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Relativistic normal coupled-cluster theory analysis of second- and third-order electric
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We present precise values of electric polarizabilities for the ground state of Zn due to second-order dipole and
quadrupole interactions, and due to third-order dipole-quadrupole interactions. These quantities are evaluated
in the linear response theory framework by employing a relativistic version of the normal coupled-cluster
(NCC) method. The calculated dipole polarizability value is compared with available experimental and other
theoretical results, including those obtained using the ordinary coupled-cluster (CC) methods in both finite-field
and expectation value evaluation approaches. We also give a term-by-term comparison of contributions from
our CC and NCC calculations in order to show differences in the results from these two methods. Moreover,
we present results from other lower-order methods to understand the role of electron correlation effects in the
determination of the above quantities. A machine-learning-based scheme to generate optimized basis functions
for atomic calculations is developed and applied here. From the analysis of the dipole polarizability result,
the accuracy of the calculated quadrupole and third-order polarizability values is ascertained, for which no

experimental values are currently available.
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I. INTRODUCTION

Atoms are spherically symmetric, but under the influence
of stray electric fields, the distribution of their electric charges
is deformed [1,2]. In the ground state of a closed-shell atom,
the first-order energy shift due to weak electric field vanishes
and the leading-order contributions to the energy shifts come
from the second-order, followed by third-order, effects [3,4].
These contributions are usually factorized into powers of
electric field strength and in terms of electric polarizabili-
ties that are atomic state dependent, but independent of the
applied electric field strength [1,5]. With the knowledge of
these polarizabilities, it is possible to estimate energy shifts
in an atomic system for an arbitrary weak electric field. As
a result, there has been immense interest to study electric
polarizabilities both experimentally and theoretically [6,7].
Among them, the electric dipole polarizability («,) has been
studied extensively due to its predominant contribution to the
energy shift, followed by electric quadrupole polarizability
(ag), while third-order polarizability (B) has received very
little attention.

The a4 values of group-1IB elements Zn, Cd, and Hg have
been measured accurately [8—10] and theoretical calculations
based on sophisticated many-body methods agree with the
experimental values for the Zn and Hg atoms [9,11-18]. How-
ever, many calculations show significant deviations from the
experimental values for the Cd atom [13—15]. More precise
knowledge of polarizabilities in these atoms is quite useful for
several fundamental applications. For example, the Cd and Hg
atoms from this group are being used as candidates in atomic
clocks [19,20] and a precise knowledge of polarizabilities in
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these atoms will be required to estimate systematic effects of
the atomic clocks. Hg is used to probe violation of parity and
time-reversal symmetry violating interactions [21,22]. As an
important application, the knowledge of a4, o, and B values
is needed to construct the polarization potential seen by an
external electron (or positron) in the vicinity of an atom in the
scattering physics problem, as given by [23,24]
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With the advent of modern technologies, high-precision
measurements of energy shifts due to external electric fields
are feasible, from which precise values of higher-order polar-
izabilities can be inferred. However, there are two important
objectives behind pursuing theoretical studies of the electric
polarizabilities of atomic systems. First, it helps demonstrate
the validity of a theoretical approach by reproducing the
experimental result and is able to provide insights into the
behavior of electron correlation effects within the investigated
atomic system. Second, but more importantly, the reason
behind performing theoretical studies of electric polarizabil-
ities by developing and applying sophisticated many-body
methods is to provide their accurate values in systems where
experimental results are not available, so as to guide fu-
ture measurements of these quantities. As mentioned above,
a number of calculations of «; for Zn have been per-
formed [9,11-15,17], but there do not exist any measurements
of a; and B. Only a few theoretical studies of these quantities
based on the nonrelativistic formalism are available [9]. Ow-
ing to significant challenges, one is yet to see the experimental
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determination of B values. It is therefore interesting to study
the role of electron correlation effects by evaluating o, and B.

Among the commonly used atomic many-body methods
for calculating spectroscopic properties, coupled-cluster (CC)
theory is proven to be one of the most reliable and powerful
methods [25-27]. The CC theory has also been applied to nu-
clear, molecular, and condensed-matter systems to accurately
account for correlation effects among the subatomic parti-
cles [28-30] and hence this theory is being treated as the gold
standard for many-body methods. Within the CC formalism,
a variety of procedures is being proposed and implemented
to reliably evaluate various spectroscopic properties [25,29].
Several calculations of atomic polarizabilities have been re-
ported employing either the semiempirical approaches [7,31]
or the less accurate numerical approaches such as the finite-
field (FF) method [9,11-14]. It is possible that semiempirical
calculations can give reasonably accurate results because a
part of the uncertainties is excluded by making use of some
experimental quantities, but they cannot demonstrate the true
potency of the employed many-body methods. Due to the
odd-parity nature of the dipole operator, it is not convenient to
include the dipole interaction Hamiltonian in the atomic cal-
culation to estimate energy level shifts by adopting spherical
symmetry properties of atomic systems. Thus, results from the
finite-field approach are estimated using programs that have
been developed for evaluating molecular properties by impos-
ing additional constraints to describe atomic systems [32] in
the Cartesian coordinate system [33]. By employing a spher-
ical coordinate system, the interaction Hamiltonian due to
the dipole interaction can be treated perturbatively. Though
the quadrupole operator is an even-parity operator, it cannot
be added to the atomic Hamiltonian in order to evaluate the
quadrupole polarizability owing to the fact that it is a finite
rank operator.

