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Two-photon annihilation of positrons with K-shell electrons of H-like ions
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The two-photon annihilation of a positron with an electron bound in the 1s state of a H-like ion is calculated
within the fully relativistic QED framework. The interaction with the nucleus is treated nonperturbatively,
thus allowing the calculations to be carried out for the annihilation with strongly bound inner shells of heavy
ions. Infrared divergences, appearing when one of the emitted photons approaches the low-frequency limit,
are accurately eliminated from final expressions. The total cross section of the two-photon and one-photon
annihilation processes are compared for a wide range of collision energies and nuclear charge numbers. It is
demonstrated that the two-photon annihilation channel dominates over the one-photon channel for the low- and
medium-Z ions, whereas for the high-Z ions the situation reverses.
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I. INTRODUCTION

The electron-positron annihilation is one of the funda-
mental processes of matter-antimatter interaction. It attracted
interest of investigators for a very long time and yielded a
number of important fundamental results. Among them was
one of the first demonstrations of the violation of Bell’s in-
equalities from studies of polarization correlations between
the high-energy photons produced during the positronium
annihilation [1–3]. Investigations of the electron-positron an-
nihilation have also many practical applications. This process
was used as a valuable tool for studying defects in metals and
semiconductors [4,5], performing positron-emission tomogra-
phy [6,7], facilitating astrophysical searches [8–10], and other
applications [11–14]. An important scenario is annihilation of
positrons on the inner-shell electrons of an atomic or ionic
target. This process allows one to study the matter-antimatter
interaction in the presence of the strong Coulomb field of the
nucleus. Although a direct measurement of the annihilation
with selected inner shells is a difficult task, such experiments
were successfully held in the past [15–18]. A new genera-
tion of such experiments is going to become possible in the
near future, specifically, at the Lawrence Livermore National
Laboratory, the ELI-NP Research Center, and the future FAIR
facility.

The annihilation of a positron and a bound electron
can proceed with the emission of one, two, or more pho-
tons. It is well known that in the absence of the nucleus,
the single-quantum annihilation is forbidden because of the
energy-momentum conservation requirements. Therefore, one
can expect this channel to be strongly suppressed for light
atoms, where the Coulomb field by the nucleus only weakly
violates the free-space momentum conservation law. The two-
photon annihilation is allowed and typically dominates over
other channels in an empty space. Its cross section, however,
is suppressed by an additional power of the fine-structure

constant as compared to the single-quantum cross section.
With this in mind, one can expect that the two-photon an-
nihilation dominates over the one-photon channel for light
systems, whereas for heavy systems the situation reverses
[19]. This assumption, however, has never been confirmed by
accurate calculations or experimental investigations.

In order to provide reliable theoretical predictions for the
annihilation cross section with high-Z ions, one needs to per-
form calculations within a fully relativistic QED formalism
and to all orders in the binding field of the nucleus.

For the one-photon annihilation, such treatment was first
developed by Johnson and coauthors [20,21]. At present, such
calculations are well established. For the two-photon annihi-
lation with bound electrons, previous studies were performed
for the two extreme cases of the ultraslow [22] and ultra-
fast [23,24] positrons. Based on the Lee’s approximation for
ultraslow positrons, the theoretical approach providing the
results in excellent agreement with the experimental data has
been developed (see, e.g., Refs. [25–29]). A rigorous QED
calculation of this process was performed recently by some
of us in Ref. [30]. In that work, the finite-basis-set approach
was used for the construction of the virtual electron-positron
state propagator. The applicability of this approach turned
out to be limited by the restriction for the energy of the
electron-positron propagator to be above the negative-energy
continuum threshold. As a result, not all possible combina-
tions of energy sharing between the two emitted photons can
be described and no reliable data can be obtained for positrons
with energies larger than a few hundred keV. Calculations for
these energies are, however, required for the comparison of
single- and double-quanta annihilation in high-Z ions.

