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Relative intensities of hyperfine components of rovibrational transitions in molecular hydrogen
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We provide an analytical formula for the relative intensities of hyperfine components of rovibrational transi-
tions in the H2, T2, and para-D2 isotopologues of hydrogen. The resulting expression is essentially an algebraic
factor independent of vibrational quantum numbers. For other molecular hydrogen isotopologues, we show that
it is possible to distinguish a certain class of hyperfine components which hold a similar property. The results
presented here can be used as an approximation for rovibrational transitions in other diatomic molecules in a
1� electronic state with smaller rotational constant.
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I. INTRODUCTION

Theoretical interest in hyperfine interactions in diatomic
molecules is driven by remarkable precision of the experimen-
tal studies of rovibrational resonances [1–4] and increasing
number of optically cooled and trapped species [5–7]. Careful
analysis of the hyperfine splittings and Zeeman sublevels of
ground and electronically excited states is crucial for prepar-
ing an efficient cooling cycle. This is due to the fact that
hyperfine interactions mix different rotational states which
might lead to losses from the optical cycling transition [8,9].
Hyperfine-resolved electronic transitions in molecular iodine
are commonly used as frequency reference for the laser stabi-
lization [10,11].

Apart from positions of hyperfine components of molec-
ular resonances, knowledge about hyperfine intensity factors
in molecular spectra is equally important. More than 40 years
ago, careful analysis of intensity ratios in the spectra of LaO
allowed for a determination of a spin-rotation interaction con-
stant [12]. Based on a theory applicable to various Hund’s
coupling cases by Féménias [13], Merer et al. explained an
unexpected intensity cancellation effect in hyperfine-resolved
electronic transition in NbO [14]. Hyperfine intensity fac-
tors were also used in the analysis of two-color saturation
spectroscopy of CN [15] and are of significant importance in
high-resolution photoelectron spectroscopy [16].

Both positions and intensities of hyperfine components
of rovibrational transitions in hydrogen molecular ions and
neutral hydrogen isotopologues are crucial in the experimental
studies of the rovibrational structure of their ground elec-
tronic states [1–4,17–20]. Comparison of the experimentally
determined transition frequencies with calculations from first
principles [21,22] opens the possibility to test the quantum
electrodynamics for molecules [22–25] and to search for the
physics beyond the standard model [26], such as extra dimen-
sions [27] or new forces [28].
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The need for careful analysis of hyperfine interactions in
molecular hydrogen sparked several recent theoretical inves-
tigations. Dupré [29] reported hyperfine coupling constants
for the first three vibrational levels (ν = 0, 1, 2, N = 1) and
studied hyperfine components of the 2-0 P(1) and R(1) lines
in the HD isotopologue. In a series of papers [30–34] we
reported hyperfine coupling constants for all bound states in
the six isotopologues of hydrogen (H2, HD, D2, HT, DT,
and T2) and we provided lists of positions and intensities of
hyperfine components of all rovibrational electric dipole and
quadrupole transitions within the ground electronic 1� state.
At the same time, Komasa et al. [35] calculated coupling
constants for several rovibrational states and analyzed the
relative intensities of the hyperfine components of the P(1)
and R(1) transitions from the first overtone and of the R(0) line
from the fundamental band. In another paper [36], the authors
determined the value of the hyperfine coupling constants for
the ν = 0, N = 1 level in HD, H2 and D2, taking into account
the nonadiabatic effects, which led to the most accurate deter-
mination of the quadrupole moment of the deuteron. Recently
we have studied the hyperfine structure of several low-lying
rovibrational levels of the excited double-well EF 1�+

g elec-
tronic state of H2 [37].

Here, we analyze the vibrational dependence of the relative
intensities of hyperfine components reported in Refs. [30–34].
We show analytically, that for the homonuclear isotopologues
of hydrogen (except for the ortho-D2), relative intensities are
independent of both the initial and final vibrational quantum
numbers. The relative intensity in this case is given by a
simple algebraic factor which involves Wigner 6- j symbols.
For the remaining isotopologues of molecular hydrogen, we
show that it is possible to distinguish a class of hyperfine tran-
sitions which also do not depend on the vibrational quantum
numbers.

