicit expression
of the Laguerre basis elements (16) and setting q = − iQ

2b , we

have

In = 1

�(1 + λ)

(n + λ)!

n!λ!

√
2bn!

(n + λ)!

1

b

×
∫ ∞

0
dx′(2x′)

λ
2 (2px′)

λ
2 e−(1+p+q)x′

× M(−n, 1 + λ, 2x′) M

(
1 + λ

2
+ iτ, 1 + λ, 2px′

)
.

(A11)

The integral is easily calculated using formula (f, 9) in
Ref. [37],

In = (n + λ)!

n!λ!

√
2bn!

(n + λ)!

1

b

[
− 1 − (p + q)

1 + (p + q)

]n

× (4p)
λ
2 [(1 + (p + q))(1 − (p − q))]−

1+λ
2

×
[

1 + (p + q)

1 − (p − q)

]iτ

2F1

(
− n,

1 + λ

2
+ iτ ; 1 + λ; z

)
,

(A12)

where z = −4p
(1−(p+q))(1−(p−q)) . By replacing q by −q and τ by

β − τ we find similarly

Jm = (m + λ)!

m!λ!

√
2bm!

(m + λ)!

1

b

[
− 1 − (p − q)

1 + (p − q)

]m

× (4p)
λ
2 [(1 + (p − q))(1 − (p + q))]−

1+λ
2

×
[

1 + (p − q)

1 − (p + q)

]i(β−τ )

× 2F1

(
− m,

1 + λ

2
+ i(β − τ ); 1 + λ; z

)
. (A13)

It remains to perform the integration (A8) over τ . In order
to extract the argument τ that appears in the hypergeometric
functions in Eqs. (A12) and (A13) we make use of the series
expansion

2F1

(
−n,

1 + λ

2
+ iτ ; 1 + λ; z

)
= �(1 + λ)

�
(

1+λ
2 + iτ

)
×

n∑
j=0

(−1) j n!

(n − j)!

�
(

1+λ
2 + iτ + j

)
�(1 + λ + j)

z j

j!
. (A14)

Including the factor �( 1+λ
2 + iτ ) from Eq. (A9) and (n1+λ)!

n1!λ!
from Eq. (A12), we obtain the result

�

(
1 + λ

2
+ iτ

)
(n + λ)!

n!λ!
2F1

(
−n,

1 + λ

2
+ iτ ; 1 + λ; z

)
=

n∑
ν=0

c(n,λ)
ν zν �

(
1 + λ

2
+ iτ + ν

)
, (A15)

where we recognize the coefficients c(n,λ)
j of the Laguerre

polynomials expansion (29). Similarly, from Eq. (A13) and
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the factor �( 1+λ
2 + i(β − τ )), we get

�

(
1 + λ

2
+ i(β − τ )

)
(m + λ)!

m!λ!

× 2F1

(
−m,

1 + λ

2
+ i(β − τ ); 1 + λ; z

)
=

m∑
μ=0

c(m,λ)
μ zμ �

(
1 + λ

2
+ i(β − τ ) + μ

)
. (A16)

Introducing the notation

u = α
y

x
, α = [1 − (p + q)2]

[1 − (p − q)2]
, (A17)

the rest of the τ -dependent part of the integrand takes the
concise form

uiτ =
[

1 + (p + q)

1 − (p − q)

]iτ[1 + (p − q)

1 − (p + q)

]−iτ

(2px)−iτ (2py)iτ .

(A18)
Collecting all τ -dependent terms, we may calculate the fol-
lowing integral:

L = 1

2π

∫ ∞

−∞
dτ�

(
1 + λ

2
+ iτ + ν

)
× �

(
1 + λ

2
+ i(β − τ ) + μ

)
uiτ . (A19)

With the change variable iτ = σ , we immediately recognize
the Meijer G function (p. 206 of Ref. [38]), namely,

L = 1

2π i

∫ i∞

−i∞
dσ�

(
1 + λ

2
+ ν + σ

)
× �

(
1 + λ

2
+ iβ + μ − σ

)
uσ (A20)

= G1,1
1,1

(
u
∣∣a1

b1

)
, (A21)

where a1 = 1−λ
2 − ν and b1 = 1+λ

2 + iβ + μ. Note that to
these parameters a1 and b1 corresponds the contour (2) L in
[38] (p. 207) from −i∞ to i∞, i.e., exactly our case. Making
use of the simpler expression of the Meijer function with these
parameters [39]