In the present investigation we aim to overcome the lim-
itations of the approach of Ref. [30]. This is achieved by
representing the electron-positron propagator in the presence
of the binding nuclear field with the exact Dirac-Coulomb
Green’s function. It should be noted that this extension of
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the method is associated with significant technical difficulties.
One of the reasons is that the electron-positron propagator for
energies beyond the continuum threshold is a strongly oscillat-
ing and slowly decreasing function for large radial distances.
This calls for special numerical techniques for computation of
radial integrals. Furthermore, special care needs to be taken
in the region where one of the emitted photons approaches
the low-frequency limit, because of infrared divergences. In
the present work we overcome all the difficulties and eval-
uate the total cross section for the two-photon annihilation
of positrons with 1s electrons in a wide range of positron
energies and nuclear charge numbers Z .

The outline of the paper is as follows. In Sec. II A we
recall basic relations for the one-photon annihilation process.
Section II B represents the theoretical description of the two-
photon channel. In Sec. II C we discuss in detail the infrared
divergences arising in the double-quanta annihilation. Sec-
tion III presents numerical details of the calculation. The total
cross section for the one- and two-photon annihilation of the
positrons with the 1s electrons of the H-like ions are presented
in Sec. IV. Section V summarizes and concludes the paper.

Relativistic units (me = h̄ = c = 1) and the Heaviside
charge units (e2 = 4πα) are utilized throughout the paper.

II. BASIC FORMALISM

In this section we present basic formulas for the one- and
two-photon annihilation of a positron with a H-like ion within
the framework of the rigorous QED approach. We use the
independent particle approximation, in which the positron and
the electron move in the Coulomb potential created by the
nucleus. The electron-positron interaction is suppressed by
the factor of 1/Z as compared to the electron- and positron-
nucleus interactions and is neglected.

A. One-photon annihilation

The amplitude for the one-photon annihilation of a positron
with an electron in a bound a state is given by

τ
(1ph)
λ,μima

= 〈(−piμi )|α · A∗
kλ|ama〉, (1)

where pi and μi are the asymptotic four-momentum and he-
licity of the incoming positron, respectively, and ma is the
total angular-momentum projection of the bound electron.
The wave function of the plane-wave photon with the energy
ω, the momentum k, and the polarization λ is given by

Akλ ≡ Akλ(r) = εkλeik·r√
2ω(2π )3

, (2)

with α standing for the vector incorporating the Dirac matrices
and εkλ designating the circular polarization vector in the
Coulomb gauge. For practical purposes, it is convenient to
represent the photon wave function as the multipole series
[31]

ελeik·r =
√

2π
∑
LML

iL
√

2L + 1DL
MLλ(ϕk, θk, 0)

×
∑
p=0,1

(iλ)pa(p)
LML

(r), (3)

where a(p)
LML

are the magnetic (p = 0) and electric (p = 1)
vectors

a(0)
LML

(r) = jL(ωr)YLLML (r̂),

a(1)
LML

(r) =
√

L + 1

2L + 1
jL−1(ωr)YLL−1ML (r̂)

−
√

L

2L + 1
jL+1(ωr)YLL+1ML (r̂) (4)

with jL standing for the spherical Bessel function of the first
kind [32] and YJLM being the vector spherical harmonics [33].

To describe the incoming positron with the asymptotic
four-momentum pi and the helicity μi it is more convenient
to represent it as an outgoing electron with the asymptotic
four-momentum −pi and the same helicity μi [34,35]. The
wave function of such electron is given by [31,36]

	
(−)
−piμi

(r) = 1√
4πεi|pi|

∑
κmj

i−l̄ e−iδ(V )
−εiκ

√
2l̄ + 1C j−μi

l̄0 1/2−μi

× D j
mj−μi

(ϕp̂i , θp̂i , 0)	 (V )
−εiκmj

(r), (5)

where pi and εi =
√

p2
i + 1 are the asymptotic momentum

and energy of the positron, respectively, κ = (−1)l+1/2− j ( j +
1/2) is the Dirac quantum number determined by the total
j and orbital l angular momenta, mj is the projection of the
total angular momentum, l̄ = 2 j − l , δ