II. RELATIVE INTENSITIES OF HYPERFINE
COMPONENTS OF ROVIBRATIONAL TRANSITIONS

We consider hyperfine components of rovibrational transi-
tion between the initial (νi, Ni ) and final (νf , Nf ) rovibrational
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states. Here, ν and N denote the vibrational and rotational
quantum numbers, respectively. Following Refs. [30–34], we
label the initial and final hyperfine states (the eigenstates of
the effective hyperfine Hamiltonian) as |νi; NiFimFi (±)i〉 and
|νf ; Nf Ff mFf (±)f〉, respectively. The (±) label is defined in
Sec. II B. The eigenstates |ν; NFmF (±)〉 are related to the
coupled basis vectors suitable for the homonuculear

|ν; NFmF (±)〉 =
∑

I

F+I∑
N ′=|F−I|

aνNF (±)
N ′I |ν; (N ′I )FmF 〉, (1)

and the heteronuclear isotopologues

|ν; NFmF (±)〉

=
F+I2∑

F1=|F−I2|

F1+I1∑
N ′=|F1−I1|

aνNF (±)
N ′F1

|ν; [(N ′I1)F1I2]FmF 〉. (2)

We recall that in the former case the two nuclear spin angular
momenta are coupled to form the total nuclear spin angular
momentum, I, which is coupled to the rotational angular mo-
mentum, N, to form the total angular momentum, F. In the
heteronuclear case one of the nuclear spin angular momenta,
I1, is coupled to the rotational angular momentum, to form
the intermediate angular momentum, F1. The latter is coupled
to the remaining nuclear spin angular momentum, I2, to form
the total angular momentum, F. In both cases mF denotes the
projection of the total angular momentum on the laboratory-
fixed frame.

In Eqs. (1) and (2), aνNF (±)
N ′I and aνNF (±)

N ′F1
denote the mixing

coefficients which, in general, depend on the vibrational quan-
tum number. Following Refs. [30–34] we neglect a very weak
coupling between different rotational levels (the off-diagonal
terms in the effective hyperfine Hamiltonian, which couple
N and N ′ = N ± 2 levels are almost ten orders of magnitude
smaller than the energy difference between the two rotational
levels) and we simplify the notation:

aνNF (±)
N ′I = δNN ′aνNF (±)

NI = δNN ′aνNF (±)
I , (3)

aνNF (±)
N ′F1

= δNN ′aνNF (±)
NF1

= δNN ′aνNF (±)
F1

. (4)

For H2, para-D2, and T2, the remaining sum over I is trivial
(aνNF (±)

I = δI,1) and the coupled basis vectors are the eigen-
vectors of the effective hyperfine Hamiltonian:

|ν; NFmF(±)〉 = |ν; (NI )FmF〉. (5)

Relative intensities of hyperfine components of rovibra-
tional transitions of rank n are given by the following formula
(see Appendix A for a detailed discussion):

SnHF
fi

Sn
fi

= | 〈νf ; Nf Ff (±)f‖Tn(M)‖νi; NiFi(±)i〉 |2
wI fn(Ni, Nf )

∣∣Mn
fi

∣∣2 , (6)

where Mn denotes the molecule-fixed multipole moment of
the rovibrational transition and corresponds to the electric
dipole moment, d, for n = 1 and to the electric quadrupole
moment, Q, for n = 2. Tn(M) is a spherical tensor of
rank n which describes the proper multipole moment. wI is
the nuclear degeneracy factor of the initial rotational state
which equals (2I1 + 1) × (2I2 + 1) for the heteronuclear iso-
topologues and (2I + 1) for the homonuclear species. The

fn(Ni, Nf ) factor depends on the rank of the transition and the
considered branch and is associated with the transformation of
the multipole moment from the space-fixed frame, where the
intensity of the transition is measured to the molecule-fixed
frame, where the Mn

fi is defined. For instance, for electric
dipole transitions fn(Ni, Nf ) reduces to Ni + 1 and to Ni for
the transitions from the R (Nf = Ni + 1) and P (Nf = Ni − 1)
branches, respectively (see Appendix A).