In this work, we have applied a linear response approach to
determine the oy, , and B values of Zn in the relativistic CC
(RCC) theory framework by retaining the spherical symmetry
properties of atoms. Earlier, we had employed this approach
to determine «; of Zn using the expectation value approach of
the RCC theory [15]. This approach involves a nonterminating
series, and contribution from the normalization of the wave
function was not included in order to conveniently evaluate the
expression by making use of the connecting terms. However,
two different implementations of this method had produced
quite different oy results for the Cd atom [15,17]. To avoid
brute-force termination in the expression and ambiguity in
accounting for the contribution from the normalization of
the wave function, we have developed the relativistic normal
coupled-cluster (RNCC) theory to determine the aforemen-
tioned quantities [34]. The RNCC method has been applied
previously for the accurate determination of o, values for
Xe, Cd, and Hg atoms [34-36], resulting in a reconciliation
between the theoretical and experimental polarizability values
for the Cd atom [35]. This immediately prompted a reanalysis
of the experimental data for this atom [37]. A recent calcu-
lation of a; of Cd using the finite-field approach in the RCC
theory framework offers further support to these findings [38].
In view of this, it is imperative to carry out the polariz-
ability calculations of Zn using the RNCC theory and make
a comparative analysis with the calculation obtained using

the expectation value approach of the RCC theory to better
understand both methods. In this work, we have performed
calculations of oy, oy, and B using the expectation value
approach in the RCC and RNCC methods. We then compare
results from both the approaches term by term. In addition, we
give results from a lower-order method using the same basis
functions in order to demonstrate the propagation of electron
correlation effects at different levels of approximations in the
many-body method. The results are given in atomic units
(a.u.), unless otherwise explicitly stated.

II. THEORY

In the presence of a weak electric field £(r) with strength
&o, the ground-state energy level of Zn can be expressed in the
perturbative approach as [3,9,39]

Ey=E® 4 E{ 4 E® 4 ...
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where Eé”) denotes the nth-order correction to the energy with
E, © as the ground-state energy level of the free Zn atom,
and the first-order energy shift to the ground state of Zn is

(1) = 0. When £(r) is generated from a charge Q, placed at
a dlstance r, then the above equation is given by [9,24]

1 Q2 1 o 1 0
—_ O _ 2 *e —
E() _E() ZOtd r4 2 q 6 +4B + - (3)
On this basis, when an external charged particle such as an
electron or positron is seen in the vicinity of an atom, its
polarization potential is constructed using Eq. (1).
With the prior knowledge of atomic wave functions |\I’,EO))

and energies E /EO) of the free Zn atom, with k representing the
level of a state, we can evaluate the a4, oy, and B values using
perturbative analysis as [24]
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where D and Q are the electric dipole and quadrupole op-
erators, respectlvel(y Since it is impractical to evaluate the
complete set of |\IJ ) for the evaluation of the above quanti-
ties, they can be determlned conveniently by expressing them
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as [40-42]
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where the first-order wave functions are defined as
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Therefore, contributions from all the intermediate states in
the sum-over-states to a4, a4, and B can be accounted for
through the first-order wave functions by determining them
as the solution of the following inhomogeneous equation:

(1= £ 5" -

in the ab initio framework with the atomic Hamiltonian Hy and
O denoting either D or Q. As discussed in the next section,
these first-order wave functions are solved in the RCC and
RNCC theory approaches in this work.

—-0[w), (11)

III. METHODS FOR CALCULATION

A. Evaluation of properties

In the relativistic framework, we consider the Dirac-
Coulomb (DC) atomic Hamiltonian in the calculation, which
is given by

1
Hy=>)" [cai i (B = D+ Ve + ) V—J

i j>i

(12)

where c is the speed of light, o and 8 are the Dirac matrices,

Vaue 1s the nuclear potential, and 7;; is the interelectronic

separation between the electrons located at the 7; and r; radial
positions with respect to the center of the nucleus.

We begin our calculations with the Dirac-Fock (DF) ap-
proximation (Hy = Hpg + Vp, with Vy = Hy — Hpg for the DF
Hamiltonian Hpg) and obtain the exact wave function by ex-
pressing it as

%) =

where |®y) is the unperturbed DF wave function and the wave
operator Q) accounts for the contributions from V. After
including the external operator O, the first-order perturbed
wave function can be written as

) -

QO @), (13)

QD] D). (14)

In the perturbative analysis, the unperturbed and perturbed
effects are accounted for by expressing [15,16,43,44]

QO = Q00 4 QU0 4 QRO 4 G0 4 ... (15)
and

Q@b — O, 1)+Q(1 1)+Q(2 1)+Q(31)+ . (16)

where Q™ denotes inclusion of nth and mth order of Vj
and O = D/Q operators in the calculations. In the many-
body perturbation theory (MBPT method), the amplitudes of
these wave operators can be determined using the generalized
Bloch’s equation [15,16,44] for each order of perturbation, as
given by

= Qoo Q" ""P,
n—1
— Z Q(nik’m)P()VOQ(kil’m)PQ,
k=1
+ 0,09 VP,
m—1
=Y QIR0 R, (17)

r=1

[Q"™ Hpr]Po

by equating terms with the same order of perturbation from
both of the sides, where Py = |®g) (D] and Qy = 1 — Py. To
understand how electron correlation effects propagate from
the lower-order level to the higher-order level of perturba-
tion in the determination of polarizabilities, we consider one
and two orders of V; in the second-order [MBPT(2)] and
third-order [MBPT(3)] MBPT method, respectively, and es-
timate the g and oy values. It is obvious from here that
the DF values of the polarizabilities can be obtained by
considering the zero order of V; in the calculation. We also
intend to verify the results by approximating Q@ ~ Q0 =
1 and Q@D ~ "> QD but accounting for only the core-
polarization effects in the random-phase approximation (RPA)
framework [15].

