
PHYSICAL REVIEW A 105, 062607 (2022)

Partial-ignorance communication tasks in quantum theory

Oskari Kerppo *

Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland

(Received 25 February 2022; accepted 7 June 2022; published 28 June 2022)

We introduce a generalization of the communication of partial ignorance where both parties of a prepare-and-
measure setup receive inputs from a third party before a success metric is maximized over the measurements
and preparations. We call these communication scenarios partial ignorance communication tasks of type Tn,m,
where n indicates the number of possible correct answers in the communication task and m loosely represents the
information about the correct answer that is revealed to the party preparing states. Various methods are used to
obtain bounds on the success metrics, including semidefinite programs, ultraweak monotones for communication
matrices, and frame theory for quantum states. The simplest scenarios in this alternative generalized prepare-and-
measure setting, partial-ignorance communication tasks of types T3,1, T4,1, and T4,2, are analyzed exhaustively
for bits and qudits. Finally, this generalized setting allows the introduction of operational equivalences to the
preparations and measurements, allowing us to analyze and observe a contextual advantage for quantum theory
in the partial ignorance communication task of type T4,1.
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I. INTRODUCTION

In the usual communication setting one party is interested
in sending an encoded message to another party. The receiving
party will try to decode the message so that information can
be transmitted between the parties. In quantum mechanics
these parties are typically called Alice and Bob. The limiting
factor of this communication is usually the communication
medium, which could be a classical bit or the quantum analog,
a qubit, for instance. If Bob successfully decodes the message
sent by Alice, the communication between them is deemed
successful.

Perhaps the most basic scenario is the following: Alice has
a preparation device that can prepare n distinct states of the
communication medium. Hence each of the states encodes a
unique message. Bob, on the other hand, has a measurement
device with n distinct outcomes. If each outcome of Bob’s
device identifies with certainty the state prepared by Alice,
the states are called distinguishable. The Basic Decoding The-
orem [1] states that, in the quantum case, whenever there are
more possible messages than distinguishable states the error
in this kind of communication is at least 1 − d

n , where d is the
respective Hilbert space dimension of the quantum state and n
is the number of states in Alice’s preparation device.

In a recent work [2], a variation of the basic communication
scenario was studied. In this variant there is a third party,
Charlie, who acts as a game master to the following commu-
nication game. Charlie has n empty boxes and he hides a prize
inside one of them. He reveals at least one empty box to Alice
who must then communicate this information to Bob. Alice
and Bob win the game if Bob chooses the box with the prize in
it. The communication between Alice and Bob is successful if
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Bob has the same chance of finding the prize as Alice would.
Hence Alice’s encoded message should contain information
on which choices Bob should avoid, as even Alice does not
know where the prize is. This communication of choices to
be avoided was called communication of partial ignorance
by the authors. The qubit case was perfectly characterized
and some general results concerning qudits were presented in
[2]. The main takeaway was that, perhaps remarkably, per-
fect communication of partial ignorance requires an entirely
different setup than the basic communication scenario, where
Bob tries to identify the state sent by Alice directly. However,
the work in [2] was limited to studying the case where Bob’s
measurement is fixed. Indeed, a much richer set of commu-
nication scenarios is possible when Bob is free to choose his
measurement, but this was left out of the scope of the previous
work.

In the present article, we continue the work done in [2]
by modifying the communication game in a major way. In
this new game it’s not only Alice who is revealed information
about the location of the prize, but also Bob. Charlie could, for
instance, reveal one empty box to Alice and one empty box to
Bob. This seemingly simple modification has dramatic effects
on the strategies that Alice and Bob must employ. Moreover,
the difficulty of finding viable communication strategies and
proving their optimality is significantly increased. Typically
Bob will have multiple choices for his measurement based on
the information that is revealed to him. Thus it will become
possible to analyze the effects of contextuality as a resource
to this game. In general, entirely different mathematical tools
are required to analyze this alternative scenario compared to
the communication of partial ignorance.

We call our setup of modified communication of partial
ignorance simply partial-ignorance communications tasks. To
explicitly state how many boxes Charlie has and how many of
the boxes are shown to be empty to Alice we use the notation
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Tn,m for the game where there are n boxes, m of which are
shown to be empty to Alice.

The rest of the article is structured as follows. In Sec. II
the alternative communication game is presented in more
detail, mostly focusing on the game T3,1. We then go on
to present the required mathematical methods in Sec. III. A
brief overview to semidefinite programming, contextuality,
and frame theory is given. Using the introduced mathematical
methods we analyze the communication games T4,1 and T4,2

in Sec. IV. Numerical and analytical bounds on successful
communication will be presented in the classical, contextual,
and general quantum cases. Finally, in Sec. V, we end the
article with some final thoughts and discussion on possible
future directions.

II. PARTIAL IGNORANCE COMMUNICATION TASKS

Let’s consider a general communication setting first. Sup-
pose Charlie has an n-bit string, s. The objective of the
communication task is that Bob must guess the value of at
least one bit in s. Alice will receive a bit string, or input, of
her own, a. The bit string a can be of any fixed but finite
length, and in general it will contain some information on the
bit string s. Alice then sends an encoded message, r(a), to
Bob. In the classical case the message will be a bit string of
fixed length. A qudit �a of fixed dimension d will be sent in
the quantum case. Upon receiving the message r(a) sent by
Alice, Bob will also receive a bit string b of fixed length from
Charlie. Once communication is done Bob must produce a
guess on the values of at least some bits in s.

An example of the above communication setting would be
a random access code (RAC) [3–5]. In a RAC Alice’s input
a will coincide with Charlie’s bit string s. Typically, Alice is
only allowed to send one bit or a qubit to Bob. The input b
given to Bob will contain the index of the bit whose value Bob
must guess. If we denote by g[b, r(a)] the guess Bob produces
based on his input b and the message r(a), Alice and Bob win
the game if g[b, r(a)] = sb, where sb denotes the value of the
bit string s at index b.

