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Influence of spherical anisotropy on optical mass sensing in plasmonic-molecular optomechanics
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We use an all-optical pump-probe method to develop a mass-sensing mechanism in a molecular plasmonic
system at room temperature. The system consists of a doubly clamped graphene nanoribbon that parametrically
interacts with two types of isotropic and anisotropic spherical plasmonic cavities in the presence of a strong
pump field and a weak probe pulse. Based on the mode-selective quantization scheme and analogy with the
canonical model of the cavity optomechanics, we formulate the Hamiltonian of the system in terms of the
electromagnetic Green’s tensor. In this manner, we derive an explicit form of the size-dependent optomechanical
coupling function and plasmonic damping rate, which include the modal, geometrical, and material features of
the plasmonic structure. Engineering material features of the plasmonic nanostructure, we find that the intensity
of the probe-field transmission spectrum for radially anisotropic spherical nanocavity is enhanced significantly
compared to the silver sphere nanocavity due to the mode volume reduction. This scheme can allow us to achieve
the minimum measurable mass �m ≈ 10−24 kg at room temperature.
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I. INTRODUCTION

One of the most promising methods for tailoring light-
matter interaction is to employ metallic structures of
nanoscale size as plasmonic nanocavities [1–6]. Localized
plasmon resonances (LPRs), which result from the con-
finement of light waves within the metallic subwavelength
structures, are considered as the fundamental concept of a new
growing field known as plasmonic cavity quantum electro-
dynamics (PCQED) [7–9]. These localized plasmons can be
effectively controlled by adjusting cavity composition, size,
and shape and the material parameters of the surrounding
medium. The sub-diffraction-limit focusing of electromag-
netic fields in the near field of the LPRs is responsible for
the enormous enhancement of the Raman spectrum in a com-
mon sensing technique known as surface-enhanced Raman
scattering (SERS) [10]. So far, the dynamical behavior of
SERS phenomenon, which represents the interaction between
molecular species and metallic nanoparticles, was formulated
theoretically in the field of molecular plasmonic in both clas-
sical and quantum regimes [1,3,5,11]. Many attempts have
been devoted to investigating the influence of material and
geometrical parameters such as anisotropy on the SERS en-
hancement factor by finding the scalar potential distribution
of the nanostructure and extracting its polarizability in the
quasistatic approximation (QSA) [12].

Recently, a theoretical approach was introduced to ex-
plain the dynamical nature of plasmon-phonon interaction by
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mapping the molecular plasmonic system onto the canonical
model of cavity optomechanics [13]. Based on this model,
it was shown that the polarizability of the molecule and its
interaction with a plasmonic nanocavity are explicitly depen-
dent on the internal vibrational states of the adjacent molecule
[14,15]. This theoretical approach was applied to the SERS
phenomenon and successfully described fundamental classi-
cal properties such as the dependence of the Raman signal
on the intensity and frequency of the incident laser. Quantum
features like dynamical backaction amplification, which are
related to the vibrational modes and correlations between
emitted photons of the molecules, can be described through
the molecular optomechanical model [14–17].

Several challenging phenomena such as distinguishing
similar molecules and designing tunable optical switches have
been studied in this framework [18]. Heat transfer of two ad-
jacent molecules in a plasmonic nanocavity, optomechanical
cooling in the nonlinear regime, collective effects in SERS,
and optical mass sensing are other noticeable phenomena that
have recently been investigated through this optomechanical
model [12,18–21].

Zhu and co-workers proposed recently a mass-sensing
setup with high precision at room temperature using an ar-
tificial molecule with a small effective mass instead of a real
Raman active molecule in the vicinity of plasmonic nanostruc-
tures [22]. It is an interesting mass-sensing system due to the
large mass sensitivity of the mechanical resonator resulting
from the large plasmon-phonon coupling [22–24].

The canonical model of cavity optomechanics can pro-
vide the ability to analyze the molecular plasmonic systems
and subsequently investigate the effects of several param-
eters such as incident pump field, coupling strength, and
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plasmonic damping rate on the transmission spectrum. How-
ever, the explicit dependence of these parameters upon the
material and geometrical features of the system has been
studied less analytically [25]. Establishing a formalism that
prepares the physical ground to understand the influences of
these parameters on the dynamics of the system and control
the transmission peak height and shape of the probe beam
would be practically useful. Therefore, as the main purpose
of this study, we intend to include these features in the op-
tomechanical formalism of the molecular plasmonic system.

Unlike the traditional method based on the first-principles
approach to obtain the polarizability of a plasmonic nanos-
tructure for the purpose of sensing [12], in the present work
we start with the mode-selective quantization scheme to
extract the optomechanical Hamiltonian describing the inter-
action between a plasmonic nanostructure and a suspended
graphene nanoribbon (SGNR) [26,27]. This Hamiltonian con-
tains the electromagnetic Green’s tensor of the system through
which dispersive and dissipative properties of plasmonic cav-
ities enter the formalism. We then focus on two types of
isotropic and anisotropic spherical plasmonic cavities and de-
rive the multipolar polarizability from the Green’s tensor of
the system in the quasistatic approximation. In this way, we
can analytically derive the optomechanical coupling strength,
which includes the modal volume of the plasmonic subsystem.
The modal volume is a crucial concept in the field of PCQED
that quantifies the magnitude of the electric-field confinement.
Although this parameter is not the geometrical volume it
depends on the geometrical properties of the nanocavities
[28,29].

This paper is organized as follows. In Sec. II we present
the details of the mode-selective quantization method and then
generalize this theoretical treatment to formulate a multimode
optomechanical Hamiltonian expressing the interaction be-
tween plasmonic nanostructures and the SGNR. To further
illustrate the flexibility of this method, in Sec. III we deter-
mine the explicit expression of the optomechanical strength
and mode volume for coupling of the isotropic and anisotropic
spherical plasmonic cavities to the SGNR. We subsequently
obtain the transmission spectrum of the probe field related
to the two aforementioned plasmonic systems for the sensing
process at room temperature. In Sec. IV numerical results as-
sociated with the spectral function, optomechanical strength,
and transmission spectrum are depicted and discussed. The
paper is summarized by exploring optimal mass sensing in
Sec. V. Details related to the mode-selective quantization,
the free field Hamiltonian for the plasmonic subsystem, the
quantum Langevin equations, and the Mie coefficients can be
found in Appendixes A–D, respectively.

