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Stopping-power calculations and the Levine-Mermin dielectric function for inner shells
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The contribution of bound electrons to the electronic stopping power is modeled by using the shellwise local
plasma approximation (SLPA). An improvement to this formalism is proposed by including the Levine-Mermin
dielectric function (SLPA-LM). This approach considers a more realistic description of the bound electron
response by facing the problem of the damping in the collective excitations. We introduce a local damping
that depends on the density of electrons of each shell, keeping the full-theoretical characteristic of the SLPA.
We implement the present model to obtain the stopping power for metal targets of period-6 elements of the
periodic table (Hf, Ta, W, Os, and Pt) and we analyze the importance of the SLPA-LM description of heavy
multielectronic targets. Furthermore, we investigated metal targets of group VI of the periodic table (Cr, Mo, and
W) to inspect the dependence of the SLPA-LM with the number of subshells.
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I. INTRODUCTION

Theoretical electronic stopping-power calculations go back
to the early times of atomic physics [1,2]. However, discrepan-
cies between the theoretical descriptions and the experimental
data remain present [3,4], mainly because energy loss through
matter is a many-body and many-collision problem. The
state of the art of the theoretical work is extensive, e.g.,
Refs. [5–12]. Codes available online, such as the theoretical
CASP [13,14] and DPASS [15,16], and the semiempirical SRIM

or MSTAR [17–19], are very useful because of the widespread
range of ions and targets they cover. These codes also deal
with compounds, as long as Bragg’s stoichiometric rule is
valid. However, the energy loss description of many targets
remain unresolved [3]; understanding this process is relevant
not only for fundamental physics but also for applications. For
example, stopping-power values are included within sophisti-
cated simulations [4,20–22].

One of the open issues regarding the theoretical modeling
is the stopping power of lanthanides and heavy transition
metals (postlanthanides). Recent measurements on these very
heavy targets show the limitations of the models [23–27]. For
example, the description of these targets requires solving the
Dirac equation for the wave functions and binding energies.
Moreover, the contribution of the 4 f -shell (which is open in
lanthanides and closed in postlanthanides) plays a decisive
role and challenges the description of the stopping power for
impact energies around the maximum and below.

The shellwise local plasma approximation (SLPA) has
been used to account for the inner-shell contribution to the
stopping power for more than a decade [11,28]. The model
has been extended to deal not only with stopping power but
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also with the ionization of deep shells [29,30] and with en-
ergy loss straggling [31]. However, we found a systematic
overestimation of the energy loss in multielectronic targets
in the high-energy region; particularly, for projectile energies
E > 1 − 4 MeV/amu [26,32,33].

The goal of this paper is to present an improvement of
the SLPA by considering a local damping for the collective
excitations of the target bound electrons. It will be shown
that the changes included clearly diminish the stopping-power
overestimation for heavy multielectronic targets. However,
these corrections are negligible for targets with fewer bound
shells. The improvement introduced to the SLPA and the
analysis of different targets and atomic numbers are important
for advancing into the systematic study of the stopping of the
lanthanides and postlanthanides above mentioned.

We present the theory for the inner-shell contribution to the
stopping cross sections in Sec. II. In Sec. III, the total stopping
cross sections are discussed, considering as study cases the
elements from period 6 (Hf, Ta, W, Os and Pt) and group VI
(Cr and Mo) of the periodic table. Conclusions are drawn in
Sec. IV. Atomic units are used unless other units are explicitly
mentioned.

II. THE SHELLWISE LOCAL PLASMA APPROXIMATION

The SLPA [28,30] is a theoretical model that describes the
response of the electrons bound to the target as a gas of elec-
trons of local density. This approach is a many-electron model
based on the quantum dielectric response theory, which con-
siders separately each nl subshell, characterized by its local
density of electrons ρnl (r) and binding energy Enl . The SLPA
accounts not only for binary collisions (electron-hole) but
also for the collective response, including screening among
electrons with similar binding energies, electron-electron cor-
relation in the final state, and the possibility of collective
excitations of the different subshells. A challenging task for
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this approximation is given by the ionization cross sections,
which has been successfully carried out [29,30,34].