A. Homonuclear isotopologues

The homonuclear isotopologues (except for the ortho-D2

molecule) are well described by the set of quantum numbers
which is proper for the coupled basis—the rotational quantum
number, N , the total nuclear spin quantum number, I , and the
total angular momentum quantum number, F [see Eq. (5)]. In
this case, Eq. (6) reduces to (see Appendix B for the proof)

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)

2I + 1

{
Ni Fi I
Ff Nf n

}2

. (7)

The quantities on the right-hand side of Eq. (7) do not de-
pend on any vibrational quantum number. Thus, we conclude
that for homonuclear isotopologues (except for ortho-D2), the
relative intensities of hyperfine components of rovibrational
transitions are essentially the same for all vibrational bands.
We note that Cook and De Lucia [38] derived a similar for-
mula for the case of electric dipole (n = 1) transitions as a first
approximation of the relative intensities of hyperfine spectra.
The authors neglected possible coupling between different in-
termediate quantum numbers (here: the total nuclear spin, I),
and, hence, they did not consider the vibrational dependence
of hyperfine components in Ref. [38].

A formula similar to Eq. (7) was used by Korobov et al.
[39] as an approximation of the relative intensities of hy-
perfine components of rovibrational quadrupole transitions
(n = 2) in H2

+ [see Eq. (22) therein]. The general formula
used by the authors involved the mixing coefficients (see
the discussion in Appendix B), which, in zeroth-order per-
turbation theory could be approximated as Dirac deltas. The
difference between Eq. (7) and the formulas used in Ref. [39]
stems from the presence of a nonzero electronic spin and a
more complex coupling scheme used by the authors. We stress
that, contrary to H2

+, the result presented here is exact for
the homonuclear isotopologues of hydrogen molecule (except
for the ortho-D2), since the hyperfine coupling between the
rotational level is negligibly small [see Eqs. (3) and (4)].

Interestingly, Eq. (7) remains valid for heteronuclear
molecules involving only one nuclei with nonzero spin, for
which I1 = I and I2 = 0. For such cases, the coupled basis
vectors are the eigenvectors of the effective Hamiltonian, as
in Eq. (5). In fact, the same formula (with n = 1) was used
in the interpretation of the hyperfine-resolved B 4�-X 4�−
electronic transition in NbO [see Eq. (2) in Ref. [14]]. We
recall that the spin of the 93Nb nucleus is I1 = 9/2 and that the
spin of the most abundant isotope of oxygen, 16O, is I2 = 0.
Similarly, the intensity of hyperfine components of the electric
dipole (n = 1) transitions from the A 2�+-X 2�3/2 band in the
32S 1H molecule were approximated by a factor proportional
to Eq. (7) [40] (the spins of the 1H and 32S nuclei are I1 = 1/2
and I2 = 0, respectively). We note that the authors use this
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term as a first approximation, due to the fact that hyperfine
coupling between different J levels in the SH molecule is
non-negligible. We conclude that Eq. (7) describes properly
the relative intensities of hyperfine components of molecular
transitions whenever the coupled basis from Eq. (5) is the
eigenbasis of the effective hyperfine Hamiltonian.

B. Heteronuclear isotopologues and ortho-D2

For the heteronuclear isotopologues each rovibrational
level is split into (2I1 + 1) × (2I2 + 1) hyperfine levels. The
exception is the N = 0, which is degenerate (provided that one
neglects the electron-coupled nuclear spin-spin interaction
[41–44]), and the N = 1 state for the HD and DT molecules,
which has five hyperfine components. The ortho-D2 isotopo-
logue, which was not considered in Sec. II A, involves 2I + 1
hyperfine components for each rovibrational level, except for
the N = 0 level, which is also assumed to be degenerate.