G1,1
1,1

(
u
∣∣a1

b1

) = �(1 + b1 − a1)ub1 (u + 1)a1−b1−1 (A22)

we have

L = �(iβ + λ + ν + μ + 1)

(
u

1 + u

)iβ

×
(

u

(1 + u)2

) 1+λ
2 uμ

(1 + u)ν+μ
. (A23)

Since we have performed all integrations we may now
collect all terms. For convenience, in what follows we set

c = cos
θ

2
, s = sin

θ

2
, (A24)

so that

u = α
y

x
= α

η

ξ
= α

2X sin2
(

θ
2

)
2X cos2

(
θ
2

) = α
s2

c2
. (A25)

We make a number of algebraic simplifications:

(a) We write

zνzμ uμ

(1 + u)ν+μ
=

[ −4p

[1 − (p + q)][1 − (p − q)]

× 1

c2 + αs2

]ν+μ

(c2)ν (αs2)μ. (A26)

(b) We combine(
u

(1 + u)2

) 1+λ
2

=
[

1 − (p + q)2

1 − (p − q)2

] 1+λ
2

(
sin θ

2

)1+λ

(c2 + αs2)1+λ
(A27)

with the factor e−px(2px)−1/2 from Eq. (A9) and
e−py(2py)−1/2 from Eq. (A10) and also the factors

(4p)
λ
2 [(1 + (p + q))(1 − (p − q))]−

1+λ
2 , (A28)

(4p)
λ
2 [(1 + (p − q))(1 − (p + q))]−

1+λ
2 , (A29)

from, respectively, Eqs. (A12) and (A13), to obtain

eiPX

−2iPX

1

4p

[
4p

[1 − (p − q)2]

1

c2 + αs2

]1+λ( sin θ

2

)λ

. (A30)

(c) We combine (
u

1 + u

)iβ

(A31)

from Eq. (A26) with [
1 + (p − q)

1 − (p + q)

]iβ

(A32)

from the last line in Eq. (A13) and (2py)−iβ from Eq. (A10),
to obtain[

1 + (p + q)

1 − (p − q)

1

c2 + αs2

]iβ

e− πβ

2 e−iβ ln(2PX ). (A33)

Collecting all intermediate results, the remaining multiply-
ing factors, after some algebraic simplification we obtain the
following asymptotic behavior:

〈X|Q(+)
Q,l

〉 � − eiκφ

√
2π

M
i

P

√
n!

(n + λ)!

[
− 1 − (p + q)

1 + (p + q)

]n

×
√

m!

(m + λ)!

[
− 1 − (p − q)

1 + (p − q)

]m

×
[

4p

1 − (p − q)2

1

c2 + αs2

]1+λ( sin θ

2

)λ

×
[

1 + (p + q)

1 − (p − q)

1

c2 + αs2

]iβ

e− πβ

2
eiPX−iβ ln(2PX )

X

×
n∑

ν=0

c(n,λ)
ν

m∑
μ=0

c(m,λ)
μ �(iβ + λ + ν + μ + 1)

×
[ −4p

[1 − (p + q)][1 − (p − q)]

1

c2 + αs2

]ν+μ

× (c2)ν (αs2)μ. (A34)
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APPENDIX B: MATRIX ELEMENTS OF THE GREEN’S
FUNCTION OPERATOR

In this Appendix we provide an analytical expression for
the matrix element (40). First, inserting the expansion (A2)

and integrating over 0 � φ, φ′ � 2π gives

〈̃l|〈Q|Ĝ(+)
C (Z, M; E )|Q〉|̃l′〉 = δκ,κ′ G

λ(+)
n,m;n′,m′ (Z, M; P, Q),

(B1)
where the “radial” part Gλ(+)

n,m;n′,m′ is expressed in terms of the
integral

G
λ(+)
n,m;n′,m′ (Z, M; P, Q) ≡

∫ ∞

0
dξ

∫ ∞

0
dη

∫ ∞

0
dξ ′

∫ ∞

0
dη′ϕλ

n (ξ )ϕλ
m(η) e− iQ

2 (ξ−η)Gλ(+)(Z, M, P; ξ, η; ξ ′, η′)

× e
iQ
2 (ξ ′−η′ )ϕλ

n′ (ξ ′)ϕλ
m′ (η′). (B2)

We then make use of the integral representation (see, e.g., Ref. [23])