(V )
−εiκ

is the phase shift
being induced by central potential V , CJM

j1m1 j2m2
is the Clebsch-

Gordan coefficient, DJ
MM ′ is the Winger matrix [33,37], and

ϕp̂i and θp̂i denote the azimuthal and polar angles of the unit
vector p̂i = pi/|pi|. The partial waves

	
(V )
−εiκmj

(r) =
(

g(V )
−εiκ

(r)κmj (r̂)

i f (V )
−εiκ

(r)−κmj (r̂)

)
(6)

are the negative-energy continuum solutions of the Dirac
equation in the central potential V , with g(V )

−εiκ
and f (V )

−εiκ
stand-

ing for the large and small radial components, whose explicit
form for the pure Coulomb potential can be found, e.g., in
Refs. [38,39], κmj is the spherical spinor [33], and r̂ is the
unit vector into the r direction.

Substituting Eqs. (2) and (5) into Eq. (1) and utilizing
the multipole expansion (3), we obtain the expression for

FIG. 1. Feynman diagrams for the two-photon annihilation of the
positron e+

pi
with the bound electron in the a state. The double lines

indicate the positron, virtual, and electron states in the field of the
nucleus. The wavy lines represent the emitted photons, γk1 and γk2 .
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the amplitude in a form appropriate for the direct numerical
calculations. The total cross section (TCS) is connected to the
amplitude as follows:

σ
(1ph)
tot = 2αω2 (2π )5

vi

1

2(2 ja + 1)

∑
μima

∑
λ

∫
dk

∣∣τ (1ph)
λ,μima

∣∣2
,

(7)
where vi is the velocity of the incoming positron and ja is the
total angular momentum of the bound electron.

B. Two-photon annihilation

The amplitude for the positron-bound-electron annihilation
with the emission of two photons enumerated by subscripts 1

and 2 is defined by the diagrams shown in Fig. 1, which lead
to the following expression [38,39]:

τ
(2ph)
λ1λ2,μima

= −〈
(−piμi )

∣∣(α · A∗
k1λ1

)
G(Ea − ω2)

(
α · A∗

k2λ2

)∣∣ama
〉

−〈
(−piμi )

∣∣(α · A∗
k2λ2

)
G(Ea − ω1)

(
α · A∗

k1λ1

)∣∣ama
〉
,

(8)

where Ea is the energy of the bound electron. The Dirac-
Coulomb Green’s function G(E ) is given by [40]

G(E ) ≡ G(E , r1, r2)

=
∑
κmj

(
G11

κ (E , r1, r2)κmj (r̂1)†
κmj

(r̂2) −iG12
κ (E , r1, r2)κmj (r̂1)†

−κmj
(r̂2)

iG21
κ (E , r1, r2)−κmj (r̂1)†

κmj
(r̂2) G22

κ (E , r1, r2)−κmj (r̂1)†
−κmj

(r̂2)

)
. (9)

Here

Gi j
κ (E , r1, r2) = − 1

�κ (E )

[
φ∞,i

κ (E , r1)φ0, j
κ (E , r2)θ (r1 − r2)

+φ0,i
κ (E , r1)φ∞, j

κ (E , r2)θ (r2 − r1)
]

(10)

is the radial Dirac-Coulomb Green’s function expressed in
terms of the two-component solutions of the radial Dirac
equation regular at the origin,

φ0
κ =

(
φ0,1

κ (E , r)

φ0,2
κ (E , r)

)
, (11)

and at infinity,

φ∞
κ =

(
φ∞,1

κ (E , r)

φ∞,2
κ (E , r)

)
. (12)

The Wronskian of these solutions is given by

�κ (E ) = r2φ0T

κ (E , r)

(
0 −1
1 0

)
φ∞

κ (E , r). (13)

The explicit form of the solutions (11) and (12) can be found
in Refs. [40,41]. Using the Dirac-Coulomb Green’s function,
the positron wave function (5), and the exact wave function
for the bound state from, e.g., Ref. [39], we obtain the am-
plitude for the two-photon annihilation that accounts for the
interaction with the Coulomb potential of the nucleus in a
nonperturbative way.