Communication of partial ignorance, with the notation we
are using, would be presented in the following way. Charlie
has an n-bit string s containing exactly one 1, the index of
which will indicate the location of the prize. Alice’s input a
will reveal the index of at least one of the 0’s. Bob does not
receive any input except for the message sent by Alice. Alice
and Bob win if Bob’s guess of g[r(a)] equals the index of the
1 in s.

It is very important to note that, in communication of
partial ignorance, the game master Charlie is not obliged to
sample the bit-string s according to any fixed distribution.
In fact, he is allowed to freely choose it even after Alice
has already received her input. However, he must not give
conflicting information to Alice. Thus perfect communication
of partial ignorance requires Alice and Bob to minimize the
worst-case error probability with respect to all possible inputs.
The strategy that Alice and Bob must implement leads to the
concept of communication matrices, which were extensively
studied in [6] along with their operational hierarchy.

We can now define the generalization of communication of
partial ignorance we are interested in.

FIG. 1. An exemplary setting of a partial ignorance communica-
tion task of type T4,1. The 1 in a reveals the first 0 in s. The two 1’s
in b reveal the last two 0’s in s. Bob should guess the correct index
of the 1 in s.

Definition 1. A partial-ignorance communication task of
type Tn,m is a communication game where a game master
Charlie chooses an n-bit string s with exactly one 1. Charlie
then sends an input a revealing the indices of m 0’s in s to
Alice. Bob will be revealed the remaining indices of 0’s in
input b. Both inputs a and b are bit strings of the same length
as s, and a value of 1 in both inputs will reveal a 0 in s at the
corresponding index. Alice and Bob are allowed to communi-
cate according to predefined rules. After communication Bob
must produce a guess on the index of the 1 in s. Alice and Bob
win if Bob’s guess is correct.

An illustration of the partial ignorance communication task
of type T4,1 is given in Fig. 1.

The limiting factor in partial ignorance communication
tasks is the communication medium. In the classical version
Alice is allowed to send a classical message r(a) containing
a predefined number of bits to Bob. In the cases studied in
this article the number of bits will be just 1. In the quantum
version a qudit �a of fixed dimension can be sent.

It should be noted that any type of partial ignorance com-
munication task will be a game of complete information in
the sense that Alice and Bob’s inputs together will reveal the
index of the 1. We could also study the case where this is not
the case, but for now we will only study the informationally
complete version. For the remainder of this article, whenever
we are talking about a task Tn,m, we will always be referring
to the partial ignorance communication task of type Tn,m as
defined in Definition 1.

Let’s consider the simplest task T3,1 as an example before
moving on to the mathematical methods.

Classical and quantum strategies for T3,1

Let’s begin by introducing the best possible classical strat-
egy for the task T3,1.

Example 1. (Classical strategy for T3,1). There are three
different choices for the string s, namely 100, 010, and 001.
These strings also coincide with the possible inputs a and b for
Alice and Bob. Table I presents a general form of the strategy
that Alice and Bob will implement. A specific strategy is
obtained by replacing the variables i, j and k in Table I by
values 0 or 1, and by listing the values of the guesses g[b, r(a)]
in the middle table.

By looking at the rows of Table I where the input b is
identical, it becomes apparent that to never make a mistake the
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TABLE I. General classical strategy for the task T3,1.

a r(a) b g(b, 0) g(b, 1) s a b r(a) g[b, r(a)]

100 i 100 l x 100 010 001 j g(001, j)
010 j 010 m y 100 001 010 k g(010, k)
001 k 001 n z 010 100 001 i g(001, i)

010 001 100 k g(100, k)
001 100 010 i g(010, i)
001 010 100 j g(100, j)

variables i, j and k should fulfill the following restrictions:

j �= i, k �= i, k �= j.

Otherwise Bob is forced to produce the same guess with
different strings s because his inputs are identical. However,
the variables i, j, and k can only take on the binary values
of 0 or 1, and hence at least one of the restrictions must be
violated. This means that any classical strategy, formed by
giving concrete values to Table I, must contain at least one
mistake. The average classical success probability in task T3,1

is therefore at most 5/6. Table II shows an example of an
optimal classical strategy that saturates the upper bound for
success probability. Therefore, the classical average success
probability for T3,1 is exactly 5/6.

Note that the worst-case success probability for all classical
strategies for the task T3,1 is always zero. Interestingly, the
strategy listed in Table II has an unused capacity for com-
munication because the guess g(001, 0) never occurs. Perfect
communication is nevertheless not possible.

Before moving on to the next section, let us introduce the
optimal quantum strategy for T3,1. The states and measure-
ments used in the following example are illustrated in Fig. 2.

Example 2. (Quantum strategy for T3,1). No matter which
string s Charlie chooses, Bob’s measurement will try to dis-
tinguish between a pair of states. For instance, upon receiving
input 001 from Charlie, Bob’s measurement should try to
distinguish Alice’s states �1 and �2 because Bob knows Alice
is going to prepare one of those states. Following this logic,
Alice’s preparation device should contain states that can be
pairwise distinguished as well as possible. With qubits these
states can be chosen from a Bloch sphere plane with equal
angles between the state vectors.

We can choose Alice’s first state to correspond to the Bloch
vector [0 0 1]. The other two states are obtained by 120

TABLE II. An optimal classical strategy for the task T3,1. The
erroneous value g(001, 1) = 1 is shown in bold. The guess g(001, 0)
is not listed in the middle table because it is not needed in this
implementation of the strategy.

a r(a) b g(b, 0) g(b, 1) s a b r(a) g[b, r(a)]

100 1 100 2 3 100 010 001 1 1
010 1 010 1 3 100 001 010 0 1
001 0 001 − 1 010 100 001 1 1

010 001 100 0 2
001 100 010 1 3
001 010 100 1 3

(a) (b)

(c)

FIG. 2. Alice’s states and Bob’s measurements for the task T3,1,
presented in the xz plane of the Bloch sphere for different values of
input b. The value of input b equals (a) 100, (b) 010, and (c) 001.

degree clockwise rotations in the xz plane. As density matrices
these states can be written as