The RPA as well as all-order contributions from the non-
RPA effects can be captured simultaneously by the RCC
theory [15,16,45], in which the unperturbed exact wave func-
tion is given by

(W) = e |@y), (18)
where 7@ accounts for electron correlation effects from Vj.
Analogously, the first-order perturbed wave function is given
by

|\II(()0’1)) — eT(O)T(U‘1)|Cb0>, (19)
where 71 includes contributions from both V; and the per-
turbative operator O. In this approach, the expressions for o,
a4, and B are given by [40-42]

(@ole”™ De! T |b) (20)
oy = m y
d (CD()|eTm”eT(O) | Do)
Bale™ 0T TP
o, = 2( ole’ " Qe | 0)’ 21

(@ole™” e | Do)
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and
(Do|T@ DT DT T @Dy
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Evaluating the above expressions involves two major chal-
lenges, even after making approximations in the level of
excitations in the calculations. The first is that it has two
nonterminating series in the numerator and denominator. The
second is that the numerator can have factors both connected
and disconnected with the operators D or Q. These present
practical problems in implementing and accounting for con-
tributions from all these terms in a convincing manner. To
partially address these problems, we approach the evaluation
of the oy, oy, and B values in a slightly different way, as
described below.

Let us assume for now that the interaction operator O is a
part of the atomic Hamiltonian and given by

H = Hy + O, (23)

(22)

where A = 1 and is introduced to keep track of the order of
O in the calculations. The atomic wave function |W) of the
above Hamiltonian in the RCC theory can be given by

(W) = T |®) = e |Dy), (24)

where |®) is the modified DF wave function constructed in
the presence of O with the corresponding electron excitation
operator T due to both V and D, while T is also the electron
excitation operator due to both Vy and D but considering
excitations from |®g). The expectation value of O using |W)
can be mathematically given by

(WO1W) _ (ole” Oe” | Py)

0) = = . 25
I (W) (@ole”"e” | Do) @

Following Refs. [25,46], the above expression yields

(0) = (Dgle” O |Dy).., (26)

where the subscript ¢ indicates that only connected terms can
exist in the expression. Now expanding T in powers of A as

T =T +Ar7" +00?) (27)
and retaining terms linear in A in Eqgs. (25) and (26), we get
(@ole™ O™ T D] dy)
(@ole”" ™ | Dg)

This expression is mathematically equivalent to the second-
order polarizability expression. Therefore, the aforementioned
polarizabilities can be evaluated in the expectation value eval-
uation approach of RCC theory as

= (Dple™ " O™ T |D)Y,.. (28)

ayg = 2(®gle””" D" TV D)., (29)
ay = 2(®gle™” Qe TV D)., (30)

and
B = 2(®g|T @V DT " 7@V | dby)... 31)

Though not specified explicitly, the above expression for B is
obtained by adding A;D and A,Q in the atomic Hamiltonian
and equating terms in AjA, and A A3 from the expectation

value expression given by Eq. (25), where A; and X, are two
arbitrary complex parameters.

Before we pursue the calculations of a4, oy, and B using
the above connected terms in the RCC theory, we intend
to point out a few issues associated with these expressions.
Although it removed the nonterminating series appearing in
the denominator, it still contains a nonterminating series in
the numerator. Again, the above derivations of the expressions
were based on the assumption that no approximation was
made in T, but the actual calculations are carried out after
approximating it to a certain level of excitations. Thus, the
cancellation of the normalization of the wave function may
not be exact and it will slowly tend towards exact with the
gradual inclusion of higher and higher-order terms. This is
also true in the case when external perturbation is not in-
cluded in the atomic Hamiltonian and the expectation value
of an operator is evaluated using Eq. (26) in the RCC the-
ory. Nonetheless, these problems can be circumvented in the
RNCC method, as discussed below.

First, we want to make it clear that we shall approach
in the same manner from Eq. (23) of RCC theory to derive
expressions for polarizabilities in our RNCC theory. As in
the usual approach of the RNCC theory, the ket state |W) is
expressed as the ordinary RCC theory, but in place of (V|
a new bra state, (¥| is defined for H such that both (W]
and (W] have the same eigenvalue for H and it satisfies the
biorthogonal condition [29,47,48]

(F|w) = 1. (32)

Due to the fact that (| is constructed by the deexcitation
RCC operator (T T), the RNCC bra state is expressed as

(U] = (Dol(1+ A)e ", (33)
with a deexcitation operator A. It then obviously follows that
(P|W) = (Dol (1 + A)e™ e [g) = 1. (34)

To ensure that both (¥| and (| have the same eigenvalue for
H, it is imperative to impose the condition

(®o|AH| Do) =0, (35)

where H = e THe” = (He"), is a terminating series. This
leads to the amplitude determining equations for the 7 and A
operators as