The SLPA formulation has a general expression for the
different moments of order t of the energy loss by a bare ion
of charge ZP moving at velocity v in the atomic cloud of nl
subshell electrons given by

S(t )
nl = 2

πv2

∫ ∞

0

Z2
P dk

k

∫ kv

0
ωt Im

[ −1

εnl (k, ω)

]
dω, (1)

where t = 0 corresponds to the ionization cross section, t = 1
the stopping cross section, and t = 2 the square energy loss
straggling. Within the SLPA, the imaginary part of the inverse
dielectric function is expressed as

Im

[ −1

εnl (k, ω)

]
= ρa

∫
Im

[ −1

εSLPA(k, ω, ρnl (r))

]
dr, (2)

with ρa being the target atomic density. Note that a local den-
sity implies a local plasmon frequency ωnl

p (r) = √
4π ρnl (r),

as introduced by Lindhard and Scharff [35].
Outstandingly, providing the local electron density ρnl (r)

verifies the corresponding occupation number, i.e., Nnl =∫
ρnl (r) dr, the SLPA fulfills the high-energy limits of the

dielectric function employed:∫ ∞

0
ω Im

[ −1

εSLPA(k, ω, ρnl (r))

]
dω = 2π2ρnl (r). (3)

Following Eq. (2), it can be straightforwardly proven that the
f -sum rule is verified:∫ ∞

0
ω Im

[ −1

ε(k, ω)

]
dω = 2π2ρaNnl . (4)

Similarly, it can be demonstrated that any high-energy limit
proportional to the density of electrons (or to the square of
the plasmon frequency) is complied, including the different
f -sum and equipartition rules. Evidently, this property is valid
for any local plasma approximation [35–38], not only for
the present SLPA. Nonetheless, the SLPA not only verifies
the high-energy limits but further improves the description of
the stopping power at intermediate energies

A. The Levine-Lindhard dielectric function

The dielectric function employed up to now in Eq. (2)
is the Levine-Lindhard one (LL) [39], i.e., εSLPA =
εLL(k, ω, ρnl (r), Enl ). This proposal is relevant for describing
the ionization threshold, or even excitation gaps.

Levine included explicitly the energy gap Enl within the
Lindhard dielectric function as follows [39]:

Im

[ −1

εLL(k, ω, Enl )

]
= Im

[ −1

εL(k, ωg)

]
�(ω − |Enl |), (5)

where εL(q, ω) is the Lindhard dielectric function [40], �(x)
is the Heaviside step function, and ωg =

√
ω2 + E2

nl . The
cleverness of Levine’s approach relies on the ω → ωg shift,
which ensures that εLL(k, ω, Enl ) satisfies the f -sum rules.
Then, as discussed in the previous section, the SLPA with
the LL dielectric function (SLPA-LL) fulfills these rules too.
However, the SLPA-LL features an important limitation: Each
of the subshells is assumed to behave as a free electron gas

(FEG), i.e., no collisions among electrons, infinitesimal damp-
ing, and plasmons as infinite harmonic oscillators.

B. The Levine-Mermin dielectric function

Mermin’s [41] proposal represents a refinement of Lind-
hard’s dielectric function by considering the mean time
between collisions or relaxation time. The model [41] in-
cludes a first-order quantum development by considering
electrons that evolve in time as free particles in the presence
of the electrostatic potential, but with a non infinitesimal
probability of collision per unit time, � [42]. This quantity
is usually called damping. In other words, in an interval dt , a
fraction dt/τ = �dt of them collide and distribute in a local
equilibrium density.

The expression obtained in Ref. [41] is

εM(q, ω)

= 1 + (1 + i/ωτ )(εL(q, ω + i/τ ) − 1)

1 + (i/ωτ )(εL(q, ω + i/τ ) − 1)/(εL(q, 0) − 1)
,

(6)

with εM(q, ω) and εL(q, ω) being the Mermin and Lindhard
dielectric functions, respectively. The generality of εM(q, ω)
can be highlighted by analyzing its limits:

(1) When ω → 0, it comes down to Lindhard’s dielec-
tric function, so Friedel oscillations and screening are well
described,

(2) When τ → ∞ (� → 0), then εM(q, ω) → εL(q, ω).
In the optical limit q → 0, the Mermin dielectric function

approaches to a Lorentzian function centered on the plasmon
frequency ωp and half width at half maximum �. These values
are experimentally observed in the optical energy loss func-
tions (ELFs) of metals [43,44].

Fittings of the empirical values of ELFs, involving valence
and inner shells, by linear combinations of Mermin-type di-
electric functions with adjusted ωp and � values, have been
successfully used by Abril and collaborators in the Mermin
Energy Loss Function (MELF) model (see Ref. [45] and sub-
sequent works), and more recently by Grande et al. [46,47].
As observed in these works, the values of � that adjust the
empirical ELF of the inner shells are often large in comparison
with the values of ωp.