�1 =
(

1 0
0 0

)
, �2 = 1

4

(
1

√
3√

3 3

)
,

�3 = 1

4

(
1 −√

3
−√

3 3

)
. (1)

Bob’s measurements that best distinguish Alice’s states in a
pairwise manner, written in terms of positive operator-valued
measures (POVMs), are the following:

M1(1) = 1

2

(
1 −1

−1 1

)
,

M1(2) = 1

2

(
1 1
1 1

)
,

M2(1) = 1

2

(
1 −

√
3

2 − 1
2

− 1
2 1 +

√
3

2

)
,

M2(2) = 1

2

(
1 +

√
3

2
1
2

1
2 1 −

√
3

2

)
,

M3(1) = 1

2

(
1 −

√
3

2
1
2

1
2 1 +

√
3

2

)
,

M3(2) = 1

2

(
1 +

√
3

2 − 1
2

− 1
2 1 −

√
3

2

)
. (2)

Each POVM is obtained by a rotation of ±90 degrees in
the xz plane from the corresponding state vector, e.g., the
effects of POVM M2 are obtained by rotating the Bloch
vector of �2. For the success probabilities we can calculate
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that, for instance, tr[�3M1(1)] = 1
2 (1 +

√
3

2 ) ≈ 0.933013 and

tr[�3M1(2)] = 1
2 (1 −

√
3

2 ) ≈ 0.0669873. Because the states
and POVMs were chosen in a symmetrical manner we can
conclude that the average success probability is equal to
1
2 (1 +

√
3

2 ) ≈ 0.933013 while the worst-case error probability

is equal to 1
2 (1 −

√
3

2 ) ≈ 0.0669873.
As we can see, there is a drastic difference in average and

worst-case success probabilities between the bit and the qubit
in the task T3,1. This case was, however, quite easy to analyze.
To analyze any task Tn,m with n > 3 we are going to need some
mathematical tools.

III. MATHEMATICAL METHODS

In this section we will introduce three tools that can be used
to analyze the communication tasks presented in the previous
section. Semidefinite programming is a powerful numerical
tool that can be used to obtain numerical bounds on success
probabilities in various communication and computation tasks
involving quantum resources. Contextuality is one such re-
source and we will use it to provide an alternative comparison
between classical and quantum strategies. While semidefinite
programs (SDPs) provide valuable insight to many problems,
it turns out we can also explain some bounds obtained by
SDPs analytically with the help of frame theory. To this end
we will use Grassmannian frames.

A. Semidefinite programming

There are many excellent sources on the theory of SDPs
[7–15]. We will be using the unitary SDP hierarchy introduced
in [16] largely due to the fact that it gives very good results
already on the first level of the hierarchy, i.e., we only have to
consider moment matrices with monomials of length 1.

Consider the following optimization problem:

max
∑
i, j,k

pi jk tr[�iM j (k)],

s.t. �i � 0 ∀i,

tr[�i] = 1 ∀i,∑
i

(
αr

i − βr
i

)
�i = 0 ∀r ∈ OP,

0 � M j (k) � 1 ∀ j, k∑
k

M j (k) = 1∀ j

∑
i, j

(
αs

i, j − βs
i, j

)
Mi( j) = 0 ∀s ∈ OM, (3)

where the weights pi jk define a success metric on the behavior
p(k|�i, M j ) ≡ tr[�iM j (k)] and OP (indexed by r) contains
restrictions of the form

∑
i α

r
i �i = ∑

j β
r
j � j on the prepa-

rations for some convex weights αr
i and βr

i . Similarly OM
(indexed by s) contains restrictions on the effects for some
convex weights αs

i, j and βs
i, j . All optimal quantum strategies

for communication tasks Tn,m can be obtained by solving an
optimization problem of the form (3). Notice that the sets OP

and OM may be empty. Unfortunately, this problem is not an

SDP. We can, however, use the following algorithm to give
the success metric

∑
i, j,k pi jk tr[�iM j (k)] a dimension based

lower bound.
Definition 2. See-saw algorithm.
(1) Fix a dimension d for the Hilbert space of the quantum

states and POVMs.
(2) Generate random rank-1 states and fix the states �i as

constants.
(3) Optimize Eq. (3) as an SDP over POVM elements

M j (k). Calculate x1 = ∑
i, j,k pi jk tr[�iM j (k)].

(4) Fix POVM elements M j (k) as constants with values
obtained in the previous step. Optimize Eq. (3) as an SDP over
the states �i. Calculate x2 = ∑

i, j,k pi jk tr[�iM j (k)].
(5) Repeat steps 3 and 4 until a predefined threshold value

x2 − x1 < ε is achieved. The value x2 is now a dimension-
based lower bound on the success metric of Eq. (3).

To the best of our knowledge the see-saw algorithm lacks
any kind of serious theory behind it. Therefore, there are
no performance guarantees. The see-saw algorithm offers a
dimension-based lower bound, or the inner bound from here
on, and an explicit construction for the states and POVMs
that achieve this bound. Some mentions of this method can be
found in the literature [17–21]. In practice the see-saw algo-
rithm gives very good results. As we will see later, the see-saw
algorithm is able to give optimal implementations within nu-
merical accuracy to all scenarios studied in the present article.
However, one still has to prove that the implementations given
by the see-saw algorithm are truly optimal.

To obtain a result of optimality we need to produce an
upper bound on the success metric of Eq. (3), or an outer
bound. This can be done in the following way.

Suppose we have a quantum behavior p(k|�i, M j ) =
tr[�iM j (k)]. As was proven in [16], we can always find unitary
matrices such that

M j (k) = 1

2
1 + U j

k + U j†
k

4
. (4)

The moment matrices (�O
i ) j,k = (�O

i )O j ,Ok ≡ tr[�iO†
jOk]

(with monomials of 1 and the unitary operators U j
k and U j†

k )
have the following properties:

∀i : �O
i � 0,

∀i, r ∈ OP :
∑

j

(
αr

j − βr
j

)
�O

i = 0,

∀i, j, k :
(
�O

i

)
1,U j

k
+ (

�O
i

)
1,U j†

k
= 4

(
p(k|i, j) − 1

2

)
,

∀i, j :
(
�O

i

)
j, j = 1. (5)

Additionally, the possible constraints from OM must be en-
coded into the moment matrices via conditions on the unitary
matrices.