Each hyperfine level is a superposition of the coupled basis
vectors [Eqs. (1) and (2)]. However, a more detailed analysis
shows that some (one—for the case of the N = 1 level in HD
and DT; two—for the remaining levels in these two isotopo-
logues and for each rotational state in HT; and four—for each
rotational state in ortho-D2) of the hyperfine states are well
described by the coupled basis vectors, |ν; [(NI1)F1I2]FmF〉
(or |ν; (NI )FmF〉 in the case of ortho-D2) and the linear
combination [Eqs. (1) and (2)] becomes trivial. Other states
(two—for all rotational states in HT and ortho-D2 and four—
for all rotational states in HD and DT) are superpositions of
two coupled basis vectors [Eqs. (1) and (2)] which correspond
to the same (N, F ) quantum numbers. In order to distinguish
between the nontrivial superposition states, we use the (±)
labels, which denote the eigenstates with higher (+) and lower
(−) energy. Therefore, one can distinguish four classes of
possible hyperfine components of rovibrational transitions:

(1) Class 1: transitions between hyperfine states described
by coupled basis vectors.

(2) Class 2: transitions from a state described by a coupled
basis vector to a hyperfine superposition state.

(3) Class 3: transitions from hyperfine superposition state
to a state described by a coupled basis vector.

(4) Class 4: transitions between hyperfine superposition
states.

The number of transitions which belong to each class de-
pends on the isotopologue, rank of the transition, and the
considered rovibrational branch. Relative intensities of the
hyperfine components from the first class of transitions exhibit
no dependence on vibrational quantum numbers and are given
by Eq. (7) for the case of ortho-D2 and by (see Appendix B)

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)
(
2F1f + 1

)(
2F1i + 1

)
(2I1 + 1)(2I2 + 1)

×
{

F1i Fi I2

Ff F1f n

}2{
Ni F1i I1

F1f Nf n

}2

(8)

for the heteronuclear isotopologues.
Relative intensities of the class-2 transitions do not depend

on the initial vibrational quantum number. Similarly, relative
intensities of the class-3 transitions do not depend on the final
vibrational quantum number (see the central and bottom panel
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fi
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fi

class 1

class 1

class 1
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(a)

|N F ±〉 ← |NF±〉
|12〉 ← |10〉& |10〉 ← |12〉
|12〉 ← |11〉& |11〉 ← |12〉
|12〉 ← |12〉
|11〉 ← |11〉
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(b)

|N F ±〉 ← |NF±〉
|1 5/2〉 ← |0 3/2〉
|1 1/2−〉 ← |0 1/2〉& |1 1/2+〉 ← |0 3/2〉
|1 1/2−〉 ← |0 3/2〉& |1 1/2+〉 ← |0 1/2〉
|1 3/2−〉 ← |0 1/2〉& |1 3/2+〉 ← |0 3/2〉
|1 3/2−〉 ← |0 3/2〉& |1 3/2+〉 ← |0 1/2〉
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|N F ±〉 ← |NF±〉
|2 1〉 ← |1 0〉
|2 2−〉 ← |1 1+〉
|2 3〉 ← |1 2〉
|2 2−〉 ← |1 2〉

|2 2−〉 ← |1 1−〉
|2 2+〉 ← |1 1+〉
|2 2+〉 ← |1 2〉
|2 2+〉 ← |1 1−〉

|2 1〉 ← |1 1+〉
|2 1〉 ← |1 2〉
|2 1〉 ← |1 1−〉

FIG. 1. Relative intensities of the 6 hyperfine components of the
νf -0 Q(1) transitions in H2 (top panel), 9 hyperfine components of
the νf -0 R(0) transitions in HD (central panel), and 11 hyperfine
components of the νf -0 R(1) transitions in HT (bottom panel).

in Fig. 1 and the discussion in the next section). Relative
intensities of hyperfine transitions from the fourth class de-
pend on both the initial and final quantum numbers through
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the mixing coefficients, which are related to the hyperfine
coupling constants in a nontrivial way.

III. EXAMPLES OF THE CALCULATED RELATIVE
INTENSITIES OF HYPERFINE COMPONENTS

An example of the values of relative intensities for different
νf -0 Q(1) lines in H2 are shown in the top panel in Fig. 1.
A quick inspection of Eq. (7) reveals that the six possible
components have the relative intensity of 1/4, 7/36, 1/9, and
1/12. We note that the |12〉 ← |10〉 and |10〉 ← |12〉 tran-
sitions (as well as |12〉 ← |11〉 and |11〉 ← |12〉 transitions)
have the same relative intensities.