(DGIH | D) =0 (36)
and
(d>o|AH|CI>3) =0, 37

respectively, where |®f) is an excited-state determinant with
respect to |®g). Now, adopting the perturbative approach of
Eq. (23), we can expand

A =AY+ iACD 4 002, (38)

When D and Q are included simultaneously along with param-
eters A1 and X, in Eq. (23), the A operator can be expanded in
both A; and A,. Consequently, the RNCC expressions for oy,
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g4, and B can be given by
ag = (o|(1 4+ AOYDTED 1 AUDD D),  (39)

ag = (Po|(1 + AD)QT@D 4 ACDD|dy),  (40)
and
B= (<I>0|A(d’1)DT(q’1) + A(q’l)DT(d’l)M)o), (41)

where O = (OeT(m)C. At this juncture, we would like to
mention that if the above RNCC theory derivations were
made based on Egs. (18) and (19) instead of starting the
derivation from Eq. (24), then we would have gotten ex-
tra terms such as (1 + A)TEDIH, (1 + A)T@ D), and
(AOT@DTpTED 4 AOTEDIHT @Dy in Egs. (39), (40),
and (41), respectively. It implies that deriving the expressions
for a4, oy, and B from the expectation value equation given
by Eq. (25) has a lot of computational advantages. Nonethe-
less, the final results should be independent of a theoretical
approach provided an exact theory has been implemented in
a consistent manner, whereas in an approximated calculation,
the choice of implementation should be made judiciously in
order to achieve more reliable results as well as a reduction in
the computational cost.

It is obvious from the above expressions for the po-
larizabilities in the RNCC theory that they are free from
nonterminating series as appear in the RCC theory and
normalization of the wave function naturally becomes one.
Therefore, it is more practical to handle the calculations using
the RNCC theory. It also removes the ambiguity regarding
the nonexact cancellation between contributions from the nor-
malization of the wave function and disconnected terms of
the RCC theory in an approximated calculation. At present,
we have considered the single and double excitations in the
RCC theory (RCCSD method) and RNCC theory (RNCCSD
method) by defining the electron excitation and deexcitation
operators as

TO =70 L 7O 7O 7O L 70T (4

T — Tl(o,l) + Tz(o,l), 7D — Tl(o,l)T + Tz(o,l)T, (43)
and

AO — A(lo)"‘Ag))v AlD — Ago.l)_i_A;o,l). (44)

Another pertinent point that we would like to mention
here is that considering the next-level excitations, i.e., triple
excitations, in the RCC theory will be too challenging com-
putationally as the number of terms will be quite large. Owing
to the fact that both D and Q are one-body operators and that
there is a constraint of having connected terms in the polariz-
ability calculations, only a limited number of additional terms
will appear in the above expressions if we intend to include
higher-level excitations through the RNCC theory. This is why
we may anticipate a significant difference between the results
from the RCCSD and RNCCSD methods, while these dif-
ferences can be minimized with the inclusion of higher-level
excitations. Furthermore, the results will converge faster in the
RNCC theory with the level of approximations compared to
the RCC theory owing to the above constraint.

To understand the differences between the results from
the RCCSD and RNCCSD methods, we have given results
from individual terms from both of these methods and made a
comparative analysis among them. It should also be noted that
the MBPT(2) results are the lowest-order contribution of RPA.
Therefore, we can explain the role of the lower-order and
all-order core-polarization contributions to the determination
of oy and «, by analyzing the MBPT(2) and RPA results.
Similarly, the MBPT(3) method introduces the lowest-order
non-RPA contribution. The differences between the RPA and
RCC results will represent the contributions due to non-core-
polarization effects to all-order and a comparison of this
difference with the MBPT(3) results will give an idea about
how important the non-core-polarization effects are in the
evaluation of ay and «,. Since evaluation of B depends on
the first-order wave functions used in the determination of o
and «,, the accuracy of B can be gauged from the accuracy of
the calculated oy and «, values.

B. Machine-learning-based scheme for orbital optimization

In the course of calculating accurate values of polariz-
abilities, it is necessary to use reliable single-particle orbitals
along with considering a powerful many-body method. There
is a possibility that the method employed in a calculation
is very accurate, but the results can still be bad due to use
of poor-quality single orbitals used in the construction of
the Slater determinants. In our approach, we need to know
both the bound orbitals and the continuum for pursuing the
calculations. The bound orbitals can be obtained by solving
differential equations, but it requires a different treatment to
obtain the continuum. If two separate approaches are adopted
to obtain the bound orbitals and continuum, then there can
be orthogonality issues among them. Thus, we prefer to gen-
erate atomic orbitals using a single procedure by imposing
orthonormality conditions among them.