The existence of such moment matrices is a necessary
condition for the behavior p(k|�i, M j ) = tr[�iM j (k)] to be
realizable in a quantum experiment. Moreover, the existence
of such moment matrices is a semidefinite feasibility prob-
lem, which can be solved with efficient methods [43]. The
optimization of any success metric over feasible behaviors is
again an SDP.
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The semidefinite feasibility problem defined by Eq. (5)
defines a first level in a hierarchy of SDPs. That is, a behavior
p(k|i, j) obtained from maximizing a success metric over the
feasible set is not necessarily realizable in any quantum exper-
iment. What we do get is an upper bound on the success metric
(no quantum behavior can exceed this bound). Moreover, by
considering monomials of length greater than 1 we obtain a
converging hierarchy that converges on the set of quantum
behaviors [16]. In practice we get very good results already on
the first level. The notation U1 is used to specify that a solution
is obtained by using the first level of the unitary hierarchy.

B. Noncontextual polytope of correlations

Contextuality is understood today as an important resource
for quantum computation [16,22–31]. We will now give a
brief introduction to the topic, focusing on recent devel-
opments. The reader is encouraged to check [32,33] for a
more complete introduction to the framework of ontological
models.

Suppose there is a state space �, called the ontic state
space. Every time a quantum state is prepared, a state λ ∈ �

is produced according to some probability distribution. The
ontic states are considered complete descriptions of nature,
but they are, generally speaking, inaccessible to all observers.
Therefore we associate each preparation P with a correspond-
ing probability measure μP over the state space �.

When a measurement of some POVM M is performed,
it is supposed that the value λ completely determines the
outcome. Note that this does not imply determinism. Instead
we associate each effect M(i) with the response function∫

�

ξM(i|λ)μ�(λ)dλ = tr[�M(i)]. (6)

The response function ξM(i|λ) determines the probability of
obtaining outcome i when � was prepared and a measurement
of M was preformed.

Definition 3. An ontological model consist of a measure
space (�, dλ)1 and two functions 
 and �. The function 


maps every quantum state � to a set of probability measures

�. Likewise the function � maps every POVM M to a set
of indicator functions �M. Moreover, for each λ ∈ � and for
every M and ξ ∈ �M: ∑

i

ξM(i|λ) = 1. (7)

The ontological model is said to reproduce quantum predic-
tions if it respects the Born rule defined in Eq. (6).

Quantum theory has the property that mixed states do not
have unique decompositions into pure states. Suppose we
have a preparation device that can prepare a state � = 1

2 (�1 +
�2) = 1

2 (�3 + �4) through two distinct decompositions. It is

1It would be more rigorous to say that the measure space is (�,�)
where � is a σ algebra. Here we assume the existence of a canonical
measure dλ that dominates each probability measure defined on
(�,�). There are some ontological models that do not allow this,
but this assumption makes the notation somewhat simpler.

a basic fact of quantum information theory that these decom-
positions are indistinguishable from each other. The principle
of noncontextuality states that whenever two states are opera-
tionally indistinguishable, they should also be ontologically
indistinguishable. On the ontological level this means that
the probability measure associated with � should be unique.
For measurements the principle of noncontextuality states
that each effect should be associated with a unique response
function, no matter which POVM the effect is a part of.

It is widely believed, in light of quantum theory, that nature
does not allow a deterministic description. Therefore, the non-
classical features of quantum mechanics, such as contextuality
and nonlocality, only manifest themselves in a statistical man-
ner. The question is then how can contextuality be detected
from a set of experimental data. Let p(x|P, M) denote the
probability distribution of outcomes x given that a measure-
ment of M followed the preparation procedure P.

Definition 4. Two preparation procedures P1 and P2 are
operationally equivalent if p(x|P1, M) = p(x|P2, M) for all M.
Likewise, two measurements M1 and M2 are operationally
equivalent if p(x|P, M1) = p(x|P, M2) for all P.

The notation ′′ 	′′ is used to denote operationally equiva-
lent procedures for both preparations and measurements.

Whenever two procedures are operationally equivalent,
the principle of noncontextuality implies that the procedures
should also be ontologically equivalent. For preparations this
means that μP1 (λ) = μP2 (λ) for all λ whenever P1 	 P2. For
measurements, the principle on noncontextuality implies that
operationally equivalent effects should be represented by a
unique response function

ξM1 (i|λ) = ξM2 (i|λ),

for all λ whenever M1(i) 	 M2(i).
It is convenient to collect all operational equivalences in

two distinct sets: OP will contain all operational equivalences
of the form ∑

i

αr
i Pi =

∑
j

βr
j Pj,

for some distinct sets of convex weights {αr
i }i and {βr

j } j . The
variable r indexes different operational equivalences. For ev-
ery operational equivalence in OP a corresponding ontological
restriction must be satisfied by all noncontextual models

∀λ :
∑

i

αr
i μPi (λ) =

∑
j

βr
j μPj (λ).

Likewise for measurements, a set OM will contain all opera-
tional equivalences of the form∑

i, j

αs
i, jMi( j) =

∑
i′, j′

βs
i′, j′Mi′ ( j′),

for some set of convex weights {αs
i, j}i, j and {βs

i, j}i, j , where the
variable s indexes the set of operational equivalences.