We also provide an example for the heteronuclear isotopo-
logues. The dependence of relative intensities of hyperfine
components for the νf -0 R(0) lines in HD is presented in
the central panel in Fig. 1. In this particular case, each rovi-
brational transition involves nine components: one class-1
component of relative intensity 1/3 (the top red line in the
central panel in Fig. 1) and eight components of class 2. The
relative intensity of class-2 transitions depends on the vibra-
tional quantum number νf through the mixing coefficients
which slightly differ between vibrational bands.

Finally, the bottom panel in Fig. 1 presents relative inten-
sities of 11 hyperfine components of the νf -0 R(1) lines in
HT. The relative intensities of the three class-1 components
are 7/20 (the top green line), 1/12 [the blue (dark gray) line],
and 1/240 [the light-blue line in the center of Fig. 1(c)]. The
R(1) transitions involve two class-2 and two class-3 compo-
nents, out of which only one (the lower pink line) exhibits a
significant dependence on νf . Out of four class-4 hyperfine
components of the R(1) transitions, only the two least intense
[the gray and the orange at the bottom of Fig. 1(c)], that
involve a change in the (±) sign, significantly depend on νf .

IV. CONCLUSIONS

We provided an analytical formula for the relative intensi-
ties of hyperfine transitions in the homonuclear isotopologues
of hydrogen (except for the ortho-D2 isotopologue). The for-
mula is independent of both the initial and final vibrational
quantum numbers. For the remaining isotopologues we dis-
tinguish a class of hyperfine transitions which share a similar
property. The analytical formula remains valid for all diatomic
molecules for which the coupled basis vectors are the eigen-
vectors of the effective hyperfine Hamiltonian. In particular,
this condition is fulfilled by heteronuclear molecules involv-
ing only one nuclei with a nonzero spin. The results presented
here are important for the accurate rovibrational spectroscopy
of the six isotopologues of hydrogen, which is used for testing
the quantum electrodynamics for molecules and searching for
new physics beyond the standard model.
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tory FAMO in Toruń, Poland. Calculations have been carried
out using resources provided by Wroclaw Centre for Network-
ing and Supercomputing [45], Grant No. 546.

APPENDIX A: INTENSITIES OF ROVIBRATIONAL
TRANSITIONS AND THEIR HYPERFINE COMPONENTS

In this Appendix we justify the form of Eq. (6). We recall
the most common formula for the intensities of rovibrational
electric dipole and quadrupole transitions found in the litera-
ture [46–49]:

Sn=1
fi = 2π2

3hcε0
ν0

m

2Ni + 1
Pfi(T )|dfi|2, (A1)

Sn=2
fi = 2π4

15hc3ε0
ν3

0CNi Pfi(T )|Qfi|2, (A2)

where ν0 is the transition frequency and dfi or Qfi denotes the
matrix elements of the electric dipole and quadrupole moment
operator, respectively. h, c, and ε0 are the Planck’s constant,
the speed of light in vacuum, and vacuum permittivity, re-
spectively. Although this is not relevant for the following
discussion, we recall that the temperature-dependent factor,
Pfi(T ), is given as

Pfi(T ) = wI (2Ni + 1)
(e−Ei/kBT − e−Ef /kBT )

Q(T )
, (A3)

with the partition function, Q(T ), defined as

Q(T ) =
∑

k

wk(2Nk + 1)e−Ek/kBT . (A4)

wk is the degeneracy factor of each rovibrational level due to
nuclear spin statistics, Ek is the energy of the kth rovibrational
state, kB is the Boltzmann constant and T is the temperature.

The m factor in Eq. (A1) is simply Ni + 1 for the R branch
and Ni for the P branch. The CNi in Eq. (A2) takes the follow-
ing form for the O branch:

CNi = 3Ni (Ni − 1)

2(2Ni + 1)(2Ni − 1)
; (A5)

for the Q branch:

CNi = Ni(Ni + 1)

(2Ni − 1)(2Ni + 3)
; (A6)

and for the S branch:

CNi = 3(Ni + 1)(Ni + 2)

2(2Ni + 1)(2Ni + 3)
. (A7)