II. THEORETICAL FRAMEWORK

In the present work we consider a composite plasmonic-
molecule cavity optomechanical system, consisting of a
clamped-clamped (doubly clamped) graphene nanoribbon in
the vicinity of a spherical plasmonic nanocavity with radius R
in the presence of two external fields. As shown in Fig. 1, the
graphene nanoribbon lies in the xy plane and its axis is along
the y direction. We suppose that the nanoribbon is located at
the equilibrium distance rm from the center of the spherical

FIG. 1. (a) Schematic representation of the parametric interac-
tion between the plasmonic cavity mode and nanoribbon Raman
mode in the presence of a strong pump field and a weak probe
field in vacuum. A doubly clamped graphene nanoribbon (armchair
configuration) is located in the xy plane with periodicity in the y
direction.

cavity at the origin and can vibrate in the horizontal direction.
Here we consider the nanoribbon vibrations associated with
the breathinglike mode, where all the atoms of the nanoribbon
move in-plane along the ribbon width direction. This mode
is Raman active due to the inversion symmetry of the atom-
displacement pattern in the nanoribbon [30]. We can well
characterize the vibrational mode of the SGNR by a harmonic
oscillator with frequency ωm. The graphene nanoribbon has
also been shown to support plasmonic modes which can be
excited and tuned through special conditions [31,32]. Devel-
opments related to the electronic and plasmonic states of the
graphene nanoribbon were addressed in Refs. [33–35]. The
relative permittivity of the background medium is taken to be
that of free space, ε1 = 1, and ¯̄ε is the relative permittivity
tensor of the spherical nanocavity.

The free Hamiltonian of the whole system is given by
Ĥfree = Ĥm + Ĥp, in which the first term refers to the mechan-
ical vibrations of the SGNR, i.e., Ĥm = h̄ωmb̂†b̂. Here b̂† (b̂) is
the creation (annihilation) operator of the vibrational mode of
the SGNR with the frequency ωm. In addition, Ĥp is the free
Hamiltonian of the plasmonic subsystem and describes the
total energy of the electromagnetic field in a lossy plasmonic
medium, so it can be written as

Ĥp =
∫

d3r
∫ ∞

0
dω h̄ω f̂

†
(r, ω) · f̂ (r, ω), (1)

where the bosonic operators f̂†(r, ω) and f̂ (r, ω) rep-
resent the collective excitations of the electromagnetic
field and the medium with the commutation relation
[ f̂i(r, ω), f̂ †

j (r′, ω′)] = δi jδ(r − r′)δ(ω − ω′) [36,37].
Let us model theoretically the parametric coupling be-

tween the optical modes of the plasmonic structure and the
vibrational mode of the SGNR in the framework of molecu-
lar optomechanics [14]. This interaction Hamiltonian can be
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described by the dipole interaction

Ĥint = −P̂(rm) · Ê(rm). (2)

Here the induced Raman polarization P̂(rm) can be identi-
fied with the Raman polarizability tensor of the vibrational
mode of the SGNR, ¯̄αR, as P̂(rm) = − ¯̄αR · Ê(rm). The Raman
polarizability can be expressed in terms of the quantized dis-
placement operator of the nanoribbon via the relation ¯̄αR =
−√

h̄/2ωm(b̂ + b̂†) ¯̄R, wherein the second-rank Raman tensor
¯̄R depends on the molecular structure and the bond nature of

the SGNR [13].
Based on the canonical quantization scheme for the elec-

tromagnetic field in a dispersive and lossy medium [36–39],
the positive-frequency part of the electric-field operator Ê(+)

can be written as

Ê(+)(rm, ω) = i

(
ω2

c2

)∫
d3r

√
h̄ ¯̄εI (r, ω)

πε0

¯̄G(rm, r, ω) · f̂ (r, ω),

(3)

where ¯̄εI (r, ω) is the imaginary part of the permittivity tensor
of medium and ¯̄G(rm, r, ω) is the classical Green’s tensor
satisfying the Helmholtz equation together with appropriate
boundary conditions. The symmetry-related considerations in
the point group theory for the graphene nanoribbon [40,41]
along with the method of mode-selective quantization [26]
allow us to derive a final discrete form of the Hamiltonian
based on the new frequency-independent plasmonic operators
ân(rm) at the position of the nanoribbon as

Ĥsys =
N∑

n=1

h̄ωnâ†
n(rm)ân(rm) + h̄ωmb̂†b̂

− 2h̄(b̂ + b̂†)
N∑

n=1

gop,nâ†
n(rm)ân(rm), (4)

where ωn describes the nth resonance frequency of the
plasmonic cavity. Furthermore, the frequency-independent
coupling function gop,n = 2|gn(rm)|2, which is known as the
optomechanical coupling strength, can be obtained by em-
ploying the spectral functions through the relation |gn(rm)|2 =∫

dω|kn(rm, ω)|2. More details on how this optomechani-
cal coupling spectrum Kn = |kn(rm, ω)|2 is generated and
also the steps for obtaining this Hamiltonian are outlined in
Appendixes A and B, respectively.

Mass sensing in the pump-probe technique requires ex-
amining the probe response of the SGNR [42,43]. To this
purpose, the plasmonic subsystem is coherently driven by a
strong pump field and a much weaker probe field, as shown in
Fig. 1. Given this, we can obtain the total Hamiltonian of the
system only by adding driving terms to the Hamiltonian Ĥsys.
For more convenience, we recast the total Hamiltonian in a
reference frame rotating at the pump frequency, which yields

Ĥtot = h̄ωmb̂†b̂ +
∑N

n=1
{h̄�nâ†

n(rm)ân(rm)

− h̄gop,nâ†
n(rm)ân(rm)(b̂† + b̂)

− ih̄�pr[ân(rm)eiδt − â†
n(rm)e−iδt ]

− ih̄�pu[ân(rm) − â†
n(rm)]}, (5)

where �pu and �pr are coherent driving coupling parameters
related to the nth localized surface plasmonic (LSPn) mode
with �i = κn

√
ε0Veff/2hωnEi,m/2 (i = pu, pr) [44]. Here κn =


n/2 and Ei,m are the damping rate of the LSPn mode and the
maximum near field scattered by the structure, respectively.
The Ei,m can be written in terms of the plasmonic enhance-
ment factor and incident pump field [45]. The parameter �n =
ωn − ωpu is the detuning between the pump and the nth-mode
plasmonic frequency; the detuning between the probe and
pump field is defined as δ = ωpr − ωpu.