Once the sets of operational equivalences OP and OM

are determined for a behavior p(x|Pi, M j ), the question if a
noncontextual model exists for the behavior can be presented
in a compact form.
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Definition 5. A noncontextual ontological model exists for
a behavior p(x|Pi, M j ) if there exists an ontic state space �,

epistemic states {μPi (λ)}i and response functions {ξM j (k|λ)} j,k

such that

∀λ, j, k : ξM j (k|λ) � 0 (positivity of response functions),

∀λ, j :
∑

k

ξM j (k|λ) = 1 (normalization of response functions),

∀λ, s :
∑

j,k

(
αs

j,k − βs
j,k

)
ξM j (k|λ) = 0 (operational equivalences OM),

∀λ, i : μPi (λ) � 0 (positivity of epistemic states),

∀i :
∫

�

μPi (λ)dλ = 1 (normalization of epistemic states),

∀λ, r :
∑

i

(
αr

i − βr
i

)
μPi (λ) = 0 (operational equivalences OP),

∀i, j, k :
∫

�

ξM j (k|λ)μPi (λ)dλ = p(k|Pi, M j ) (model reproduces data).

A detailed description of methods that can be used to
demonstrate a contextual advantage from any behavior is
presented in [27]. We will use those methods to examine
whether the communication tasks can be used to demonstrate
a contextual advantage for quantum theory.

The first step is to characterize the so-called measure-
ment assignment polytope. Suppose all measurements in a
prepare-and-measure setup have d outcomes and that there are
l distinct measurement procedures. Then the ld-dimensional
vector


ξ = [ξM1 (1|λ∗) . . . ξM1 (d|λ∗)ξM2 (1|λ∗) . . . ξMl (d|λ∗)],

defined for a specific ontic state λ∗, defines a noncontextual
measurement assignment if it satisfies the first three condi-
tions of Definition 5. The set of all such assignments defines
the measurement-assignment polytope, which we must char-
acterize by its vertices. The use of mathematical optimization
software is encouraged to perform vertex enumeration.2 The
vertices are the extremal points of the convex measurement-
assignment polytope.

Once vertex enumeration is performed, a key observation
is that any noncontextual model, no matter the size of the
ontic state space �, can be reconstructed into a model de-
fined by probability assignments to the finite set of extremal
points of the measurement-assignment polytope. That is, each
preparation defines one epistemic state for each vertex in
the measurement-assignment polytope. Let κ enumerate the
vertices and let νP(κ ) denote the epistemic states defined on
the vertices.

Definition 6. A noncontextual ontological model exists
for a behavior p(x|Pi, M j ) if there exists epistemic states
{νPi (κ )}i,κ such that

∀i, κ :νPi (κ ) � 0 (positivity of epistemic states),

2We used the function FMEL from a free software called PORTA.

∀i :
∑

κ

νPi (κ ) = 1 (normalization of epistemic states),

∀r, κ :
∑

i

(
αr

i − βr
i

)
νPi (κ )

= 0 (operational equivalences OP),

∀i, j, k :
∑

κ

ξ̃M j (k|κ )νPi (κ )

= p(k|Pi, M j ), (model reproduces data),

where ξ̃Mi ( j|κ ) are the extremal response functions defined by
the noncontextual measurement-assignment polytope.

Another key observation from Definition 6 is that each
operational probability p(k|Pi, M j ) is a linear combination of
a finite amount of variables. We could now proceed as in
[27] and perform linear quantifier elimination to find all the
noncontextual inequalities that define the entire noncontextual
polytope of correlations. It is more convenient, however, to
treat the equations of Definition 6 as a linear program.

The last three equations of Definition 6 can be encoded
in a single matrix equation Mx = b∗, where M contains the
operational equivalence parameters αr

i − βr
i and the extremal

measurement assignments ξ̃M j (k|κ ), x contains the epistemic
states νPi (κ ) as a vector, and b∗ contains the operational
probabilities p(k|Pi, M j ) as well as 0s and 1s correspond-
ing to the normalization of epistemic states and operational
equivalences OP. The positivity of the epistemic states cor-
responds to the inequality x � 0. Hence, the equations of
Definition 6 define a linear program (LP) whose primal fea-
sibility is determined by the existence of x such that

Mx = b∗,

x � 0.
(8)

Whenever such an x exists that Eq. (8) is fulfilled, we can
be sure that a noncontextual ontological model exists for the
given operational probabilities.
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By Farkas’ lemma [34], it must be true that either the
primal LP is feasible or a certificate of primal feasibility is
negative. We can define the certificate of primal infeasibility
as the solution to the Farkas dual of the primal LP:

miny b∗�y,

M�y � 0. (9)

Whenever the primal LP is infeasible it is guaranteed that we
can find a y such that b∗�y < 0. By finding the minimum
value among these we will simultaneously find the noncon-
textuality inequality that is most violated by the operational
probabilities.

C. Grassmannian frames

Let V be an inner product space. A sequence { fi}n
i=1 is

called a frame if there exists frame bounds A and B such that

A‖v‖2 �
n∑

i=1

|〈 v, fi 〉|2 � B‖v‖2, (10)

for all v ∈ V . Some special cases of frames are listed below.
A frame is called:
(1) tight whenever the choice A = B is possible;
(2) uniform whenever ‖ fi‖ = 1 for all i;
(3) equiangular whenever |〈 fi, f j 〉| = c for all i �= j and

c � 0.
Additionally, whenever the number of frame elements n

coincides with the dimension d of V , the frame is also a basis
for V . An example of an equiangular uniform frame would be
an orthonormal basis.

We are not particularly interested in frames that are also
bases. There are many reasons to study overcomplete frames
[35–37]. An important concept is the correlation between
frame elements.

Definition 7. Let { fi}n
i=1 be a uniform frame in V . Then

M
({ fi}n

i=1

) = max
j,k, j �=k

|〈 f j, fk 〉| (11)

is the maximal frame correlation of { fi}n
i=1.

The maximal frame correlation measures the maximal
overlap between frame elements. A Grassmannian frame is
simply a frame that minimizes the maximum overlap [38,39].

Definition 8. Let { fi}n
i=1 be a uniform frame in V . Then

{ fi}n
i=1 is called a Grassmannian frame if it is a solution to

the problem

min
{
M

({ fi}n
i=1

)}
. (12)

At first glance it does not seem probable that there would
exist analytical bounds on maximal frame correlations that
only depend on the dimension of the inner product space and
the number of frame elements. Yet such a result exists which
we will make use of later on.