The m and CNi factors are directly related to the transformation
between the space-fixed frame of reference, where the inten-
sity is measured, and the molecule frame of reference, where
the transition moment (dipole or quadrupole) is defined. The
formulas for the m and CNi factors can be justified by the
relation between the reduced matrix elements of the spherical
tensor of rank n (associated with the transition moment of
rank n) with the molecule-fixed transition moment [50]. Let
us remind the transformation of a spherical tensor of rank n
between the space-fixed (p) and molecule-fixed (q) frame of
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reference:

T (n)
p (M) =

n∑
q=−n

D(n)
pq (ζ )∗T (n)

q (M), (A8)

where D is the rotational matrix and ζ denotes the set of
angles which describe the transformation from the space-
fixed to molecule-fixed frame of reference. For transition
moments which couple different rovibrational levels in a given
electronic state, the space-fixed reduced matrix elements are
transformed as follows [50]:

〈νf ; Nf ||T(n)(M)||νi; Ni〉

= 〈νf ; Nf |
∣∣∣∣∣

n∑
q=−n

D(n) ∗
.q T (n)

q (M)

∣∣∣∣∣|νi; Ni〉

= (−1)Nf
√

(2Ni + 1)(2Nf + 1)

(
Nf n Ni

0 0 0

)
Mn

fi,

(A9)

where the dot in the subscript in the second line of this equa-
tion comes from the fact that the reduced matrix element is
independent of the space-fixed projection quantum numbers.

Using the tabulated values of the 3- j coefficients for n = 1
and n = 2 (see, e.g., Appendix C in Ref. [50]) we obtain the
following relations:

|〈νf ; Nf ||T (n=1)(d)||νi; Ni〉|2 = m|dfi|2, (A10)

|〈νf ; Nf ||T (n=2)(Q) ||νi; Ni〉|2 = (2Ni + 1)CNi |Qfi|2.
(A11)

In order to introduce a general formula for the relative intensi-
ties that could hold for both the electric dipole and quadrupole
interactions, we introduce the factor fn(Ni, Nf ), defined as

|〈νf ; Nf ||T (n)(M)||νi; Ni〉|2 = fn(Ni, Nf )
∣∣Mn

fi

∣∣2
. (A12)

In the case of hyperfine components of each rovibrational
transition, we used in Refs. [30–34] the following formulas:

SHF
fi = 2π2

3hcε0
ν0

1

wI (2Ni + 1)
Pfi(T )

∣∣dHF
fi

∣∣2
, (A13)

SHF
fi = 2π4

15hc3ε0
ν3

0
1

wI (2Ni + 1)
Pfi(T )

∣∣QHF
fi

∣∣2
, (A14)

where the matrix elements of the transition moment between
hyperfine levels are simply the matrix elements of the relevant
spherical tensor operator:

dHF
fi = 〈νf ; Nf Ff (±)||T (1)(d)||νi; NiFi(±)〉 , (A15)

QHF
fi = 〈νf ; Nf Ff (±)||T (2)(Q)||νi; NiFi(±)〉 , (A16)

which we can write in general form as

Mn HF
fi = 〈νf ; Nf Ff (±)||T (n)(M)||νi; NiFi(±)〉 . (A17)

Once again, n denotes the rank of the spectroscopic transition
and equals n = 1 for electric dipole and n = 2 for electric
quadrupole transitions.

This form allows us to write the relative intensity of hyper-
fine components of rovibrational transition of rank n, using

Eqs. (A1), (A2), (A12), (A13), and (A14) as

SnHF
fi

Sn
fi

= | 〈νf ; Nf Ff (±)f ||T n(M)||νi; NiFi(±)i〉 |2
wI fn(Ni, Nf )

∣∣Mn
fi

∣∣2 . (A18)

APPENDIX B: PROOF OF EQS. (7) AND (8)

1. Homonuclear case

Let us explicitly write Eq. (6) for the homonuclear case:

SnHF
fi

Sn
fi

= 1

wI fn(Ni, Nf )
∣∣Mn

fi

∣∣2

( ∑
I ′
f ,I

′
i

aνf Nf Ff (±)f ∗
I ′
f

aνiNiFi (±)i

I ′
i

× 〈νf ; (Nf I
′
f )Ff‖T (n)(M)‖νi; (NiI

′
i )Fi〉

)