Considering a damping for the inner shells is a more re-
alistic approach, although it requires physical assumptions
and decisions. The expression of a theoretical damping for
each nl subshell of bound electrons is not evident. Following
the SLPA, we consider a local density of electrons ρnl (r)
and a local plasmon frequency ωnl

p (r). Then it is reasonable
to consider a local damping �nl (r), which increases where
the density of electrons is larger. Equivalently, the local time
between collisions is larger where the density of electrons is
more diluted. In this paper, we propose including the Levine-
Mermin dielectric function within the SLPA (SLPA-LM),
with �nl (r) = ωnl

p (r)/2 ≡ √
πρnl (r). In this way, the SLPA

maintains its parameter-free characteristic. It is worth men-
tioning that the Mermin dielectric function εM(q, ω) verifies
the f -sum rules [41], and so does Levine-Mermin and the
SLPA-LM.
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C. Total stopping cross sections

The total stopping cross sections of metal targets are ob-
tained by adding separately the contributions of each subshell
of bound electrons and valence electrons. The former is ob-
tained by using the SLPA-LM, as described in the previous
section. Following Ref. [11], two different models are em-
ployed for the FEG contribution considering their ranges of
validity: (i) the screened potential with cusp condition model
(SPCC), which is a nonlinear binary formalism, for energies
below the stopping maximum, and (ii) the Mermin dielectric
formalism for the FEG [41] (linear response, perturbative) for
energies around the stopping maximum and above. The region
of validity of each model is important. While the SPCC is
nonperturbative, it cannot include the plasmon excitation of
the FEG [48–50]. On the contrary, the dielectric formalism
is a perturbative approximation, which includes binary and
collective excitations, and it is valid only above certain impact
velocities.

The stopping cross section can be also expressed in terms
of the dimensionless stopping number L as

S(v) = 4πZ2
PZT

v2
L(v). (7)

The stopping number [1] is an interesting quantity to magnify
the high-energy region and is related to the well-known Bethe
asymptotic limit [51] in terms of the mean excitation energy I:

lim
v→∞ L(v) = LBethe(v) = ln

(
2v2

I

)
. (8)

We expect the stopping number be useful to observe
in detail the high-energy region, where the inner-shell
contribution dominates and the present SLPA-LM should
make a difference.

III. RESULTS AND DISCUSSION

We present total stopping cross sections of protons in dif-
ferent targets following two directions of the periodic table
of elements: period 6 (Hf, Ta, W, Os, and Pt) and group
VI (Cr and Mo). The objective of this paper is twofold.
First, we intend to show that the SLPA-LM model systemati-
cally improves the stopping-power values for postlanthanides
transition metals by inspecting elements of the same period.
Second, we aim to prove that, for lighter atoms, the results ob-
tained from the present model do not differ significantly from
previous SLPA-LL results, which has already been demon-
strated to be effective [11,66].

The FEG contribution depends on certain parameters
related to the density of valence electrons. The parame-
ters employed in the present calculations are displayed in
Table I. We used the theoretical values of rS obtained from
the number of valence electrons per atom, Ne, in Table I, i.e.,
rS = [3/(4πNenat )]1/3, with nat being the density of the solid
target in atomic units. Similarly, the plasmon frequency is
ωp = [4πNenat]1/2. We have also included in Table I reference
values for the plasmon frequency ω∗

p and damping �∗ from
the optical properties of these metals [43,44,65]. It can be
noted that ω∗

p differs at most 6% from the theoretical ωp. The
SPCC for the FEG at low-impact energies and the SLPA for

TABLE I. Free electron gas parameters for Hf, Ta, W, Os, Pt, Mo,
and Cr: Z , the nuclear charge; Ne, the number of valence electrons
per atom; rS , the Wigner-Seitz radio; ωp, the plasmon frequency, ω∗

p

and �∗, the plasmon frequency and width of the plasmon peak from
Refs. [43,44,65]; and Ep, the minimum impact energy to excite FEG
plasmons. Atomic units are employed, except for Ep.

Hf Ta W Os Pt Mo Cr

Z 72 73 74 76 78 42 24
Ne 4 5 6 8 10 6 6
rS 2.07 1.80 1.62 1.41 1.34 1.61 1.48
ωp 0.578 0.718 0.842 1.03 1.11 0.846 0.965
ω∗

p 0.578 0.772 0.893 1.16 0.900 0.941
�∗ 0.17 0.12 0.25 0.37 0.15 0.04
Ep (keV) 38 49 59 75 82 60 70

the bound electrons depends only on our theoretical inputs.
The only external parameter introduced in the calculation of
the FEG stopping within the Mermin dielectric function is �∗.