Proposition 1. Let { fi}n
i=1 be a uniform frame for Cd or

Rd . Then

M
({ fi}n

i=1

)
�

√
n − d

d (n − 1)
. (13)

TABLE III. General classical strategy for the task T4,1.

a r(a) b g(b, 0) g(b, 1)

1000 i 1100 x1 y1

0100 j 1010 x2 y2

0010 k 1001 x3 y3

0001 l 0110 x4 y4

0101 x5 y5

0011 x6 y6

s a b r(a) g[b, r(a)]
1000 0100 0011 j g(0011, j)
1000 0010 0101 k g(0101, k)
1000 0001 0110 l g(0110, l )
0100 1000 0011 i g(0011, i)
0100 0010 1001 k g(1001, k)
0100 0001 1010 l g(1010, l )
0010 1000 0101 i g(0101, i)
0010 0100 1001 j g(1001, j)
0010 0001 1100 l g(1100, l )
0001 1000 0110 i g(0110, i)
0001 0100 1010 j g(1010, j)
0001 0010 1100 k g(1100, k)

Moreover, the equality in Eq. (13) is achieved if and only if
{ fi}n

i=1 is a tight equiangular frame. The equality in Eq. (13)
requires n � d2 for Cd and n � d (d+1)

2 for Rd .
A proof for Proposition 1 can be found from [40].
Proposition 1 concludes our brief introduction to frames.

Additional information on frame theory can be found from
various excellent sources, such as [41].

IV. BOUNDS ON COMMUNICATION SUCCESS

We are now ready to analyze the tasks T4,1 and T4,2. Let
us first consider the classical version with a single bit as the
communication medium.

A. Classical bounds

We will follow a similar technique for the tasks T4,1 and
T4,2 as was used for T3,1. The task T4,1 involves four possibili-
ties for the strings s and input a while there are six possibilities
for the input b. The entire strategy can be conveniently pre-
sented in table form. By looking at the rows of Table III where
the input b is identical, we get the following constraints on the
messages r(a) :

i �= j, i �= k, i �= l, j �= k, j �= l, l �= k.

That means that, to never make a mistake, each message r(a)
needs to be distinct. However, the message r(a) can only take
on the binary values of 0 and 1, and hence at least two of
the inequalities must be violated. Each violation leads to one
mistake because each row in Table III with identical b has a
different string s. Therefore, any classical strategy formed by
giving concrete values to Table III must contain at least two
mistakes. An optimal classical strategy for the task T4,1 is pre-
sented in Table IV. The average classical success probability
for the task T4,1 is 5/6.
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TABLE IV. An optimal classical strategy for the task T4,1. Bold
values in the last column indicate erroneous guesses by Bob. The
guesses g(1100, 0) and g(0011, 1) are not listed because they are not
needed in this specific implementation of the strategy.

a r(a) b g(b, 0) g(b, 1)

1000 0 1100 − 3
0100 0 1010 4 2
0010 1 1001 3 2
0001 1 0110 4 1

0101 3 1
0011 1 −

s a b r(a) g[b, r(a)]
1000 0100 0011 0 1
1000 0010 0101 1 1
1000 0001 0110 1 1
0100 1000 0011 0 1
0100 0010 1001 1 2
0100 0001 1010 1 2
0010 1000 0101 0 3
0010 0100 1001 0 3
0010 0001 1100 1 3
0001 1000 0110 0 4
0001 0100 1010 0 4
0001 0010 1100 1 3

As the final classical example, let us introduce the task T4,2.
Now there are six possibilities for input a while there are four
possibilities for the string s and input b. Again by looking at
the rows of Table V where the input b is identical, we obtain
the following constraints:

i �= j �= l, i �= k �= m, j �= k �= n, l �= m �= n. (14)

Any violation of the above inequalities instantly leads to
at least one mistake in the strategy, as each inequality was

TABLE V. General classical strategy for the task T4,2.

a r(a) b g(b, 0) g(b, 1)

1100 i 1000 x1 y1

1010 j 0100 x2 y2

1001 k 0010 x3 y3

0110 l 0001 x4 y4

0101 m
0011 n
s a b r(a) g[b, r(a)]
1000 0110 0001 l g(0001, l )
1000 0101 0010 m g(0010, m)
1000 0011 0100 n g(0100, n)
0100 1010 0001 j g(0001, j)
0100 1001 0010 k g(0010, k)
0100 0011 1000 n g(1000, n)
0010 1100 0001 i g(0001, i)
0010 1001 0100 k g(0100, k)
0010 0101 1000 m g(1000, m)
0001 1100 0010 i g(0010, i)
0001 1010 0100 j g(0100, j)
0001 0110 1000 l g(1000, l )

TABLE VI. An optimal classical strategy for the task T4,2. The
bold values indicate erroneous guesses by Bob.

a r(a) b g(b, 0) g(b, 1)

1100 0 1000 2 3
1010 1 0100 1 3
1001 1 0010 4 1
0110 1 0001 3 1
0101 1
0011 0
s a b r(a) g[b, r(a)]
1000 0110 0001 1 1
1000 0101 0010 1 1
1000 0011 0100 0 1
0100 1010 0001 1 1
0100 1001 0010 1 1
0100 0011 1000 0 2
0010 1100 0001 0 3
0010 1001 0100 1 3
0010 0101 1000 1 3
0001 1100 0010 0 4
0001 1010 0100 1 3
0001 0110 1000 1 3

derived from rows with different strings s. By checking all
possible choices for the messages r(a) we find that the mini-
mum number of violations is four in any classical strategy. An
example of such a strategy is presented in Table VI. The aver-
age classical success probability for the task T4,2 is therefore
2/3 (4 mistakes out of 12 guesses).

B. Contextual bounds

By introducing operational equivalences to Alice’s prepa-
rations3 we can produce noncontextuality inequalities that
bound the success chance of noncontextual models on com-
munication tasks of any type with n � 4. In this way we
can compare noncontextual models to the simplest case of
one bit as the communication medium, while simultaneously
observing a quantum advantage using SDP methods.