Using the Heisenberg-Langevin approach [15,46], which
includes dissipation and fluctuation mechanisms in the
system, we can determine the time evolution of the plasmonic
annihilation operator and the mean response of the mechanical
subsystem. Since the incident probe field is much weaker
than the pump field, we can employ the perturbation method
to investigate the response of the probe field. Appendix C
provides the derivation details of the output amplitude in
the frequency of the probe field based on the pump-probe
technique and input-output theory. These calculations help us
build the output amplitude an+,out = √

2κnan+ or equivalently
define the transmission of the probe beam as the ratio of the
output and input amplitudes, i.e., t (ωpr) = 1 − 2κnan+/�pr

[15]. We will show that the an+ contains all the information
about the optomechanical strength and plasmonic damping
rate of the nth plasmonic mode as well as the material and
geometrical features, as will be seen in Eq. (C4). Determining
the coupling strength in terms of the Green’s tensor and
using the procedure presented in the next section, we will
analyze the probe response associated with several plasmonic
subsystems.

III. PLASMONIC CAVITIES

To illustrate how geometrical and material features of the
plasmonic structure can modify the dynamics of the system
and consequently the mass-sensing precision, in the present
section we consider two cases and determine the explicit form
of the optomechanical strength for them. We then study probe
responses in each case.

A. Anisotropic spherical nanostructure optomechanically
coupled to the SGNR

In the first case we consider a uniaxial anisotropic sphere
illuminated by a plane wave. The form of the relative permit-
tivity tensor for this anisotropic sphere is given by

¯̄ε = [(εr − εt )r̂r̂ + εt
¯̄I], (6)

where ¯̄I is the unit dyad and εr and εt are the radial and
tangential components of the permittivity tensor, respectively
[47]. With the general form of the Green’s tensor in hand
and applying the symmetry consideration related to the radial
anisotropic sphere, the scattering part of the Green’s tensor for
the tangential direction is simplified as

¯̄G(11)
s,tt (rm, rm)= iω

8πc

∞∑
n=0

(2n + 1)

×
[

B11
N

(
ζ ′

n(k1rm)

k1rm

)2

+B11
M

[
h(1)

n (k1rm)
]2

]
, (7)
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where k1 = ω/c, h(1)
n (k1rm) is the first-type of spherical Han-

kel function in the position of the nanoribbon, ζn(k1rm) =
(k1rm)h(1)

n (k1rm) is the spherical Riccati-Hankel function of
the first kind, and the primed function refers to the derivative
with respect to its argument. For a uniaxial anisotropic sphere
with source and field points in the first layer, anisotropy effects
appear only in the Mie coefficients B(11)

l = −T (1)
l,12/T (1)

l,11, with

l = N, M. Here T (1)
l,12 and T (1)

l,11 are elements of the transmission
T matrix which are derived in Appendix D. If the radius of
the sphere is very small compared to the wavelength of the
incident field, we can restrict our attention to the QSA and
simplify the Mie coefficients in this limit [48–51].

As described in Appendix D, the relevant Mie coefficient
in our system is B(11)

N . It is shown that in the QSA, B(11)
N

will be proportional to the modified quasistatic polarizability.
This modified polarizability takes exactly the same form of
polarizability as an isotropic sphere if we define an effective
permittivity εani

eff as

εani
eff = υ

n
εr . (8)

Here υ = [n(n + 1)A + 1
4 ]1/2 − 1

2 , in which the anisotropy
ratio A is defined as A = εt/εr [47]. In what follows, we
assume that both radial and tangential components of the per-
mittivity tensor in Eq. (8) are given by the Drude-like model
εi = ε∞i − ω2

pi/ω(ω + i
pi ), with i = t, r. We also suppose
that the optical parameters of the two components obey the
relations ω2

pr/ε∞r = ω2
pt/ε∞t and 
pr = 
pt = 
p. According

to these assumptions, the effective permittivity εani
eff takes a

Drude-like form εani
eff = εani

∞ − (ωani
p )2/ω(ω + i
p), in which

the optical parameters are defined as follows:

ωani
p =

[(
n(n + 1)A∞

n2
+ 1

4n2

)1/2

− 1

2n

]1/2

ωpr, (9a)

εani
∞ =

[(
n(n + 1)A∞

n2
+ 1

4n2

)1/2

− 1

2n

]
ε∞r . (9b)

Here ωani
p and εani

∞ represent the effective bulk plasmon
frequency and the effective high-frequency limit of the dielec-
tric function, respectively. According to the assumptions we
made, the anisotropy ratio A in the expression εani

eff reduces
to the constant parameter A∞ = ε∞t/ε∞r . Therefore, we can
easily find the approximate imaginary part of the Green’s ten-
sor in the tangential direction near the resonance frequencies
of the plasmonic cavity (for more details refer to Appendix D).
Substituting this result into Eq. (A6), we get the approximate
expression for the near-field frequency-dependent optome-
chanical coupling spectra as

Kn ≈
√

h̄

2ωm

( R̄ωani
n

16πε0

)
n(n + 1)(2n + 1)R2n+1[

nεani∞ + (n + 1)
]
r2n+4

m

× 
ani
n /2π(

ωani
n − ω

)2 + (

ani

n /2
)2 . (10)

Here R, rm, and R̄ represent the radius of the anisotropic
sphere, the separation distance of the SGNR from the center
of the sphere, and the diagonal elements of the Raman tensor
Rii for i = x, respectively. The resonance frequency ωani

n and

the total width 
ani
n corresponding to the nth localized surface

plasmonic mode (LSPn) of the anisotropic sphere (effective
sphere) are given in Appendix D. The coupling spectra Kn in
Eq. (10) can be exploited to extract the modified optomechan-
ical coupling strength of the anisotropic sphere as

gani
op,n ≈

√
h̄

2ωm

(
R̄ωani

n

) n(n + 1)(2n + 1)R2n+1

8πε0
[
nεani∞ + (n + 1)

]
r2n+4

m

. (11)

By defining the mode volume of the plasmonic nanocavity
(anisotropic sphere) for the nth localized surface plasmonic
mode as

V ani
n = 8π

[
nεani

∞ + (n + 1)
]
r2n+4

m

n(n + 1)(2n + 1)R2n+1
, (12)

the following expression for the parameter gani
op,n, which was

introduced in Ref. [12], is recovered:

gani
op,n = R̄

√
h̄/2ωm

(
ωani

n

ε0V ani
n

)
. (13)

B. Isotropic spherical nanostructure optomechanically
coupled to the SGNR

To demonstrate the role of anisotropy in the dynamics of
the system and provide a quantitative comparison with its
isotropic counterpart, we explore results for the second case
of an isotropic spherical cavity, i.e., the limiting case εt = εr .
In this limit, the modified Mie coefficients that are derived
in Eqs. (D2a) and (D2b) reduce to the coefficients for the
isotropic sphere, as developed in Ref. [52]. Furthermore, the
permittivity function in Eq. (8) simplifies to the expression
with Drude parameters ωp and ε∞ for the isotropic sphere.
So we can identify the optomechanical strength and modal
volume for isotropic sphere by replacing the Drude-like pa-
rameters ωani

n and εani
∞ with their limiting parameters ωn and

ε∞ in Eqs. (11) and (12). In this way, the results in Eqs. (11)
and (12) for A∞ = 1 properly reduce to the corresponding
expressions for the isotropic sphere. In Sec. IV we depict and
compare the effects of these physical features on the sensing
process for several plasmonic structures.