Gλ(±)(Z, M; P; ξ, η; ξ ′, η′) = ±iMP
∫ ∞

0
dz sinh z

(
coth

z

2

)∓2iβ

e±i P
2 (ξ+ξ ′+η+η′ ) cosh zIλ(∓iP

√
ξξ ′ sinh z)Iλ(∓iP

√
ηη′ sinh z)

(B3)

and proceed by performing first the integration over ξ , ξ ′, η, and η′. We introduce the following convenient notation: x = bξ , y =
bη, x′ = bξ ′, y′ = bη′, p = − iP

2b , q = − iQ
2b , and s = sinh(z), c = cosh z. Using the explicit form of the Laguerre basis functions

ϕλ
n [Eq. (16)], the integrals over ξ, ξ ′ (respectively η, η′) become

B1 = 2

b

√
n!n′!

(n + λ)!(n′ + λ)!

∫ ∞

0
dx′ e−(1+pc+q)x′

(2x′)
λ
2 Lλ

n′ (2x′)
∫ ∞

0
dx e−(1+pc−q)x (2x)

λ
2 Lλ

n (2x)Iλ(2p
√

xx′s) (B4)

B2 = 2

b

√
m!m′!

(m + λ)!(m′ + λ)!

∫ ∞

0
dy′ e−(1+pc−q)y′

(2y′)
λ
2 Lλ

m′ (2y′)
∫ ∞

0
dy e−(1+pc+q)y(2y)

λ
2 Lλ

m(2y)Iλ(2p
√

yy′s). (B5)

The integral in the second line of Eq. (B4), named hereafter I1, is calculated using formula (2.19.12, 6) of Ref. [40]:

I1 = (−1)n (1 − [pc − q])n

(1 + [pc − q])n+λ+1
(ps

√
2x′)λ exp

(
ps2x′

1 + [pc − q]

)
Lλ

n

( −2p2s2x′

1 − [pc − q]2

)
, (B6)

so that B1 becomes

B1 = 2

b

√
n!n′!

(n + λ)!(n′ + λ)!
(−1)n (1 − [pc − q])n

(1 + [pc − q])n+λ+1
(2ps)λI2, (B7)

where it remains to perform the integration over x′:

I2 =
∫ ∞

0
dx′ x′λ exp

{
−x′

(
1 + pc + q − ps2

1 + [pc − q]

)}
Lλ

n′ (2x′)Lλ
n

( −2p2s2x′

1 − [pc − q]2

)
. (B8)

The latter is calculated using formula (2.19.14, 6) of Ref. [40], to obtain

I2 = (λ + 1)n′ (λ + 1)n�(λ + 1)

n′! n!

(−1)n′( 1−p2+q2−2q
1+[pc−q]

)n′( 1−p2+q2+2q
1−[pc−q]

)n( 1+p2−q2+2pc
1+[pc−q]

)n′+n+λ+1

× 2F1

(
−n,−n′, λ + 1;

4p2s2

(1 − p2 + q2 − 2q)(1 − p2 + q2 + 2q)

)
. (B9)

Further, inserting Eq. (B9) in Eq. (B7) gives

B1 = 2

b

√(
n′ + λ

n′

)(
n + λ

n

)
(2ps)λ

(1 + p2 − q2 + 2pc)λ+1

(
− 1 − p2 + q2 − 2q

1 + p2 − q2 + 2pc

)n′(
− 1 − p2 + q2 + 2q

1 + p2 − q2 + 2pc

)n

× 2F1

(
−n,−n′, λ + 1;

4p2s2

(1 − p2 + q2 − 2q(1 − p2 + q2 + 2q)

)
, (B10)
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and similarly

B2 = 2

b

√(
m′ + λ

m′

)(
m + λ

m

)
(2ps)λ

(1 + p2 − q2 + 2pc)λ+1

(
− 1 − p2 + q2 + 2q

1 + p2 − q2 + 2pc

)m′(
− 1 − p2 + q2 − 2q

1 + p2 − q2 + 2pc

)m

× 2F1

(
−m,−m′, λ + 1;

4p2s2

(1 − p2 + q2 + 2q)(1 − p2 + q2 − 2q)

)
. (B11)

Then we use the notation

t =
[

tanh

(
z

2

)]2

, (B12)

ζ = χδ, χ = 1 − (p + q)

1 + (p + q)
, δ = 1 − (p − q)