The single differential cross section is obtained from the
amplitude (8) as

dσ (2ph)

dω1
= 4α2 (2π )6

vi
ω2

1ω
2
2

1

2(2 ja + 1)

×
∑
λ1λ2

∑
μima

∫
d1d2

∣∣τ (2ph)
λ1λ2,μima

∣∣2
. (14)

The above expression for the differential cross section is
infrared (IR) divergent at the endpoints ω1 ∼ 0 and ω1 ∼
Etot = Ea + εi, which correspond to the two cases when one

of the photons carries away almost the whole energy. These
divergences need to be separated out before the numerical
evaluation is performed.

C. Infrared divergences

In the present investigation, the electron-positron annihi-
lation is described by using the perturbation expansion in
powers of α, which leads to the series with individual terms
corresponding to the emission of one, two, or more photons.
The perturbation expansion is applicable when the probability
of the multiple quanta emission decreases with the increase of
their number. However, this is not the case for the processes
involving soft photons. Indeed, the number of quanta carrying
away the energy ω tends to infinity when ω → 0 [38,39,42].
A manifestation of the nonperturbative regime is the fact that
the individual terms of the perturbative expansion become
infrared divergent at ω → 0.

Naturally, the sum of all perturbation series should be
infrared finite. Moreover, it can be shown [43,44] that in
each order of α the IR-divergent contributions to the cross
section related to the soft real and virtual photons eliminate
each other. Specifically, in the case under consideration, the
IR-divergent part of the two-photon annihilation should be
canceled by the corresponding contribution from the first-
order radiative correction to the one-photon annihilation. The
analogous cancellation of the IR divergences was demon-
strated in Ref. [45] in the context of the QED corrections to
the radiative recombination. Calculation of QED corrections
to the single-quantum annihilation lies beyond the scope of the
present investigation. Therefore, we regularize the obtained
formula for the two-photon annihilation amplitude by sepa-
rating out the IR-divergent contribution.

We now obtain an explicit expression for the IR-divergent
contribution appearing in the differential cross section at
ω1 → 0. For this purpose, we decompose the diagrams shown
in Fig. 1 in powers of the interaction with the Coulomb po-
tential and retain only the IR-divergent terms. These terms are
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FIG. 2. The infrared-divergent diagrams of the two-photon an-
nihilation at ω1 → 0. The single line denotes a free electron and
the dashed line ended by the cross denotes the interaction with the
Coulomb field.

depicted in Fig. 2 and correspond to the following expression:

τ
(2ph, IR)
λ1,λ2,μi,ma

= τ (a) + τ (b)

= −〈V−piμi |
(
α · A∗

k1λ1

)
G0(−εi + ω1)

×[1 + VCG(−εi + ω1)]
(
α · A∗

k2λ2

)|ama〉,
(15)

with the free electron-positron Green’s function

G0(E ) =
∫

dp
∑

μ

[
UpμU †

pμ

E − p0(1 − i0)
+ V−pμV †

−pμ

E + p0(1 − i0)

]
.

(16)
Here p0 =

√
p2 + 1,

Upμ ≡ Upμ(r) = eip·r√
2p0(2π )3

( √
p0 + 1χ1/2μ(p̂)√

p0 − 1(p̂ · σ)χ1/2μ(p̂)

)
,

(17)

V−pμ ≡ V−pμ(r) = e−ip·r√
2p0(2π )3

(√
p0 − 1(p̂ · σ )χ1/2−μ(p̂)√

p0 + 1χ1/2−μ(p̂)

)
(18)

are the wave functions of the free electron and free positron,
respectively, and χ1/2μ(p̂) stands for the eigenfunction of the
helicity operator (p̂ · σ )/2 with the eigenvalue μ. To extract
the dominant contribution in the limit ω1 → 0, it is sufficient
to keep only the second term in Eq. (16) and to neglect ω1 in
G. Making use of these assumptions and the relation

	
(−)†
−piμi

= V †
−piμi

+ V †
−piμi

VCG(−εi ), (19)

we arrive at

τ
(2ph, IR)
λ1λ2,μima

= 1

εi

pi · ε∗
k1λ1√

2ω1(2π )3

1

−εi + ω1 +
√

(−pi + k1)2 + 1
τ

(1ph)
λ2,μima

. (20)