IV. RESULTS AND DISCUSSION

A. Optomechanical coupling strength

In this section we numerically study the behavior of the
optomechanical coupling spectra and strengths for the inter-
action between each plasmonic nanostructure and the SGNR.
We compare the obtained results for different plasmonic struc-
tures. We then explore the effects of the material, geometrical,
and modal parameters on the system dynamics and conse-
quently the sensing process.

First of all, we list the physical parameters of the
subsystems. Consider a graphene armchair nanoribbon of di-
mensions l ≈ 22 nm and w ≈ 22 nm with the frequency of
the breathinglike mode ωm ≈ 470 GHz [53,54] and the total
mass m ≈ 3 × 10−22 kg [55,56]. The quality factor of the
Raman active mode drastically decreases at room tempera-
ture. This results in a damping rate of γ = 1.9 GHz. We set
the quantum yield of the nanoribbon η = 0.01 and assume
that the square of the Raman tensor element R̄ is of order
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FIG. 2. Optomechanical coupling spectra versus ω/ωp for cou-
pling of the SGNR to the first four LSPn modes of the anisotropic
nanosphere with A∞ = 0.01. The inset shows a close-up of the
spectra for the silver sphere nanocavity. Here we set rm = 14 nm
and R = 10 nm. The other material parameters are ωp = 0.19 pHz,
ωm = 470 GHz, and γ = 1.9 GHz.

103 (Å4 amu−1) [13]. For the isotropic nanocavity, we take
into account a silver nanosphere of radius R = 10 nm placed
at a distance of rm = 14 nm from the graphene nanoribbon
and characterize their dissipative and dispersive properties
by the Drude model with typical parameters: ωp = 1.9 pHz,

p = 0.012 pHz, and ε∞ = 6 [57–59]. For the anisotropic
nanocavity in which both radial and tangential components of
the permittivity tensor are described by the Drude-like model,
we also choose the above material parameters for the radial
component along with a variable anisotropy ratio. Using these
parameters and Eqs. (9a) and (9b), we can easily get the
effective material parameters εani

∞ and ωani
p .

We can now analyze the coupling of the SGNR to the
plasmonic nanocavity modes. The inset of Fig. 2 represents
the Lorentzian coupling spectra Kn for coupling of the first
four LSPn modes of the silver nanosphere to the SGNR as
a function of a dimensionless frequency ω/ωp. We observe
that the Lorentzian peaks associated with the spectral coupling
functions Kn start to overlap each other by increasing the order
of multipolar coupling n. Thus, it seems that the silver sphere
nanocavity is not a suitable structure for mass sensing since
spectral functions cannot be resolved properly and overlap
noticeably, especially for higher mode couplings.

Results for anisotropic spherical nanocavity are plotted in
Fig. 2, manifesting the role of anisotropy in the dynamics of
the system. As it is evident, spectral functions are slightly
redshifted and narrowed by decreasing the anisotropy ratio
from A∞ = 1 to 0.01. Furthermore, there is no significant
spectral interference compared to the isotropic nanosphere
case. Therefore, by manipulating the anisotropy ratio, the
Lorentzian curves are split from each other and the position of
peaks can be tuned. All of these features become practically
useful in the sensing process and will be addressed in more
detail later.

The optomechanical coupling strength corresponding to
the interaction between the SGNR and several multipolar

FIG. 3. Optomechanical coupling strength versus rmωp/c for the
interaction between the SGNR and the first four LSPn modes of
(a) the silver nanosphere and (b) the anisotropic nanosphere. The
values for the parameters are the same as those in Fig. 2. The insets
show close-ups of the panels within the range rm ≈ 0.084c/ωp–
0.19c/ωp. Scaled separation distances are approximately equivalent
to the interval distance rm = 11–22 nm.

modes of the isotropic and anisotropic nanospheres is illus-
trated as a function of the dimensionless distance rmωp/c in
Figs. 3(a) and 3(b), respectively. As expected, for two plas-
monic nanocavities the optomechanical coupling strength is
greater at smaller separation distances for all LSP modes. We
see clearly that the interaction between the plasmonic modes
of the anisotropic nanosphere and the SGNR results in larger
values for the coupling strength regardless of the magnitude
of n in Fig. 3(b). Comparing the behavior of the several
multipolar couplings in Figs. 3(a) and 3(b), we find that for
separation distances up to rm ≈ 19 nm, coupling of the SGNR
to the higher-order plasmonic modes plays an essential role in
the dynamics of the system. However, the dipolar coupling
(black solid curves) becomes dominant for large distances.

B. Mass sensing

Having explained the behavior of the coupling strength,
we now present numerical results for mass sensing through
the pump-probe technique [60–62]. Our purpose is to
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Isosphere Anisosphere

FIG. 4. Transmission rate versus δ/ωp for dipolar coupling of the
SGNR to (a) the silver nanocavity and (b) the anisotropic nanosphere
with A∞ = 0.002. The values for the other parameters are the same
as those in Fig. 2.

manipulate the geometrical and material features of the spher-
ical nanostructures to see how the probe spectrum is affected
at room temperature. Using Eqs. (C4) and (C5), we can obtain
the transmission spectrum of the probe field. In Fig. 4(a)
we illustrate the probe-field transmission spectra for the
optomechanical couplings of the isotropic and anisotropic
nanospheres to the SGNR in terms of the probe-cavity detun-
ing δ at fixed separation distance rm = 14 nm. Note that here
δ is specifically defined as δ = ω1 − ωpr, which corresponds
to the dipolar coupling.