×
( ∑

I ′′
f ,I ′′

i

aνf Nf Ff (±)f ∗
I ′′
f

aνiNiFi (±)i

I ′′
i

× 〈νf ; (Nf I
′′
f )Ff‖T (n)(M)‖νi; (NiI

′′
i )Fi〉

)∗
. (B1)

The multipole moment operator does not modify either of the
nuclear spins. Instead, it acts on the subspace of the eigenvec-
tors of the rotational angular momentum. Making use of the
well-known properties of the reduced matrix elements of the
spherical tensor operators [50,51]

〈νf ; (Nf I
′
f )Ff‖T (n)(M)‖νi; (NiI

′
i )Fi〉

= δI ′
f I ′

i
(−1)Fi+Nf +n+I ′

f
√

(2Ff + 1)(2Fi + 1)

×
{

Ni Fi I ′
f

Ff Nf n

}
〈νf ; Nf‖T (n)(M)‖νi; Ni〉 (B2)

we obtain

SnHF
fi

Sn
fi

= (−1)2(Fi+Nf +n) (2Ff + 1)(2Fi + 1)

wI fn(Ni, Nf )
∣∣Mn

fi

∣∣2

×
( ∑

I ′,I ′′
aνf Nf Ff (±)f ∗

I ′ aνiNiFi (±)i
I ′ aνf Nf Ff (±)f

I ′′ aνiNiFi (±)i ∗
I ′′ .

× (−1)I ′+I ′′
{

Ni Fi I ′
Ff Nf n

}{
Ni Fi I ′′
Ff Nf n

}

× |〈νf ; Nf‖T(n)(M)‖νi; Ni〉|2
)

. (B3)

Note that we simplified the notation by putting I ′ = I ′
i = I ′

f

and I ′′ = I ′′
i = I ′′

f . In the next step we make use of the defi-
nition of the fn(Ni, Nf ) factor [Eq. (A12)] and we recall that
Fi, Nf , and n are integers, which allows us to reduce the phase
factor. Equation (B3) can now be written as

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)

wI

(∑
I ′,I ′′

(−1)I ′+I ′′

× aνf Nf Ff (±)f ∗
I ′ aνiNiFi (±)i

I ′ aνf Nf Ff (±)f
I ′′ aνiNiFi (±)i ∗

I ′′

×
{

Ni Fi I ′
Ff Nf n

}{
Ni Fi I ′′
Ff Nf n

})
. (B4)
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This formula is a generalization of Eqs. (14)–(51) in Ref. [52]
to spectral transitions of rank n (the authors considered elec-
tric dipole transitions).

For the case of ortho-H2, para-D2, and ortho-T2, there
is only one total nuclear spin I = I ′ = I ′′ = 1 and mixing
coefficients become trivial. This allows us to obtain Eq. (7):

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)

(2I + 1)

{
Ni Fi I
Ff Nf n

}2

. (B5)

For the case of ortho-D2, Eq. (B4) gives a general formula
for the relative intensity of each component. For class-1 tran-
sitions it is easy to see that Eq. (B5) holds. For transitions
of class 2 (or 3) I ′

i = I ′′
i (or I ′

f = I ′′
f ), the delta function from

Eq. (B2) reduces both sums in Eq. (B4) (I ′ = I ′′ = I) and
additionally aνiNiFi (±)i

I = 1 (or aνf Nf Ff (±)f
I = 1). The relative in-

tensities are given by [53]

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)

wI
× ∣∣aνf Nf Ff (±)f ∗

I

∣∣2
{

Ni Fi I
Ff Nf n

}2

.

(B6)

This proves that transitions from class 2 (or class 3) do
not depend on the initial (or final) vibrational quantum
number.

A relation similar to Eq. (B4) was used in Ref. [39] in the
analysis of the hyperfine components of electric quadrupole
transitions in the hydrogen molecular ion [see Eq. (20)
therein]. Since the H2

+ involves a nonzero electronic spin,
the analog of Eq. (B4) in Ref. [39] involves different angular
momenta. As mentioned in Sec. II A, the authors recover a
simplified formula for the relative intensities, Eq. (B5), by
approximating the mixing coefficients as Dirac deltas in the
zeroth-order perturbation theory.