The related contribution to the cross section is given by

dσ (2ph, IR)

dω1
= σ

(1ph)
tot

4πα

ε2
i

∫
d1

∑
λ1

|pi · ε∗
k1λ1

|2 ω1

2(2π )3(−εi + ω1 + √
(−pi + k1)2 + 1

)2

= σ
(1ph)
tot

Ipi

ω1
, (21)

where

Ipi = α

|pi|π

[
εi ln

(
εi + |pi|
εi − |pi|

)
− 2|pi|

]
. (22)

We now define the regularized two-photon annihilation differ-
ential cross section as follows:

d σ̃ (2ph)

dω1
= dσ (2ph)

dω1
− σ

(1ph)
tot Ipi

(
1

ω1
+ 1

Etot − ω1

)
. (23)

Here the first and second terms in the brackets remove the
IR divergences at the endpoints ω1 ∼ 0 and ω1 ∼ Etot, respec-
tively. The corresponding total cross section is given by

σ
(2ph)
tot = 1

2

∫ Etot

0
dω1

d σ̃ (2ph)

dω1
, (24)

where 1
2 factor in front of the integral is introduced to ac-

count for the indistinguishability of the photons [38]. The
regularized differential cross section (23) tends to zero at the
endpoints, which is consistent with the general expectations.

Indeed, the annihilation probability has to be finite regardless
of the number of quanta to be emitted, and since the number
of quanta carrying away the energy ω → 0 tends to infinity,
the probability of the emission of a single photon with ω → 0
tends to zero.

III. NUMERICAL EVALUATION

The numerical evaluation of the annihilation amplitude (8)
is based on the computation of the Dirac-Coulomb Green’s
function G(E , r1, r2). For energies below the continuum
threshold, |E | < 1, the Dirac-Coulomb Green’s function can
be conveniently computed either by a finite-basis-set repre-
sentation or by the exact representation in terms regular and
irregular Dirac-Coulomb functions, see, e.g., a review [46].
The comparison of the results obtained with two different
approaches in this region was used as an important cross check
of the numerical procedure. For |E | > 1, however, the finite-
basis-set representation is not applicable for the process under

062806-4



TWO-PHOTON ANNIHILATION OF POSITRONS WITH … PHYSICAL REVIEW A 105, 062806 (2022)

consideration, so one has to compute the Dirac-Coulomb
functions.

The most problematic region for the numerical compu-
tation is |E | � 1. When the Dirac-Coulomb functions are
represented in terms of the Whittaker functions Mα,β and
Wα,β , the region |E | � 1 corresponds to large and complex
values of the first index α. In this region most of the standard
numerical algorithms used in the literature for the computa-
tion of the Whittaker functions [40,41] are not good enough.
For this reason, in the present work we computed the regular
and irregular solutions of the Dirac equation by numerically
solving the differential equation on a radial grid, with the
method described in the Appendix of Ref. [47].

Substituting Eqs. (2), (5), and (9) into Eq. (8) and utilizing
the multipole expansion (3), the amplitude is represented as an
infinite series over the multipole components of the positron
(κ), the Green’s function (κg), and photons (L1 and L2). The
summations over the photon multipoles L1 and L2 are finite
after the angular-momentum selection rules are taken into
account. The summations over κ and κg, however, are infinite
and need to be truncated. In our calculations, we typically
truncated the expansion at |κ| = 40 and |κg| = 45.

In each term of the partial-wave expansion, the angular
integration can be separated out and calculated analytically
by the standard Racah-algebra technique. The integration over
the radial variables has to be carried out numerically. This
numerical integration is quite straightforward for the energy
argument of the Green’s function |E | < 1. For |E | > 1, how-
ever, the integrand becomes a strongly oscillating and slowly
decreasing function for large radial distances, so that the
straightforward numerical integration methods fail to con-
verge. Specifically, we need to integrate the product of the
continuum-state Dirac wave function, the Dirac-Coulomb
Green’s function with the energy |E | > 1, and the spherical
Bessel function. To this end, we use the method of the rotation
of the integration contour in the complex r plane, which trans-
forms the integrand to a smooth and exponentially decaying
function at large r. This method was developed in Ref. [48] in
the context of bremsstrahlung and later extended in Ref. [49]
for the double photoionization process.