We analyze the results for A∞ = 0.1 (black dashed curve),
A∞ = 0.01 (orange dotted curve), and A∞ = 0.002 (blue
dot-dashed curve). We see that the strength of the transmission
peak is enhanced by decreasing A∞ from 1 for the isotropic
silver nanosphere (green solid curve) to a smaller value for the
anisotropic nanosphere. This is related to the role of the mode
volume as well as the damping rate of plasmonic nanocavities.
Traditional CQED investigates the dynamics of the atom-field
interaction by exploring the influence of the cavity quality
factor, while in PCQED the key parameter is the mode vol-
ume [9,46]. Plasmonic nanocavities confine electromagnetic
energy beyond the classical diffraction limit, resulting in
small mode volumes. Since the coupling strength is inversely
proportional to the mode volume, the nanostructures with
smaller mode volume provide larger coupling strength and

consequently higher transmission peak. When the anisotropy
ratio decreases from the value A∞ = 1 to 0.01, the enhance-
ment of the optomechanical coupling strength occurs due
to mode volume reduction. This is verified by the plots in
Figs. 3(a) and 3(b), in which the optomechanical coupling
strength of the SGNR to the anisotropic nanocavity modes
with A∞ = 0.01 is stronger than the silver sphere modes
regardless of the order of interaction.

It is worth noting that further reduction of the anisotropy
ratio leads to smaller optomechanical coupling strengths com-
pared to the value of 0.01 (here the figure is not presented
for the sake of brevity). However, in contrast, the redshift
of the resonance frequencies leads to the enhancement of
the coupling functions between the plasmonic field and the
classical incident fields (�pu and �pr). These features provide
a higher transmission peak for the smaller anisotropy ratio, as
shown in Fig. 4(a).

For nanostructures with a small radius, the plasmonic
damping rate comprises two terms: the Joule term that ac-
counts for electron scattering losses and the radiative damping
term [49,50]. Having estimated the damping rates related
to the dipolar mode of the two plasmonic nanocavities, we
find that the total damping rate of the anisotropic nanosphere
becomes slightly smaller than the damping rate of the silver
sphere nanocavity due to the smaller contribution of the ra-
diative damping term.

In Fig. 4(b) we illustrate the influence of the separation
distance rm on the probe transmission spectrum for dipolar
coupling of the anisotropic nanosphere to the SGNR. Here the
results are depicted for a fixed anisotropy ratio A∞ = 0.002.
As expected, when the SGNR gets closer to the surface of
the anisotropic nanosphere, the intensity of the transmission
peak is enhanced slightly, which makes it easier to detect
for sensing purposes. For the SGNR placed 4 nm away from
the anisotropic nanosphere surface, the result is shown with
the green solid curve in Fig. 4(b). We observe that the peak
intensity for the anisotropic nanosphere at a farther distance
is greater than that for the isotropic nanosphere at a shorter
distance (yellow long-dashed curve). Notice that for distances
less than rm = 11 nm, nonlocal effects become increasingly
pronounced, which are beyond the scope of the present study.

So far, we have examined the effects of the anisotropy
ratio and separation distance on the transmission spectrum.
In Fig. 5(a) we compare the behavior of the spectrum peaks
for the coupling of the SGNR to the three first LSPn modes
of the anisotropic nanosphere. Here we set A∞ = 0.002 and
rm = 12.5 nm. Results indicate that close to the surface of the
spherical nanocavity, higher-order mode coupling exhibits a
higher peak intensity.

The sensing process with a weak incident pump field
provides a suitable platform for the exploration of living
organisms’ features. Therefore, in Fig. 5(b) we depict the
transmission peak strength for the probe field in terms
of the incident pump intensity of the order Ipu ≈ 10 kW/cm2.
The corresponding results for higher intensities are plotted in
the inset of Fig. 5(b).

The extremely small size of the SGNR makes physical
properties greatly sensitive to the perturbations originating
from the external force and mass adsorbed on it. Based
on the relationship between mass changes of the graphene
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kw/cm

kw/cm

FIG. 5. (a) Transmission rate versus δ/ωp for coupling the SGNR
to several multipolar modes of the anisotropic sphere with R =
10 nm and rm = 12.5 nm. (b) Transmission rate versus incident
pump intensity. The other parameters are ωp = 0.19 pHz, ωm =
470 GHz, and γ = 1.9 GHz.

nanoribbon and its frequency shift, one can perform a sens-
ing process through the relation �m = 2m�ω/ωm [53]. In
the pump-probe scheme, the frequency shift induced by the
molecular species loaded onto the nanoribbon surface is mon-
itored. A minimal measurable mass depends on the bandwidth
of the absorption spectrum. To understand the accuracy of
mass sensing in this system, we make a numerical estimation
in the following.

As it is evident from the black dotted curve in Fig. 5(a), the
octupolar coupling results in the highest peak for the trans-
mission spectrum at the separation distance rm = 12.5 nm
when the anisotropic nanosphere is illuminated with the in-
cident pump intensity Ipu ≈ 400 kW/cm2. Therefore, we can
estimate the full width at half maximum of the probe spec-
trum for the black dotted curve in Fig. 5(a), which is �ω ≈
0.18 GHz. The calculation indicates that the minimum resolu-
tion for mass sensing takes the value �m ≈ 1.2 × 10−24 kg.
For lower intensities of order Ipu ≈ 40 kW/cm2, the height
of the transmission peak decreases to the approximate value
0.01. However, the accuracy of mass sensing becomes almost
the same as before.

Notice that the analytical method introduced here can
be generalized to include a variety of plasmonic nanocav-

ities as the optical subsystem. For multilayered plasmonic
nanostructures, optical properties can be adjusted more accu-
rately due to the tunable geometrical and material parameters
of these structures. This feature makes plasmonic nanocavities
attractive for sensing applications since the optomechanical
coupling strength, as well as the plasmonic damping rate,
can be adjusted more effectively through manipulating optical
features of these multilayered nanostructures. The tunable
plasmonic damping rate and coupling strength affect the width
and height of the probe transmission spectrum, respectively.
Thus, an anisotropic spherical nanoshell (core) in combination
with the metallic core (nanoshell), which can provide mass
sensing with higher precision, is a promising subject for future
study.

In the end, the nanomechanical subsystem may be affected
by the thermomechanical and momentum exchange noises
[63], as well the Casimir force. The contribution of the first
two effects is negligible at room temperature (see Ref. [63]),
while an approximate estimation of the Casimir force to ex-
amine its effect on the sensing process is needed. Bimonte
derived a semianalytic formula Fc = −(π3h̄cR/360h3) for the
spherical plate Casimir force, in which R is the radius of the
spherical structure and h represents the separation distance be-
tween the plate and the surface of the metallic sphere [64]. For
parameter values R = 10 nm and h = 3 nm, the Casimir force
takes the value Fc = 9 × 10−27 N. In another study, Biehs
and Agarwal investigated the Casimir-Polder force between
a gold nanoparticle and a single sheet of pristine graphene
in detail [65]. They showed that although the graphene sheet
behaves like a perfect metal for distances larger than the
thermal wavelength, for small distances the Casimir-Polder
force is relatively small compared to the values of the ideal
metal case and depends on the Fermi level of the graphene
sheet. Bearing this in mind, it is clear that the weight of the
minimum measurable mass would still be comparable to the
Casimir force.