The single-particle orbitals are given in the DF method as

(Va1 POX]
o= (wm) B ;<LQ(r)x_,-Q,,_,-T ’ @)

where P(r) [or Q(r)] is the large [or small] component radial
function, and X;;/, jQ is the corresponding normalized spin-
angular function and is an eigenfunction of the j2, j., 12, and
s® operators. The radial functions are expressed as a linear
combination of Gaussian-type orbitals (GTOs) such as

Np
P(r)=) CEN"g:(r) (46)
n=1
and
N
Q(r) =Y CINSg3(r), (47)
n=I1

where C# and C,f are the expansion coefficients (over which
the variation is performed) over a N, number of GTOs, and N*
and N* are the normalization constants for the large and small
components, respectively. The GTOs describing the large and
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small component radial functions are given by [49,50]

gh(r) = rlemor” (48)
and

d

&(r) = NL<—

K
—+ ;)g’;,m, (49)

respectively, for the relativistic quantum number «. In
Egs. (46) and (47), we have, as unknowns, C,?, C,f, and ).
The C) and C} coefficients depend upon the choice of the a,
parameters and N,. Also, a suitable choice of an appropriate
set of o, values can describe the completeness of the space by
a finite size of basis functions in a discretized manner. This
is also a practical requirement to carry out the calculations.
Thus, it is necessary to find out only the C,f and C,f coefficients
to describe both P(r) and Q(r), and, consequently, |¢(r)).
In fact, one can find optimized GTOs for molecular calcula-
tions, which make use of contracted functions to describe the
large space of basis functions with minimum computational
effort [51]. However, these functions are not suitable for de-
scribing atomic orbitals in the spherical coordinate system.
In order to address this, we use reduced matrix elements
for calculating atomic properties by which we simply avoid
dependency of the j, components of the orbitals explicitly,
hence managing to include a much larger-size active space in
the calculations using many-body methods. Nonetheless, we
solve the Roothan’s equation [52] in the relativistic framework
to obtain these coefficients to construct the single-particle
orbitals in the DF method. To choose the «, parameters con-
veniently, they are defined according to the even tempering
condition [53], which treats «, = apB"! for two arbitrary
parameters o and S.

It is a challenge to search for a suitable set of «g, 8, and
N, that can aptly describe the DF orbitals in atomic systems.
Finding an optimized set of basis functions to describe single-
particle orbitals can minimize the error due to the finitude of
the chosen basis set and thereby improve the accuracy of the
calculations. It is, however, not possible to do so by choosing
the above parameters manually. Therefore, it is pertinent to
find a scheme wherein we can find the optimal values for these
parameters such that they can produce the DF orbitals with a
high quality, meaning that the properties calculated from them
should be physically more meaningful. In order to achieve
this goal, we borrow the concept of a loss function L [54],
which is an essential ingredient in optimization schemes used
in machine learning and elsewhere. This necessitates the need
for a reference data (i.e., for natural orbitals) with which we
can compare our candidate data. In our case, the reference data
are taken from the numerical solutions of the DF equations as
solved by the GRASP-2K package [55]. We then choose the
mean-squared-error (MSE) loss which provides a quantitative
estimate of the closeness of our candidate data to the reference
data. The MSE loss is given by [54,56]

N,
1 t

L=— i — 9)% 50
ME()’ 9 (50)

i

where N, is the total size of the basis set, y; are the reference
values, and y; are the candidate values. In our case, the ref-

0.24
0.22 9
0.20 =
0.18 ©
0.16 12
0.14

0.12

Q'o 0.03 2.06

FIG. 1. A plot demonstrating total loss of the single-particle
orbital wave functions produced using GTOs with a different set
of oy and B parameters with respect to the numerical orbitals. The
red dot corresponds to the point of least total loss which occurs at
ap = 0.0209 and g = 2.07.

erence data consist of the large and small components of the
bound DF orbitals of the considered atom.

IV. RESULTS AND DISCUSSION

In order to obtain the single-particle orbitals using the opti-
mized o and B values, we compute the net MSE loss as a sum
of individual losses due to the large (Ljarge) and small (Lgman)
components of the radial function as L = Wy Liarge + WsLgman
with the respective weight factors W, and Ws. Since accurate
calculations of polarizabilities mostly depend on the large
component of the single-particle wave function, we take a
larger value for W, than Ws. Again, optimizing the smaller
radial components are very sensitive to numerical accuracy
owing to their drastically smaller magnitudes. From this point
of view, we consider L = 0.8Ljarge + 0.2L¢mani, and the initial
values for the parameters are chosen as oy = 0.0009 and
B = 2.15. We perform a grid search for the local optima for
a given range and step size in a region of interest. We show
a plot showing the MSE loss for various values of ¢y and
values in Fig. 1. This gives us the local optimal values for the
basis parameters as «p = 0.0209 and 8 = 2.07, using which
we have performed the rest of the calculations.

TABLE I. Calculated static dipole (ct;) and quadrupole («,) po-
larizability values (in a.u.) of Zn using different many-body methods
in the relativistic framework.

Method oy oy B

DF 37.29 278.69 —1576.86
MBPT(2) 43.50 376.62

MBPT(3) 38.68 340.85

RPA 50.81 431.75

RCCSD 40.32 318.79 —2809.53
RNCCSD 38.99 314.40 —2195.15
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FIG. 2. Ratios of dipole and quadrupole polarizability values
from different many-body methods and their DF values.