IV. RESULTS AND DISCUSSION

We start with presenting results for the unregularized dif-
ferential cross section (DCS) for the two-photon annihilation
(14), which contains the IR divergences. The dependence of
the DCS for the annihilation of 500 keV, 750 keV, and 1500
keV positrons with the 1s electron of the H-like uranium ion
(Z = 92) as a function of the emitted photon energy ω1 is
presented by dashed line in Fig. 3. From the figure, one can
see that the DCS is symmetric with respect to the interchange
of the photon energies ω1 ↔ ω2 = Etot − ω1. This fact is
explained by the indistinguishability of the emitted photons.
Figure 3 clearly displays the IR divergences at the endpoints
where one of the emitted photons is soft.

To obtain meaningful results for the total cross section, one
needs to eliminate the IR divergences. This can be achieved
by using the regularized cross section given by Eq. (21). We
find it instructive to cross check the analytical formula for
the divergent contribution by a numerical calculation of the

FIG. 3. Differential cross section for the two-photon annihilation
of the positron with the 1s electron of the H-like uranium ion as a
function of the emitted photon energy ω1. The unregularized cross
section defined by Eq. (14) is shown with the dashed line (blue),
whereas the solid line (red) corresponds to the regularized expression
(23). The top, middle, and bottom panels correspond to the kinetic
positron energy of 500 keV, 750 keV, and 1500 keV, respectively.

unregularized expression (14). For this purpose, we calculate
numerically the value

I (num)
pi

(ω1) = ω1

σ
(1ph)
tot

dσ (2ph)

dω1
, (25)

and compare its limit at ω1 → 0 with the value provided by
the analytical expression (22). Due to the complexity of the
numerical calculations at small photon energies, we restrict
ourselves to the case of 500 keV positrons annihilating with
the 1s electrons of the H-like uranium ions. Additionally, we
do not perform the calculations for ω1 < 10−4Etot, where nu-
merical instabilities do not allow us to obtain reliable results.
Table I presents I (num)

pi
(ω1) in the velocity and length gauges.

TABLE I. I (num)
pi

(ω1), defined by Eq. (25), in the velocity (second
column) and length (third column) gauges for 500 keV positrons
annihilating with the 1s electrons of the H-like uranium ions. The
extrapolated value corresponds to the limit ω1 → 0.

ω1/Etot I (num, vel)
pi

(ω1) I (num, len)
pi

(ω1) Ipi [Eq. (22)]

0.01 0.002 345 096 0.002 345 096
0.001 0.002 373 530 0.002 373 529
0.0005 0.002 375 474 0.002 375 474
0.0004 0.002 375 868 0.002 375 867
0.0003 0.002 376 262 0.002 376 262
0.0002 0.002 376 659 0.002 376 658
0.0001 0.002 377 056 0.002 377 055

extr 0.002 377 45(1) 0.002 377 45(1) 0.002 377 455
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FIG. 4. Total cross section for the one- and two-photon annihi-
lation of the positron with the 1s electron of the H-like xenon (left
panel) and uranium (right panel) ions.

From the table, one can see that the results obtained in
the different gauges agree with each other. Moreover, the
extrapolated value of I (num)

pi
(ω1) at ω1 → 0 is in excellent

agreement with the analytical one, which is given by Eq. (22).
In what follows, we calculate the IR divergent contribu-
tions directly through the use of Eq. (21) and subtract them
from the DCS. The redefined DCS [Eq. (23)], which does
not contain the IR divergences, is depicted in Fig. 3 with
the solid red line. From the figure, one can see that the
divergences are eliminated at all positron energies and the
total cross section for the two-photon annihilation can be
directly evaluated.