V. CONCLUSION

In this paper we have investigated the anisotropy effects of
the nanocavity on mass sensing in the molecular plasmonic
system. To do so, we have presented a formalism that al-
lows us to manipulate the transmission spectrum of the probe
field for mass sensing through the pump-probe technique. In
this manner, the molecular plasmonic system was mapped
onto the cavity optomechanical model [13,14] and then the
mode-selective quantization scheme presented in Ref. [26]
was extended to formulate a multimode Hamiltonian of the
optomechanical system.

It was shown that the geometrical, material, and modal con-
siderations, which are relevant to the plasmonic subsystem,
are contained in the Hamiltonian through the electromagnetic
Green’s tensor. We found the explicit form of the optome-
chanical coupling strength, the parametric interaction between
the plasmonic mode, and the Raman active mode of the
SGNR in terms of the symmetrical and geometrical proper-
ties of the graphene nanoribbon and plasmonic nanocavity.
Taking symmetry properties of the nanoribbon into account,
we determined the coupling spectral function and optome-
chanical strength for some spherical plasmonic structures by
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extracting their Green’s tensors. We showed that an
anisotropic nanocavity with a small anisotropy ratio is more
suitable for the sensing process. Furthermore, the manipula-
tion of anisotropy features of the plasmonic nanocavity made
it possible to reduce mode volume (enhance optomechanical
strength) and damping rate for optimal mass sensing. We
then illustrated transmission spectra for two cases of plas-
monic nanostructures. The results indicated an enhancement
in the transmission peak corresponding to the anisotropic
nanocavity and verified its superiority over the isotropic one
for sensing applications.

In a traditional optomechanical system, a high-Q mi-
crocavity at cryogenic temperature is needed to accurately
perform mass sensing. Recently, mass sensing with precision
of order 10−26 kg was performed in molecular plasmonic sys-
tems with low-Q plasmonic nanocavities (cylindrical dimer)
at room temperature [22]. Of course, we can attribute this
high efficiency to the small mode volume of the plasmonic
nanocavity as well as a controversial frequency considered for
the breathinglike mode of the graphene nanoribbon. Unlike
the previous work developed by Liu and Zhu, as a main
purpose of this paper, we have presented an analytical method
to explicitly calculate the mode volume and damping rate
of plasmonic modes for different plasmonic nanocavities. Of
course, improving the accuracy of the current mass-sensing
device and achieving the highest accuracy by engineering
the plasmonic multilayered nanostructures is worth further
consideration.

APPENDIX A: MODE-SELECTIVE
QUANTIZATION APPROACH

The Green’s tensor contains all modal information of
the plasmonic structure. Following the method developed
in Refs. [26,27], we consider a spherical geometry for
which the Green’s tensor can be decomposed as a sum
over the discrete modes (multipole expansion with spherical
symmetry)

¯̄G(rm, r, ω) =
∞∑

n=1

¯̄Gn(rm, r, ω), (A1)

where the index n represents the radial harmonic index and
¯̄Gn(rm, r, ω) contains contribution of the LSPn (dipolar plas-
mon for n = 1, quadrupole plasmon for n = 2, etc.). Similar
to the Green’s tensor, the electric-field operator associated
with the plasmonic structure can be written in terms of the
several multipole components

Ê(rm, ω) =
∞∑

n=1

Ên(rm, ω). (A2)

The component Ên(rm, ω) describes the electric-field operator
associated with the LSPn. Point group theory tells us that
the fundamental vibration of the nanoribbon with the breath-
inglike displacement of the phonon mode has Ag symmetry
(diagonal Raman tensor) just for special scattering patterns
of a doubly clamped nanoribbon [30,40]. If this condition is
met, the spectral decomposition of the electric-field operator
in the frequency domain leads to the simplified form of the

interaction Hamiltonian in Eq. (2) as

Ĥint = −
√

h̄

2ωm
(b̂ + b̂†)

∫∫
dω dω′Rii

×{Ê (−)
i (rm, ω)Ê (+)

i (rm, ω′)

+ Ê (+)
i (rm, ω)Ê (−)

i (rm, ω′)}, (A3)

where Rii are diagonal elements of the SGNR Raman ten-
sor with i = x, y, z (here Einstein’s sum convention is used).
In the above Hamiltonian, we have neglected two terms in
Eq. (A3) since they do not satisfy the energy conservation. Up
to now, we have considered the localized plasmon polaritons
in a continuous band description. However, the dynamics of
the composite system is based on the excitation of the LSP
modes of the spherical nanostructure by an external pump
laser and optomechanical coupling to the vibrational mode of
the mechanical subsystem. Therefore, based on the scheme
of the mode-selective quantization developed in Refs. [26,27]
along with the Gram-Schmidt orthogonalization procedure,
we suppose that N discrete modes participate in the cou-
pling process. In this manner, we introduce the mode-selective
bosonic annihilation operator as

ân(rm, ω) =
√
Rii/(2ωmh̄)1/2αn(ω)êiÊ

(+)
n,i (rm, ω), (A4)

where êi (i = 1, 2, 3) are the Cartesian unit vectors. The
operator ân(rm, ω) is associated with the LSPn mode at
the position of the nanoribbon and can be excited by the
external laser at a given position of the mechanical res-
onator. It is worth noting that the introduced mode-selective
bosonic operators satisfy the usual bosonic commutation rela-
tion [ân(rm, ω), â†

m(rm, ω′)] = δ(ω − ω′)δnm, provided αn(ω)
is given by the relation |αn(ω)|2 = 1/|kn(r, ω)|2 with

|kn(r, ω)|2 = (
Riik

2
1/πε0

)
×

√
h̄/2ωmêi · [Im ¯̄Gn,s(rm, r, ω)] · êi. (A5)