In the partial-ignorance communication task of type T4,1

Charlie sends one of four strings to Alice: 1000, 0100, 0010,
or 0001. Alice prepares a state from the set {�i}4

i=1, where the
subscript i corresponds with the index of the 1 in Alice’s input
string. Bob will receive one of the following input strings from
Charlie: 1100, 1010, 1001, 0110, 0101, or 0011. For each
input string Bob will have a binary POVM Mi j , where the
subscript i j will indicate the indexes of the 0’s in Bob’s input.
When Bob’s measurements are labeled in this way all Bob’s
POVMs will contain the index of Alice’s preparation in the
label. In other words, the success metric for the task T4,1 will
be a combination of terms ±tr[�iM jk (1)] where either i = j or
i = k. The term will be positive if i = k and negative if i = j.
By maximizing this success metric Bob’s output will coincide
with the correct answer as often as possible on average.

3We could also consider operational equivalences for Bob’s mea-
surements. However, it is sufficient to only consider operational
equivalences for the preparations to observe a quantum advantage.
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Example 3. (Contextual T4,1). Let us consider the task
T4,1 with a nontrivial operational constraint between Alice’s
preparations. As there are four possible states that Alice can
prepare, there are three natural choices for operational equiv-
alences. We choose the operational equivalence �1 + �2 	
�3 + �4. With this choice the problem we wish to optimize
is the following:

max −tr[�1M12(1)] − tr[�1M13(1)] − tr[�1M14(1)]

+ tr[�2M12(1)] − tr[�2M23(1)] − tr[�2M24(1)]

+ tr[�3M13(1)] + tr[�3M23(1)] − tr[�3M34(1)]

+ tr[�4M14(1)] + tr[�4M24(1)] + tr[�4M34(1)], (15a)

subject to �i � 0, i = 1, 2, 3, 4, (15b)

tr[�i] = 1, i = 1, 2, 3, 4, (15c)

�1 + �2 = �3 + �4, (15d)

M j (1), M j (2) � 0, j = 12, 13, 14, 23, 24, 34,

(15e)

M j (1) + M j (2) = 1, j = 12, 13, 14, 23, 24, 34,

(15f)

where Eq. (15d) represents the operational equivalence that
we chose, Eqs. (15b) and (15c) correspond to positivity and
unit trace conditions for the states and Eqs. (15e) and (15f)
correspond to positivity and normalization of the effects. Note
that the success metric in Eq. (15a) is written in terms of the
first effect of each POVM.

The unitary SDP hierarchy U1 converges on 4.828427123,
while the see-saw algorithm converges on 4.828427104 for
qubits. Hence the outer bound on the first level of the unitary
SDP hierarchy matches the inner bound for qubits by seven
decimals. Note that the outer bound does not depend on the
dimension. Instead it is valid for all quantum systems that con-
form to the operational equivalence between preparations. The
average success probability, as given by the implementation
found by the see-saw algorithm, is 0.9023689, much higher
than the average classical success probability.

Performing vertex enumeration we find that the measure-
ment assignment polytope has 64 vertices4. Hence there are
256 variables νPi (κ ). We then from the matrix M and query
a linear program for the optimal solution to Eq. (15a) within
noncontextual ontological models. We find that the answer is
4 within numerical accuracy. By forming the Farkas’ dual we
find that the noncontextual inequality that is most violated by
the optimal quantum implementation is

+ 0.000764p1,12 + 0.000764p2,12

− 0.000764p3,12 − 0.000764p4,12

+ 0.250121p1,13 − 0.249879p2,13

4We did not specify any operational equivalences between the
effects. As is explained in [27], in this case the extremal points of the
measurement assignment polytope are the deterministic assignments
consisting of zeros and ones. As we have six binary measurements
the number of vertices is 26.

− 0.250121p3,13 + 0.249879p4,13

+ 0.249258p1,14 − 0.249258p2,14

+ 0.249258p3,14 − 0.249258p4,14

− 0.250742p1,23 + 0.250742p2,23

− 0.250742p3,23 + 0.250742p4,23

− 0.250121p1,24 + 0.249879p2,24

+ 0.250121p3,24 − 0.249879p4,24

− 0.000764p1,34 − 0.000764p2,34

+ 0.000764p3,34 + 0.000764p4,34 � 1,

where pi, jk is shorthand for p(1|Pi, M jk ). Our quantum imple-
mentation achieves a value of 1.414213561 for this inequality,
or

√
2 within numerical accuracy, a violation of

√
2 − 1 for

the noncontextual bound.
As a final observation, we can directly compare the non-

contextual bound on the success metric of Eq. (15a) to the
optimal bit implementation as follows. The terms in the suc-
cess metric in Eq. (15a) are written in the same order as the
rows in Table IV. A correct value in the bit implementation
corresponds to a 1 or 0 depending on the sign of the term in
the success metric. An incorrect value in the bit implementa-
tion leads to a degradation of the success metric by 1. As it
happens, the bit implementation also obtains a value of 4 for
the success metric.

In the partial-ignorance communication task of type T4,2

Charlie still has four input strings s: 1000, 0100, 0010, and
0001. The inputs of Alice and Bob are reversed in a sense.
Alice will receive one of the following input strings: 1100,
1010, 1001, 0110, 0101, and 0011. Bob, on the other hand,
will receive one of the following input strings: 1000, 0100,
0010, or 0001. Hence Alice will need to prepare states with six
distinct labels although some of these states may be identical
and Bob will need to perform four ternary measurements.
Alice will label her states as �i j , where the subscript i j will
indicate the indices of the 1’s in her input string. Bob will label
his POVMs as Mk , where the k will correspond to the index of
the 1 in Bob’s input. Each of Bob’s POVM Mk will have the
set {1, 2, 3, 4} \ k as the outcome set. Thus, upon receiving
measurement outcome l , Bob will guess that the index of the
1 in s was l . The success metric that Alice and Bob try to
maximize is

4∑
i, j,k,l=1
i �= j �=k �=l

tr[�i jMk (l )].