A. Electronic stopping power of period-6 elements

In this section, we present our theoretical values for the
stopping-power cross sections of several transition metals
from period 6 of the periodic table: Hf, Ta, W, Os, and Pt.
We display our calculations for Hf and W in Figs. 1 and 2, re-
spectively. In these figures, we present two sets of curves: the
total cross sections and, since the present improvement does
not affect the FEG, the bound electron contributions. Within
each set of curves, we include previous calculations [33,53]
obtained with the SLPA-LL (dotted lines) and the present
SLPA-LM (solid lines). For comparison, we incorporate to
the figures available experimental measurements using letters
as symbols. Moreover, all the experimental data illustrated
in this paper follows the IAEA database letter convention
[61]. The differences between the SLPA-LL and SLPA-LM

FIG. 1. Stopping cross section of Hf for H. Curves: Solid line,
present results using SLPA-LM for bound electrons; dotted line,
present results using SLPA-LL for bound electrons. Symbols: Ex-
perimental data from A [52] and B [53]. Colored symbols highlight
recent measurements by Miranda et al. [53].
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FIG. 2. Stopping cross section of W for H. Curves: Solid line,
present results using SLPA-LM for bound electrons; dotted line,
present results using SLPA-LL for bound electrons. Symbols: Ex-
perimental data from A [54], B [52], C [55], D [56], E, and F [26].
Colored symbols highlight recent measurements by Moro et al. [26].

values become noticeable only for high impact energies; the
improvements introduced by the SLPA-LM model are clear
above 100 keV and 200 keV for Hf and W, respectively. Cer-
tainly, these results are a consequence of including a damping
in the dielectric function.

To magnify the high energy region, the stopping num-
bers of H in Hf and W are displayed in Figs. 3 and 4,
respectively. The improvement is clear, showing the correct
tendency. Small differences are still persistent in the region
around 1–2 MeV, which are less than 5%. Further investiga-
tions should consider different relationships between �(r) and
ωp(r), together with the screening among electrons of deep
shells.

Furthermore, we implement the SLPA-LM model and
compute the total stopping cross sections of other heavy tran-
sition metals: Ta, Pt, and Os. We chose Ta and Pt due to recent
measurements disagreeing with historically accepted values,

FIG. 3. Stopping Number of H on Hf. Curves and symbols as in
Fig. 1.

FIG. 4. Stopping Number of H on W. Curves and symbols as in
Fig. 2.

such as the data included in the IAEA database [61] or the
SRIM predictions [17,18]. On the other hand, Os has no ex-
perimental measurements known thus far. These challenging
features make Ta, Pt, and Os appealing targets to test our
model.

The results for Ta and Pt are displayed in Figs. 5 and 6,
respectively. We present our theoretical curves in comparison
with the existing data [23–25,27,57–64]. We have highlighted
measurements taken from 1990 to date by using colored
symbols. We also compare our total values with two theo-
retical proposals: the binary collisional theory by Sigmund
and Schinner, DPASS [15,16], and the unitary convolution
approximation by Grande and Schiwietz CASP6.0 [13,14],

FIG. 5. Stopping cross section of Ta for H. Curves: Solid line,
present results using SLPA-LM for bound electrons (1s-4 f ) and FEG
with rS = 1.80 (Ne = 5); grey-dotted curve, present results for the
FEG with rS = 1.15; orange dash-double-dotted curve, DPASS21.06
[15]; green-dashed curve, CASP6.0 [13] (rS = 1.8); thin solid curve,
SRIM [17]. Symbols: Experimental data. Colored symbols highlight
measurements from 1990 to date: K [57]; L [58]; M [59]; O [60];
P [23]; Q, R, and S [24]; T [27]. See references for older data in
Ref. [61].
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FIG. 6. Stopping cross section of Pt for H. Curves: Solid blue
line, present results using SLPA-LM for bound electrons (1s-4 f )
and FEG with rS = 1.34 (Ne = 10); orange dash-double-dotted line,
DPASS21.06 [15], green-dashed curve, CASP6.0 [13] (rS = 1.45,
Ne = 8); thin solid curve, SRIM [17]. Symbols: Experimental data.
Colored symbols highlight measurements from 1990 to date: H [57];
I [59]; J [62]; K [63]; L [64]; M, N, O [24]; P, R [25]. See references
for older data in Ref. [61].