Employing the quantization method, the interaction part of
the Hamiltonian can be obtained in terms of the frequency-
dependent bosonic operator ân(rm, ω) and the spectral
coupling functions kn,m(rm, ω). To completely perform the
mode-selective quantization scheme and obtain the final ef-
fective Hamiltonian, we need to determine the explicit form
of the spectral function. Considerations related to the symmet-
rical and vibrational properties of the phonon modes, as well
the electromagnetic Green’s tensor, help us identify the form
of kn(rm, ω). For an armchair graphene ribbon in the xy plane
with periodicity along the y direction, the Ag mode is Raman
active for geometry (zXXz). Here zz(XX ) represent the prop-
agation (polarizations) directions of the incident and scattered
light, respectively [30,40,41]. Based on the properties of the
Ag symmetrized Raman tensor, we only need diagonal com-
ponents of the scattering Green’s tensor ¯̄G(11)

s,ii (rm, rm) with
i = x. By applying symmetry arguments, the optomechanical
coupling spectra Kn = |kn(rm, ω)|2 is obtained as

Kn =
(Riik2

1

πε1

)√
h̄/2ωmIm[ ¯̄Gn,s(rm, rm, ω)]ii. (A6)
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Finding the general form of spectral function, we can go one
step further and introduce new frequency-independent plas-
monic operators ân(rm) at the position of the nanoribbon

ân(rm) = βn

∫
dω kn(rm, ω)â(rm, ω). (A7)

The coefficient βm is determined through the relation
|βm|2 = 1/

∫
dω|kn(rm, ω)|2 so that these newly defined plas-

monic operators satisfy the bosonic commutation relation
as [ân(rm), â†

m(rm)] = δnm. The effective Hamiltonian is ob-
tained by integrating over the angular frequency to establish a
set of N discrete modes.

APPENDIX B: DERIVATION OF THE FREE FIELD
HAMILTONIAN FOR THE PLASMONIC SUBSYSTEM

In the following we indicate the main steps toward deriving
the quantum Langevin equation and free field Hamiltonian of
the plasmonic subsystem. Based on the methods developed in
Refs. [26,27], we can decompose the plasmonic part of the
free field Hamiltonian into the predefined bright mode and a
set of continuous noninteracting orthogonal dark modes

d̂(r, ω) = f̂ (r, ω) −
N∑

n=1

[f̂ (r, ω), â†
n(rm, ω)]ân(rm, ω).

(B1)

Since dark modes have independent dynamics and will not
affect the dynamics of the bright modes, after some algebraic
calculations, we arrive at the relation∫

d3r f̂†(r, ω) · f̂ (r, ω) =
N∑

n=1

â†
n(rm, ω)ân(rm, ω)

+
∫

d3r d̂†(r, ω) · d̂(r, ω). (B2)

The term related to the free Hamiltonian of dark modes can be
omitted since it plays no role in the dynamics of the system.
To determine the plasmonic part of the Hamiltonian based
on the frequency-independent bosonic operator, we first start
with the quantum Langevin equation for the new plasmonic
operator dân′ (rm)/dt = [ân′ (rm), Ĥ0]/ih̄ in which the Hamil-
tonian Ĥ0 is defined as

Ĥ0 =
∫

dω h̄ω

N∑
n=1

â†
n(rm, ω)ân(rm, ω). (B3)

Here we have used the definition of the bosonic annihilation
operator ân(rm, ω) in the position of the SGNR to rewrite the
Langevin equation as

˙̂an′ (rm) = −
∫

dω ω kn′ (rm, ω)ân′ (rm, ω)/gn′ (rm). (B4)

Equation (B4) is not yet a closed equation for ân′ (rm), since
there is an additional integral kernel apart from the definition
of the operators ân′ (rm). To get a closed form, we subtract and
add the term (−ωn + i
n/2) to the integral kernel and then
use the relation

kn(rm, ω) =
√


n

2π

ign(rm)

(ω − ωn) + i
n/2
. (B5)

We arrive at the following quantum Langevin equation that
includes the quantum noise and dissipation terms:

˙̂an′ (rm) = −iωnân′ (rm) −
(


n

2

)
ân′ (rm) + F̂n′ (rm). (B6)

Here the quantum noise is defined as F̂n′ (rm) =
−i

∫
dω

√

n/2π ân′ (rm, ω). Equation (B6) now can be

considered as the quantum Langevin equation for the
new plasmonic operator with respect to the Hamiltonian
Ĥp = ∑N

n=1 h̄ωnâ†
n(rm)ân(rm). In the end, incorporating

the nanoribbon Hamiltonian and its interaction term in the
equation of motion, we get

˙̂an′ (rm) = [ân′ (rm), Ĥsys]

ih̄
−

(

n

2

)
ân′ (rm) + F̂n′ (rm). (B7)

APPENDIX C: LINEARIZATION OF THE QUANTUM
LANGEVIN EQUATIONS IN THE PUMP-PROBE

TECHNIQUE

Heisenberg equations of motion for the plasmonic anni-
hilation operator and the mean response of the mechanical
subsystem n̂ = b̂ + b̂† are given by

˙̂an(rm) = −(i�n + κn)ân(rm) + igop,nân(rm)n̂

+�pu + �pr exp(−iδt ) + F̂n(rm), (C1a)

¨̂n + γ ˙̂n = −ω2
mn̂ + 2ωmgop,nâ†

n(rm)ân(rm) + ξ̂ (t ). (C1b)

Equation (C1a) represents the dynamics of the nth plasmonic
mode. The correlations associated with the quantum vac-
uum fluctuations of the plasmonic cavity modes are fully
characterized by the δ-correlation functions as developed in
Refs. [15,46]. In Eq. (C1b), γ and ξ̂ (t ) represent the damping
rate and Brownian noise of the SGNR, respectively. Here
the SGNR is affected by a Brownian stochastic force with
zero mean value and the correlation function that is given
in Ref. [15]. Since the incident probe field is much weaker
than the pump field, we employ the perturbation method
to investigate the optical properties of the system [22]. In
the pump-probe technique, the Heisenberg operators can be
decomposed as the sum of a steady-state mean value and
a small fluctuation with zero mean value, i.e., ân(t ) = ān +
δân(t ) and n̂(t ) = n̄ + δn̂(t ), with the steady-state mean val-
ues ān = ân0 and n̄ = n0. To obtain the steady-state solutions
of the operators, we set the time derivatives of operators
in Eqs. (C1a) and (C1b) equal to zero, which yields an0 =
�pu/[i(�n − gop,nn0) + κn], where n0 = 2gop,nω0/ωm with
ω0 = |an0|2.