In Table I, we present the results for oy and «, from our
RNCCSD method along with results from our DF, MBPT(2),
MBPT(3), RPA, and RCCSD methods. If we compare the
results from all these methods apart from the RNCCSD
method with that reported in Ref. [15], we find that the results
are slightly different at the given level of approximation. In
Ref. [15], contributions from partial triple excitations were
considered in the RCCSD calculation (CCSD, T) method, but
the main reason for the discrepancy in the result from the
present work is owing to the use of optimized basis functions.
A slightly large difference is seen at the MBPT(3) method
because of the consideration of the contributions from a few
additional Goldstone diagrams here, which were not included
in Ref. [15]. The RNCCSD results are also provided here. The
trends of the ay and «, values through different many-body
methods are shown pictorially in Fig. 2 after normalizing with
their respective DF values. As can be seen from the above
table and from the figure, the difference between the DF and
RNCCSD values for ¢ is small, but there is a relatively large
difference for the o, value from these methods. This implies
that the electron correlation trends between both of the proper-
ties are different. In fact, results from the lower-order methods
show that the oy and o, values increase in the MBPT(2)
method compared to the DF values, while their magnitudes
reduce slightly in the MBPT(3) method. As it was men-
tioned earlier, the MBPT(2) method contains the lowest-order
RPA correlation terms, while the MBPT(3) method intro-
duces the lowest-order non-RPA correlation terms. Thus, the
above trends in the results from the MBPT(2) and MBPT(3)
methods suggest that there are cancellations in the correlation
contributions arising through the RPA and non-RPA types of
correlations. This is further evident from the RPA and RCCSD
results. The RPA, which accounts for correlation contributions
due to all-order core-polarization effects, gives very large val-
ues for both az and «,. However, the RCCSD results are close
to the MBPT(3) values. This means that the core-polarization
effects enhance the magnitudes of both of the polarizabilities,
while other correlation effects contribute with opposite signs
at the all-order perturbation level. We also observe that these
cancellations are slightly larger (in percentage) for o, than ag.
Comparing results from the RCCSD and RNCCSD methods,

TABLE II. Comparison of contributions to o, (in a.u.) from
various terms of the RCCSD and RNCCSD methods. We also
compare the corresponding contributions from previously reported
calculations using the RCCSD method. Here, Norm represents the
difference between the contributions after and before normalizing
the wave function with a normalization factor, NA stands for not
applicable, and Nonlin corresponds to the contributions coming from
nonlinear terms. These abbreviations are followed in the remainder
of this work.

RCC method RNCC method
Term Ref. [17] Ref.[15] Ours Term Ours
b1V 22795 21906  23.793 pT!"V 23793
7'D 22795 21906  23.793 A"D 18510
79DV —0951 —1229 -1336 A"DT" —0.664
V' DT® 0951 -1229 -1336 ADT® —1.038
TV'DT®  —0925 2643 -2794  ADT® —2.159
7' pr™ 0925 —2643 —2794  APDTM 00
79Dr" 0041  NA 0072 A"DT" 0042
rV'DT® 0041  NA 0072 AVDT® 00
79 Dpr"  0.673 1024 1.025  AYDT” 0980
rV'pr® 0673 1024 1025  APDT® 0899
Nonlin NA 0.551 —1.200 Nonlin  —1.373
Norm —4.086 0.0 0.0 Norm 0.0

the differences in a; and o, from both of the methods are
found to be about 3% and 1%, respectively. In the above table,
we have also given B values, but only from the DF, RCCSD,
and RNCCSD methods. The reason for not giving results from
the other lower methods is that the theoretical evaluation of
B depends on the first-order wave functions due to D and
Q; so, by analyzing results for y and «, using lower-order
methods, the propagation of electron correlation effects from
lower-order to all-order methods can be understood.

In order to understand the differences between the
RNCCSD and RCCSD values better, we give results from
individual terms of these methods for g, oy, and B in Ta-
bles II, III, and IV, respectively. In Table II, we also give the
corresponding contributions to «; from the RCCSD method
that were reported previously in Refs. [15,17]. It can be seen
from the term-by-term comparison between the RCCSD and
RNCCSD results from the present calculations that contribu-
tions arising through the complex conjugate (c.c.) terms and
the counter-RNCC terms are quite different. By comparing
the values of individual RCC terms among the earlier calcula-
tions [15,17] and ours, we find that the trends from different
terms differ. There is a similarity in the trends between the
present work and Ref. [15] as the implementation procedures
of the RCC method are the same in these calculations, but the
basis functions used in both cases are different. We have used
a much larger basis set of functions with 40, 39, 38, 37, 36,
and 35 GTOs for the s, p, d, f, g, and h orbitals, respectively,
whereas only 35 GTOs were used for each symmetry up to
g orbitals in Ref. [15]. Furthermore, we have optimized the
GTO parameters by adopting a machine-learning-based opti-
mization technique this time, as mentioned earlier. It should
be noted that calculations in Ref. [17] and in the present
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TABLE III. Comparison of contributions to @, (in a.u.) from
various terms of the RCCSD and RNCCSD methods.

RCC method RNCC method

Term Results Term Results
or" 179.704 or" 179.704
V' 179.704 APQ 154.456
7 o1V —22.338 APor —10.597
7V o1, © —22338 ADQT© ~19.628
7V o1 —1.228 APQT —1.045
% o1,V —1.228 ALQr™® 0.0
7% o1" 0.474 ADQr® 0277
V' or® 0.474 ALPQT® 0.0
7% o1" 10.520 AV QT 10.131
" o1 10.520 AL QT 9.641
Nonlin —15.474 Nonlin ~8.539
Norm 0.0 Norm 0.0

work are carried out using orbitals up to 2 symmetry and
the same levels of approximations are considered in the RCC
theory, but the implementation procedures are different in
these works. Now comparing the correlation trends through
the individual RCC terms of Ref. [17] with our calculation,
we find the difference in the result from DTI(I) (along with its
c.c. term) is small, but they differ substantially among other
RCC terms. We notice that the contribution arising through
the normalization of the wave function (quoted as Norm in
Table II) in Ref. [17] is quite large. In fact, it is larger than
the difference between our DF and final RCC results (i.e., the
net correlation contributions). In this view, we feel that by
implementing the RCC theory in which only the connected
terms are retained (also the Norm factor does not appear)
in Eq. (25) is more credible. Nonetheless, our RNCC theory
takes care of this normalization factor in a natural manner.
Unlike oy calculations, the o, value of Zn was not evaluated
using the linear response RCC theory earlier. Therefore, we
could not make a comparative study between the contributions
from our RCC terms with any earlier study in Table III, but

TABLE IV. Comparison of contributions to B (in a.u.) from var-
ious terms of the RCCSD and RNCCSD methods.