which includes valence electrons as FEG. The present values
agree very well with the experimental data from 1990 to date
in the medium- and high-energy range. For low-energy pro-
tons, our theoretical results correctly describe the stopping for
Pt although there is still a clear difference for Ta. As observed
in Fig. 5, the experimental data in the low-energy range are
well described by assuming the 4 f subshell (14 electrons) as
part of the FEG (rS = 1.15). Noticeably, this assumption is
not compatible with the 4 f± experimental binding energies of
solid Ta [67] nor with the total stopping data for impact en-
ergies above 50 keV/amu. Recently, measurements by Valdes
and collaborators [27] confirm the low-energy experimental

FIG. 7. Stopping cross section of Os for H. Curves: Solid line,
present results using SLPA-LM for bound electrons (1s-4 f ) and
FEG with rS = 1.41 (Ne = 8); orange dash-double-dotted curve,
DPASS21.06 [15]; green-dashed curve, CASP6.0 [13] (rS = 1.41);
thin solid curve, SRIM [17].

FIG. 8. Stopping cross section of Mo for H. Curves: Solid lines,
present results using SLPA-LM for bound electrons; dotted lines,
results using SLPA-LL for bound electrons [66]. Symbols: Experi-
mental data. Colored symbols highlight measurements from 1990 to
date: G [57], H [58], I [59], J [68], K [60], and L [69]. See reference
for older data in Ref. [61].

values of Ta for protons. These differences are, in fact, very
interesting and they constitute phenomena open for discus-
sion.

Finally, we examine our results for protons on Os. As
noted in Table I, no experimental ELF values were found
in the literature for Os. Since no reference parameters are
available, we considered various �∗ for the FEG calculation,
corresponding to targets in close vicinity to Os. These val-
ues resulted in similar curves (with differences noticeable
only around the stopping maximum). Finally, we employed
�∗ = 0.13. We present the stopping cross sections of Os in
Fig. 7. The aim of these results is to test the predictive capa-
bility of the SLPA-LM for a target with no previous stopping
data. We also include the semiempirical SRIM [17], which

FIG. 9. Stopping cross section of Cr for H. Curves as in Fig. 8.
Symbols: Experimental data. Colored symbols highlight measure-
ments from 1990 to date: F [70]. See reference for older data in
Ref. [61].
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FIG. 10. Stopping number of H on Cr. Curves and symbols as in
Fig. 9.

has a similar prediction despite the lack of experimental val-
ues, the DPASS [15], and the CASP [13] theoretical results.
Evidently, the accuracy of these calculations is unknown and
it will only be resolved once measurements are available.

B. Electronic stopping power of group VI elements

The present improvement of the SLPA is evident for multi-
electronic targets with many subshells, including 5p, 4 f , and
6s. However, it is important to corroborate that the SLPA-LM
model keeps describing the previous good results. We probed
this by inspecting targets with similar valence structures. To
illustrate, we considered Cr and Mo, which—as well as W—
belong to group VI of the periodic table. Their respective
results are displayed in Figs. 8 and 9. The SLPA-LL have
been published in previous work [66]. The differences be-
tween these calculations and the present SLPA-LM results
are noticeable for the bound electron contribution curves. The
corresponding total stopping cross sections are fairly simi-
lar; however, the present description of the experimental data
above 1 MeV slightly improves the previous ones. In addi-
tion, we present the stopping number of H on Cr in Fig. 10.
This figure provides further insight of our results in the high

energy range: the differences introduced by the present model
are small for low Z elements and, generally, in the correct
direction.

IV. CONCLUSIONS

The present approach considers the valence and bound
electron contributions to the stopping separately. The valence
electrons are modeled with two approximations: a nonper-
turbative model in the low-energy range and a perturbative
dielectric approach for energies larger than the plasmon ex-
citation threshold. For the bound electrons, the SLPA-LM is
implemented, which includes binary and collective response,
screening among electrons of similar binding energy, and
a finite relaxation time of the collective excitations. In this
paper, we discuss the importance of including a decay time,
or damping, in the collective excitation of the bound elec-
trons. This feature was introduced within the SLPA by using
the Levine-Mermin dielectric function instead of the Levine-
Lindhard function employed up to now.

The SLPA-LM is used to compute the stopping-power
cross sections of protons in Cr, Mo, Hf, Ta, W, Os, and Pt.
Our results improve previous calculations, accurately describ-
ing most of the experimental data; particularly, we found
very good agreement with recent measurements in Ta and
Pt around the stopping maximum. The improvement of the
model only deals with the response of bound electrons. The
SLPA-LM diminishes the overestimation found in the past
for the stopping power of multielectronic targets in the high-
energy region. However, it almost does not affect the results
for targets with less bound electrons. The results obtained here
are expected to allow future developments and systematiza-
tion of the stopping power for lanthanides.
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