Inserting these definitions in Eqs. (C1a) and (C1b) and
neglecting the terms δân(t )δn̂(t ), quantum Langevin equa-
tions governing the time evolution of the fluctuation operators
can be derived as

δ ˙̂an(rm) = −(i�n + κn)δân(rm) + ic0gop,nδn̂

+ in0gop,nδân(rm) + �pre
−iδt + F̂n(rm), (C2a)

δ ¨̂n = −γ δ ˙̂n − ω2
mδn̂ + 2c0ωmgop,nδâ†

n(rm)

+ 2c∗
0ωmgop,nδân(rm) + ξ (t ). (C2b)

062609-9



ALEEBRAHIM, HAROUNI, AND AMOOGHORBAN PHYSICAL REVIEW A 105, 062609 (2022)

We identify all fluctuation operators with their expectation
values and eliminate the noise terms. To solve these sets of
equations, we use the following ansatz in the rotating frame:

〈δân(rm)〉 = an+ exp(−iδt ) + an− exp(iδt ), (C3a)

〈δn̂〉 = n+ exp(−iδt ) + n− exp(iδt ). (C3b)

Now we substitute these equations into Eqs. (C2a) and (C2b),
then equate the terms with the same time dependence, and
finally find the solution for an+:

an+ = �pr[w(xn − yn) + zn]

w
(
x2

n − y2
n

) + 2ynzn
. (C4)

Equation (C4) is given in the lowest order in �pu but to all or-
ders of �pr. Here the parameter w and functions zn, yn, and xn

are defined as w = −(δ2 + iγ δ + ω2
m), zn = 2i(ωmω0)g2

op,n,
yn = i�n − in0gop,n, and xn = κn − iδ, respectively. To inves-
tigate the optical response of the system via the output field,
we employ the input-output relation ân,out(t ) + ân,in(t ) =√

2κnân(t ) [15]. Given that the mean value of the input op-
erator ân,in(t ) is equal to zero, we obtain

〈ân,out(t )〉 = an0,out + an+,oute
−iδt + an−,oute

iδt

=
√

2κn(an0 + an+e−iδt + an−eiδt ). (C5)

APPENDIX D: MIE COEFFICIENTS OF THE GREEN’S
TENSOR FOR AN ANISOTROPIC SPHERE

The electromagnetic Green’s tensor for a radial anisotropic
sphere has been extracted previously in Ref. [47]. When the
field and the source points are located in the first layer, the
electromagnetic Green’s tensor can be separated into two parts
of the vacuum and the scattering. The former describes the
contribution of the direct waves from the source in the free
space. The latter represents the contribution of the multiple
transmission and reflection waves that occur due to inter-
faces. The role of the anisotropy of the plasmonic structure
is included in the Green’s tensor through a noninteger order
υ = [n(n + 1)A + 1

4 ]1/2 − 1
2 and an anisotropy ratio A =

εt/εr . By imposing the boundary conditions and employing
the recursive algorithm method, all the unknown scattering
Mie coefficients can be determined. For the spherical structure
under study, the Mie coefficients can be obtained in terms of
the transmission T -matrix elements as

B(11)
l = −T (1)

l,12

T (1)
l,11

, (D1)

with l = N, M. For l = N , the elements of the transformation
matrix are given by [47]

T (1)
N,11 = ψυ (kt R)ζ ′

n(k1R)/ηt − ζn(k1R)ψ ′
υ (kt R)/η1

ψυ (kt R)ζ ′
υ (kt R)/ηt − ζυ (kt R)ψ ′

υ (kt R)/ηt
,

(D2a)

T (1)
N,12 = ψυ (kt R)ψ ′

n(k1R)/ηt − ψn(k1R)ψ ′
υ (kt R)/η1

ψυ (kt R)ζ ′
υ (kt R)/ηt − ζυ (kt R)ψ ′

υ (kt R)/ηt
,

(D2b)

where k2
t = ω2εtμt/c2, ηt = √

μt/εt , and ψυ (z) and ζυ (z)
represent the spherical Riccati-Bessel and Riccati-Hankel
functions, respectively,

ψυ (z) = z jυ (z), (D3a)

ζυ (z) = zh(1)
υ (z). (D3b)

These functions and their derivatives in the QSA are defined
as

ψυ (z) ∼ zυ+1

2υ+1

(
υ + 3

2

) , (D4a)

ζυ (z) ∼ (−i)2υ (−1)υ+1√π

zυ

( − υ + 1

2

) , (D4b)

ψ ′
υ (z) ∼

√
π (υ + 1)zυ

2υ+1

(
υ + 3

2

) , (D4c)

ζ ′
υ (z) ∼ (−i)2υ (−1)υ+1√π (−υ )

zυ

( − υ + 1

2

) . (D4d)

Now, by substituting Eqs. (D4a)–(D4d) into Eqs. (D2a) and
(D2b), the Mie coefficient B(11)

N is given by

B(11)
N = i(k1R)2n+1[(n + 1)εt − (υ + 1)]

(2n − 1)!!(2n + 1)!![nεt + (υ + 1)]
. (D5)

In the first layer, i.e., the free space, the noninteger order υ

reduces to the integer value n. Moreover, the imaginary part
of the Mie coefficient B(11)

M vanishes, so it has no contribution
to the optomechanical coupling spectra in the QSA. By defin-
ing the effective permittivity as

εani
eff = εr

[(
n(n + 1)εt

εrn2
+ 1

4n2

)1/2

− 1

2n

]
, (D6)

the polarizability of the anisotropic sphere takes exactly the
same form as the polarizability of an effective sphere

αani = n
(
εani

eff − 1
)
R2n+1

nεani
eff + (n + 1)

, (D7)

with effective Drude-like parameters that were introduced in
Sec. III. Now we can identify the imaginary part of the tan-
gential Green’s tensor and the spectral function.

The resonance frequency ωani
n , which corresponds to the

LSPn mode of the effective sphere in Eq. (10), can be ex-
pressed as

ωani
n = ωani

p,eff

√
n/

[
nεani

∞,eff + (n + 1)
]

(D8)

and the total width is 
ani
n = 
ani

p + 
ani
nrad. The first term in


ani
n indicates the Ohmic loss and the second term represents

radiation damping rate 
ani
nrad, which is given by


ani
nrad = ωani

n (2n + 1)(n + 1)(knR)2n+1

n
[
nεani

∞,eff + (n + 1)
]
(2n − 1)!!(2n + 1)!!

. (D9)

This term is added to the Ohmic loss to take into account the
variation of the electric field over the particle size [49,50]. It
is obvious that for εt = εr , the spherical Bessel and Hankel
functions of the order ν and Drude-like parameters reduce to
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the spherical Bessel and Hankel functions of the order n and
the corresponding Drude parameters for the isotropic sphere,

respectively. In this limit, the obtained Mie coefficients would
be the same as those for the isotropic sphere [52].
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