Now we turn to the comparison of the total cross sec-
tions for the single- and double-quanta annihilation of
positrons with 1s electrons of H-like ions. First, we inves-
tigate the dependence of the cross sections on the positron
energy for medium- and high-Z ions, viz., xenon (Z = 54)
and uranium (Z = 92). The total cross section (TCS) for the
one- and two-photon annihilation of positrons with 1s elec-
trons of these systems is presented in Fig. 4 as a function
of the positron energy. From the figure, one can see that
the TCS exhibits the similar behavior for both processes,
which can be explained as follows. With the growth of the
energy, it is easier for the positron to overcome the nucleus
repulsion and annihilate with the bound electron, thus, the
cross section increases. On the other side, the growth of the
energy leads to the decrease of time when the positron and
electron are close to each other, which results in the drop
of the annihilation probability. The combination of these two
mechanisms explains the dependence of the cross section on
the positron energy, which is observed in Fig. 4, namely, the

FIG. 5. Total cross section for the one- and two-photon annihi-
lation of 300 keV positron with the 1s electron of the H-like ion.
The TCS for the positron-electron annihilation in an empty space,
which is given by Eq. (26), is represented by the green dash-dotted
line.

growth followed by the smooth decline. From Fig. 4, one can
also see that for Z = 54 (left panel) the two-photon annihi-
lation dominates over the one-photon channel at all positron
energies.

For Z = 92 (right panel) the completely opposite situation
is observed, namely, the single-quantum process becomes
the most probable. Let us now study the dependence of
the annihilation cross sections on Z . For this purpose, in
Fig. 5 we depict the TCS for the one- and two-photon
annihilation of 300 keV positron with the 1s electron of
the H-like ion as a function of the nuclear charge Z . The
energy of the positron was chosen to be 300 keV since ap-
proximately at this energy the one- and two-photon cross
sections reach their maximal values for the annihilation with
the uranium ion (see the right panel in Fig. 4). In this fig-
ure, one can observe that with the decrease of Z the one-
and two-photon annihilation cross sections approach their
empty space limits. The single-quantum annihilation vanishes
at low Z , which expresses the fact that the annihilation of
free electron and positron with the emission of one photon
is forbidden.

The TCS for the two-quantum annihilation turns into the
cross section for the analogous channel in an empty space,
which is given by [38]:

σ
(2ph, free)
tot = πα2 1

εi + 1

⎡
⎣ε2

i + 4εi + 1

ε2
i − 1

ln
(
εi +

√
ε2

i − 1
)

− εi + 3√
ε2

i − 1

⎤
⎦ (26)

and depicted in Fig. 5 by the green dash-dotted line. From
Fig. 5, it is also seen that with the growth of Z the one-photon
annihilation increases while the two-photon one decreases.
For a wide range of Z , the double-quanta channel prevails over
the single-quantum one, but for heavy systems with Z > 70,
the situation becomes the opposite.

V. CONCLUSION

We have studied the process of the two-photon annihilation
of a positron with an electron bound in the 1s state of an H-like
ion. The calculation was performed within the fully relativistic
QED formalism, with the nuclear binding field accounted
for in a nonperturbative manner. The complete spectrum of
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intermediate electron-positron Dirac states in the binding field
of the nucleus was described by the exact Dirac-Coulomb
Green’s function. The IR-divergent contributions, which oc-
cur in the situations when one of the emitted photons is soft,
were calculated separately and subtracted from the differential
cross section for the two-photon annihilation.

The developed approach was applied to the calculation of
the total cross section for the double-quanta annihilation of
positrons with the 1s electrons of H-like ions in a wide range
of the positron energy and the nuclear charge number Z . The
cross sections of the one-photon and two-photon annihilation
channels were compared for different values of Z . We have
demonstrated that for the low- and medium-Z ions the two-
photon annihilation dominates over the one-photon channel
for all positron energies. The situation becomes reversed for

heavy ions, such as uranium (Z = 92). The probabilities of the
single- and double-quanta channels are shown to be approx-
imately equal to each other in the region Z ≈ 70 for the 300
keV positrons.

The formalism developed in the present work substantially
extends the domain of collision energies available for an ac-
curate theoretical description of the two-photon annihilation.
Detailed theoretical and experimental investigations of this
process will help to unfold various features of the annihilation
phenomenon in the presence of the strong Coulomb field.
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