1 + (p − q)
, (B13)

to write

1 + p2 − q2 + 2p = 4p

(1 − ζ )
,

1 + p2 − q2 + 2pc = 4p

(1 − ζ )

(1 − ζ t )

(1 − t )
,

1 − p2 + q2 − 2q = 4p

(1 − ζ )
χ,

1 − p2 + q2 + 2q = 4p

(1 − ζ )
δ, (B14)

and therefore

B1 = 1

2pb

√(
n + λ

n

)(
n′ + λ

n′

)
(1 − ζ )λ+1(−χ )n′

(−δ)n

× tλ/2(1 − t )n+n′+1(1 − ζ t )−(n+n′+λ+1)

× 2F1

(
−n,−n′, λ + 1;

(1 − ζ )2

ζ

t

(1 − t )2

)
, (B15)

B2 = 1

2pb

√(
m + λ

m

)(
m′ + λ

m′

)
(1 − ζ )λ+1(−χ )m(−δ)m′

× tλ/2(1 − t )m+m′+1(1 − ζ t )−(m+m′+λ+1)

× 2F1

(
−m,−m′, λ + 1;

(1 − ζ )2

ζ

t

(1 − t )2

)
. (B16)

All that remains is to calculate the integral over z in
Eq. (B3). Naming Jn,n′ and Jm,m′ the products of the two
last lines of Eqs. (B15) and (B16), respectively, the radial part
becomes Gλ(+)

n,m;n′,m′ (Z, M; P, Q) = CK where

C = 1

4p2b2

√(
n + λ

n

)(
n′ + λ

n′

)(
m + λ

m

)(
m′ + λ

m′

)
× (1 − ζ )2λ+2(−δ)n+m′

(−χ )m+n′
(B17)

and

K = iMP
∫ ∞

0
dz sinh(z)

[
coth

(
z

2

)]−2iβ

Jn,n′ Jm,m′ .

(B18)

To proceed analytically it is convenient to use the change of
variables

t =
[

tanh

(
z

2

)]2

⇒ dt = √
t (1 − t )dz (B19)

to write

K = 2iMP
∫ 1

0
dt t iβ+λ(1 − t )L(1 − ζ t )−L−2λ−2

× 2F1

(
−n,−n′, λ + 1;

(1 − ζ )2

ζ

t

(1 − t )2

)
× 2F1

(
−m,−m′, λ + 1;

(1 − ζ )2

ζ

t

(1 − t )2

)
, (B20)

where

L = n + n′ + m + m′. (B21)

Further, similarly to what was done in Appendix A of
Ref. [23], we express the product of the two hypergeometric
functions as a polynomial (for convenience, we provide here
the full derivation)

u+v∑
�=0

c�

[
(1 − ζ )2

ζ

t

(1 − t )2

]�

, (B22)

whose coefficients c� are

c� =
min(�,u)∑

j=max(�−v,0)

( n
j

)( n′
j

)( m
�− j

)( m′
�− j

)( j+λ

j

)(
�− j+λ

�− j

) ,

with u = min(n, n′) and v = min(m, m′). We thus express
Eq. (B20)

K = 2iMP
u+v∑
�=0

c�

(1 − ζ )2�

ζ �
L� (B23)

in terms of the integrals

L� =
∫ 1

0
dt t iβ+λ+�(1 − t )L−2�(1 − ζ t )−L−2λ−2, (B24)

which are readily identified as the integral representation of
Gauss hypergeometric functions (Eq. (15.3.1) of Ref. [24])

L� = �(iβ + λ + � + 1)�(L − 2� + 1)

�(iβ + L + λ + 2 − �)

× 2F1(L+ 2λ+ 2, λ+ �+ 1+ iβ; L + λ+ + 2− �+ iβ; ζ )

= 1

(1 − ζ )2λ+1+2�

�(iβ + λ + � + 1)�(L − 2� + 1)

�(iβ + L + λ + 2 − �)

× 2F1(L − 2�+ 1,−λ − �+ iβ; L + λ + 2 − � + iβ; ζ ),
(B25)
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the second equality being obtained through the transformation
(15.3.3) of Ref. [24].

Finally, inserting Eq. (B25) in Eq. (B23), we obtain a
representation for the integrals (B20) which, multiplied by C

defined by Eq. (B17), gives the matrix element (B1) in the
form of the finite sum (40). In the absence of the plane wave,
i.e., when Q = 0, this result was presented in Appendix A of
Ref. [23].
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