2. Heteronuclear case

For the heteronuclear isotopologues, Eq. (6) takes the fol-
lowing form:

SnHF
fi

Sn
fi

= 1

wI fn(Ni, Nf )
∣∣Mn

fi

∣∣2

( ∑
F ′

1f
,F ′

1i

aνf Nf Ff (±)f ∗
F ′

1f

aνiNiFi (±)i

F ′
1i

× 〈νf ; [(Nf I1)F ′
1f

I2]Ff‖T (n)(M)‖νi; [(NiI1)F ′
1i

I2]Fi〉
)

×
( ∑

F ′′
1f

,F ′′
1i

aνf Nf Ff (±)f ∗
F ′′

1f

aνiNiFi (±)i

F ′′
1i

×〈νf ; [(Nf I1)F ′′
1f

I2]Ff‖T (n)(M)‖νi; [(NiI1)F ′′
1i

I2]Fi〉
)∗

.

(B7)

Using the same arguments as those that lead from Eq. (B1)
to Eq. (B3) we apply Eq. (B2) twice, along with Eq. (A12),
which leads to

SnHF
fi

Sn
fi

= (−1)2(Nf +2n+Fi+I1+I2 ) (2Ff + 1)(2Fi + 1)

wI

×
( ∑

F ′
1f

,F ′
1i

,F ′′
1f

,F ′′
1i

(−1)F ′
1i

+F ′
1f

+F ′′
1i

+F ′′
1f

× aνf Nf Ff (±)f ∗
F ′

1f

aνiNiFi (±)i

F ′
1i

aνf Nf Ff (±)f

F ′′
1f

aνiNiFi (±)i∗
F ′′

1i

×
√(

2F ′
1f

+ 1
)(

2F ′
1i

+ 1
)(

2F ′′
1f

+ 1
)(

2F ′′
1i

+ 1
)

×
{

F ′
1i

Fi I2
Ff F ′

1f
n

}{
Ni F ′

1i
I1

F ′
1f

Nf n

}

×
{

F ′′
1i

Fi I2

Ff F ′′
1f

n

}{
Ni F ′′

1i
I1

F ′′
1f

Nf n

})
. (B8)

Note that the first phase factor is reduced to 1, since Nf and n
are always integers, and

(1) if the two nuclear spins are integers (which is appar-
ently not the case for any of the heteronuclear isotopologues
of hydrogen), the total quantum number is also an integer, and
the exponent is an even integer;

(2) if I1 is a half-integer and I2 is an integer, Fi is also a
half-integer and as a result, the exponent is an even integer;

(3) if I1 is an integer and I2 is a half-integer (we chose this
scheme for the case of HD [30,34] and DT [32,33]), then Fi is
also a half-integer; the exponent is an even integer; and

(4) if both nuclear spins are half-integers (as in the case of
HT [32,34]), the total quantum number, and the exponent is
an even integer.

For class-1 transitions all four mixing coefficients equal
one, and there is no need to sum over possible intermediate
quantum numbers, since both the initial and final hyper-
fine states are well described by N , F1, and F . Setting
F ′

1i
= F ′′

1i
= F1i and F ′

1f
= F ′′

1f
= F1f we obtain Eq. (8):

SnHF
fi

Sn
fi

= (2Ff + 1)(2Fi + 1)
(
2F1f + 1

)(
2F1i + 1

)
(2I1 + 1)(2I2 + 1)

×
{

F1i Fi I2

Ff F1f n

}2{
Ni F1i I1

F1f Nf n

}2

. (B9)

Following the discussion for the ortho-D2, we note that class-2
(or class-3) transitions do not depend on the initial (or final)
vibrational quantum numbers since their initial (or final) states
are well described by N , F1, and F and the mixing coefficients
simply equal 1. Finally, we note that Eq. (B8) is a generaliza-
tion of Eqs. (14)–(51) in Ref. [52] to spectral transitions of
rank n (the authors considered electric dipole transitions) and
a different coupling scheme (the authors discussed the relative
intensities in the coupling scheme suitable for homonuclear
diatomics).
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