RCC method RNCC method
Term Results Term Results
T4 preh 126713 ADpTah —987.22
TV DT —1267.13 AYUDTY~1091.26
740 preh —269.67 ADpTah ~206.59
TV DY —269.67 ASPDTD 0.0
' prieh  ~107.99 APPDTED ~93.05
V' prh ~107.99 ASVDTD 0.0
7,0 DD 145.63 ASDTD 2081
7D preh 145.63 ALD DT 127.73
Nonlin 188.79 Nonlin 34.43

show only the comparison of contributions from various terms
of the RCCSD and RNCCSD methods.

As was mentioned earlier, the ket state in the RNCC theory
is the same as the one in RCC theory. Thus, the differences
in the results between the RCCSD and RNCCSD methods are
due to different contributions arising through various deexci-
tation operators in both of the methods. From the comparison
of contributions from individual terms in the above table,
it is clear that the amplitudes of the deexcitation operators
in the RNCCSD method are lower in magnitudes than their
corresponding operators in the RCCSD method. These trends
from individual terms are almost similar during the evaluation
of both ¢y and «;,. We also find that certain terms, which con-
tribute finitely in the RCCSD method, do not contribute in the
RNCCSD method as they cannot give rise to connected Gold-
stone diagrams. This is how the lower contributions arising
through the deexcitation operators of the RNCCSD method
get compensated with the contributions from the extra terms
of the RCCSD method.

We now turn to presenting the B values from the RCCSD
and RNCCSD methods. Compared to oy and o, very few the-
oretical studies of B have been carried out in atomic systems
and mostly they have been reported using the FF approach.
Inferring their experimental results is extremely challenging,
thus accurate evaluation of B is quite interesting to under-
stand the roles of various correlation effects associated in its
evaluation. Using the FF approach, it is possible to achieve
the final value of B at a given level of approximation in
the many-body method; however, a linear response approach
could explicitly demonstrate the underlying roles of different
electron correlation effects in the calculation of B through
various physical interactions. Since B is evaluated using the
first-order perturbed wave functions that are used to estimate
the oy and «, values, the electron correlation trends of B
can be somewhat guessed from the earlier analyses of the
ag and «, results at different levels of approximations in
the many-body methods, but the additional intercorrelation
among the dipole and quadrupole operators in the evaluation
of B may offer quite a different picture. To fathom this, we
make a comparative analysis of individual contributions to B
values from individual terms of the RCCSD and RNCCSD
methods in Table IV. As can be seen from this table, the
most dominant contribution to B comes from Tl(d’l)fDTl(q’l),

followed by 7,V DT, then T,V DT{*" (along with
their c.c. terms) in the RCCSD method. Comparing contri-
butions from 7.V DT and TV DT*P, we understand
that the amplitudes of the perturbed single-excitation RCC op-
erator due to the dipole operator dominate over the perturbed
single-excitation RCC operator due to the quadrupole opera-
tor. It can be noticed from the above table that contributions
from Tz(q’l) DTz(d’l) and its c.c. term have an opposite sign
compared to other terms. In the RNCCSD method, the contri-
butions from the counterparts of the RCCSD method follow
similar trends. As can be noticed, all terms of the RNCCSD
method are distinctly different from those of the RCCSD
method, in contrast to the cases of «; and «,, where half of
the RNCCSD contributions were arising from the RCCSD
terms. Analogous to the determination of ¢y and o, we also
find that there are several terms which do not contribute to
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TABLE V. List of recommended values for oy, o, and B (in a.u.)
from different calculations using sophisticated many-body methods,
experiments, and scaling procedures. Our recommended values are
shown in italicized font.

Quantity Value Method Reference
oy 38.99(31) RNCCSD This work
40.32 RCCSD This work

38.8(8) Expt.4-extrapol. [9]

42.79 CCSD [9]

41.69 CCSD(T) [9]

39.2(8) CCSD(T)+scaling [9]

41.83 CCSD [13]

39.27 RCCSD [13]

40.55 CCSD(T) [13]

38.01 RCCSD(T) [13]

41.6 CCSD [14]

39.02 CCSD” [14]

40.39 CCSD(T) [14]

37.86 CCSD(T)" [14]

38.666(96) CCSD,T [15]

38.72 PRCC [17]

38.76 PRCC(T) [17]

38.92 Expt.+fitting [57]

35.33 MCDF+scaling [58]
oy 314(4) RNCCSD This work
318.79 RCCSD This work

360.16 CCSD 91

351.24 CCSD(T) [91

324.8(16.2) CCSD(T)~+scaling [9]
B — 2195(50) RNCCSD This work
—2809.53 RCCSD This work

—2940 CCSD 91

—2780 CCSD(T) 91

—2370(240) CCSD(T)+scaling [9]

After considering quasi-relativistic corrections.

the B value in the RNCCSD method whose counterpart terms
in the RCCSD method do give finite contributions. This is
owing to the terminating series that appears in the expression
for the evaluation of B in the RNCCSD method against the
nonterminating series of the RCCSD method. Also, it is seen

N i .
that the contribution from the A(ld’l) DTl(q’l) term is lower

than the contribution from the A(l”’l)' DTI(’“) in the RNCCSD
method. This may be owing to the larger magnitude of the
single-excitation RCC operator due to the dipole operator.
Our final recommended values from the RNCCSD method
along with the previously calculated and experimental re-
sults for oy, 4, and B are given in Table V. The estimated
uncertainties from our calculations are quoted beside the
recommended values. These uncertainties account for the ex-
trapolated contributions from the high-lying basis functions
that are not included in the many-body methods, the neglected
contributions from the higher-order Breit and QED interac-
tions, and the neglected higher-level excitations. Errors due
to the extrapolated basis functions and relativistic effects are
analyzed by employing the MBPT and RPA methods, while
uncertainties due to the higher-level excitations are estimated

TABLE VI. Estimated uncertainties to the g, o, and B values
(in a.u.) from the basis extrapolation (Basis), neglected Breit interac-
tion (Breit), and lower-order QED corrections (QED) are listed.

Source oy a, B
Basis 0.11 0.5 3
Breit 0.05 0.8 8
QED 0.03 0.4 4
Triples 0.30 4.0 49

by analyzing contributions from the dominant triple excita-
tions in the perturbative approach. Individual contributions
from various sources to the above quantities are listed in
Table VI and the net uncertainty to the final value is given
by adding all the contributions in quadrature. From these
analyses, we recommend the values for oy to be 38.99(31)
a.u., for o, to be 314(4) a.u., and for B to be —2195(50)
a.u. We have also listed the previously reported experimental
and calculated values of oy, «,, and B in the above table.
Results from the CC and RCC methods are given from both
the CCSD method and the CCSD method with contributions
from partial triple excitations [CCSD(T) method] along with
their relativistic versions. The differences in the results from
the CCSD and CCSD(T) methods can indicate the importance
of the neglected contributions from the triple excitations. The
experimental value of oy listed in Table V was measured by
using the Michelson twin interferometer technique [9]. Later,
this value has been revised by fitting the data using better
numerical analyses [57]. Our recommended value from the
RNCCSD method agrees quite well with both of the values.
The latest calculation of oy employs a sum-over-states ap-
proach, by combining only a few El matrix elements from
the multiconfiguration Dirac-Fock (MCDF) method; experi-
mental energies and the rest of the contributions are estimated
using lower-order methods. This shows poor agreement with
the experimental result [58]. The calculations reported in
Refs. [15,17] are equivalent to our RCCSD method, while the
calculations reported in Refs. [9,13,14] are based on the FF
approach using the nonrelativistic CC method. There seems to
be an overall good agreement among all these calculations. It
is worth mentioning that the recommended values given by the
nonrelativistic CC calculations of «; in Refs. [9,13,14] have
used scaled values in order to quote more accurate values, but
the actual calculations give very different values. Nonetheless,
the agreement of the previously reported accurate values of g
for Zn with our RNCCSD result suggests that our estimated «,
and B values using this method are reliable. There is one more
calculation of &, and B reported using the nonrelativistic CC
method in the FF approach [9]. As mentioned above, the final
recommended values from these references are scaled values
and the actual calculated values are again very different. For
example, the CCSD results for o, and B are quoted in the
above reference as 360.16 a.u. and —2940 a.u., respectively.
In the CCSD(T) method, the ¢, value was modified to 351.24
a.u., while the B value was modified to —2780 a.u. [9]. After
scaling the result, the recommended values for o, and B were
given as 324.8(16.2) a.u. and —2370(240) a.u., respectively.
Our RNCCSD results are obtained in the ab initio frame-
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work and they account for relativistic effects. It is, however,
interesting to see that our results validate the recommended
values that were reported in Ref. [9]. It can be further
noted that our RCCSD value for B given in Table I dif-
fers substantially from the RNCCSD result. Therefore, the
good agreements of our RNCCSD results with the previously
recommended values of a4, o, and B suggest that the ap-
proximated RNCC method is more reliable compared to the
approximated RCC method for the determination of the above
quantities.

V. CONCLUSION

We have employed normal coupled-cluster theory in the
relativistic framework to determine the dipole, quadrupole,
and dipole-quadrupole interaction polarizabilities of the zinc
atom. By considering the single- and double-excitation ap-
proximation and estimating uncertainties from the neglected
contributions, very accurate values for the above quantities

are reported. We have also given values from other methods,
including ordinary relativistic coupled-cluster theory, from
our calculations. It was found that the dipole and quadrupole
polarizabilities from the normal and ordinary coupled-cluster
theory agreed quite well, but there was a large difference
between the dipole-quadrupole interaction polarizability. We
also compared our results with the earlier recommended val-
ues from various calculations and observed that our results
from the relativistic normal coupled-cluster theory match
better with those values than the results obtained using the
ordinary coupled-cluster theory at the singles and doubles
approximation.
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