We will, however, relabel the effects with the following rule:

Mk (l ) =
{

Mk (l ), if l < k,

Mk (l − 1), if l > k.

With this relabeling all Bob’s measurements will have the
outcome set {1, 2, 3}. This makes the SDPs somewhat easier
to program, but as a drawback Bob’s outcome will not directly
correspond with his guess, but has to be interpreted according
to the relabeling.
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Example 4. (Contextual T4,2). The success metric for the
task T4,2, written in terms of the first two effects, is written as

max tr[�23M4(1)] + tr[�24M3(1)] + tr[�34M2(1)]

+ tr[�13M4(2)] + tr[�14M3(2)] + tr[�34M1(1)]

+1 − tr[�12(M4(1) + M4(2))]

+ tr[�14M2(2)] + tr[�24M1(2)]

+3 − tr[�12(M3(1) + M3(2))]

− tr[�13(M2(1) + M2(2))]

−tr[�23(M1(1) + M1(2))], (16a)

subject to �i j � 0, i j = 12, 13, 14, 23, 24, 34, (16b)

tr[�i j] = 1, i j = 12, 13, 14, 23, 24, 34, (16c)

�12 + �13 = �14 + �23 = �24 + �34, (16d)

Mk (1), Mk (2), Mk (3)� 0, k = 1, 2, 3, 4, (16e)

Mk (1) + Mk (2) + Mk (3) = 1, k = 1, 2, 3, 4.

(16f)

The order of terms in the success metric of Eq. (16a) is
the same is the rows in Table VI. A nontrivial operational
equivalence between preparations is defined in Eq. (16d)

Querying a linear program for the maximal value to
Eq. (16a) we obtain a maximal value of 8 within numerical ac-
curacy for all noncontextual models. Interestingly, this again
coincides with the optimal bit implementation of Table VI.
The see-saw method also converges on exactly 8 for both
qubits and qutrits. This leads us to suspect that no contextual
advantage is possible in this task. The unitary hierarchy U1

seems to break down for this task, so we will need to prove
the outer bound with analytical methods.

Proposition 2. The outer bound for the success metric of
Eq. (16a) equals exactly 8.

Proof. To prove the outer bound we will write the outcome
distributions of the first POVM as a communication matrix:

A1 =

M1(1) M1(2) M1(3)

�12 tr[�12M1(1)] tr[�12M1(2)] tr[�12M1(3)]
�13 tr[�13M1(1)] tr[�13M1(2)] tr[�13M1(3)]
�14 tr[�14M1(1)] tr[�14M1(2)] tr[�14M1(3)]
�23 tr[�23M1(1)] tr[�23M1(2)] tr[�23M1(3)]
�24 tr[�24M1(1)] tr[�24M1(2)] tr[�24M1(3)]
�34 tr[�34M1(1)] tr[�34M1(2)] tr[�34M1(3)]

.

The matrix A1 is row-stochastic, each row sums up to 1. The
terms of A1 that show up in the success metric Eq. (16a) are
highlighted in bold. Those three terms are the ones that we
need to maximize in this communication matrix. From the
operational equivalence �14 + �23 	 �24 + �34 it follows that

2 = tr[�24(M1(1) + M1(2) + M1(3))]

+ tr[�34(M1(1) + M1(2) + M1(3))]

= tr[�24(M1(1) + M1(2))] + tr[�34(M1(1) + M1(2))]

+ tr[(�14 + �23)M1(3)]

� tr[�34M1(1)] + tr[�24M1(2)] + tr[�23M1(3)].

TABLE VII. Inner bounds on the tasks T4,1 and T4,2 as produced
by the see-saw algorithm.

d 2 3 4

T4,1 10.89897946 11.65685425 12.0
T4,2 8.0 12.0 12.0

Hence in any operational theory that satisfies the op-
erational equivalence �14 + �23 	 �24 + �34 the inequal-
ity tr[�34M1(1)] + tr[�24M1(2)] + tr[�23M1(3)] � 2 holds. It
turns out that a similar argument holds for the other POVMs
as well so that the maximum value for Eq. (16a) is 8 for
all operational theories that that satisfies the operational
equivalence (16d).

The previous proposition concludes our contextual exam-
ples. In the next section we will study the tasks T4,1 and T4,2

without the operational equivalences.

C. General bounds

We can produce inner bounds on the tasks T4,1 and T4,2

without the operational equivalences (15d) and (16d) by using
the see-saw algorithm. Table VII collects these results. The
bounds on T4,1 in Table VII are presented in terms of both
effects, i.e., the negative terms in Eq. (15a) are replaced by
the corresponding positive term.

We can see from Table VII that there is a major discrepancy
between the tasks T4,1 and T4,2. The inner bounds on task
T4,1 gradually increase from the minimum value obtained
by qubits to the maximum value of 12 obtained by four-
dimensional quantum states. The value obtained by qubits is
slightly greater than the contextual limit for the task.

For the task T4,2 the inner bound is 8 for qubits within
numerical accuracy, the same as the outer bound found in
Proposition 2. For qutrits the inner bound already reaches the
maximum value of 12. We will now try to make sense of these
numbers.

Definition 9. Let A be a communication matrix, i.e., Ai j =
tr[�iM( j)] for some finite set of quantum states {�i}i and a
POVM M with a finite outcome set. The function λmax is
defined as λmax(A) := ∑

j maxi(Ai j ).
The function λmax is an ultraweak monotone on the set of

communication matrices. Ultraweak monotones were exten-
sively studied in [6]. However, for our present investigation a
more important result is the following.

Proposition 3. Let A be a communication matrix. Then

rankpsd(A) � λmax(A),

where rankpsd is the positive semidefinite rank of a matrix.
The above proposition was proved in [44]. For communica-

tion matrices it holds that a necessary and sufficient condition
for a communication matrix to have a d-dimensional quantum
implementation is that the positive-semidefinite rank of the
matrix is not greater than d [6]. With this knowledge we can
prove the outer bound on task T4,2.

Proposition 4. The outer bound on task T4,2 is 8 for qubits.
Proof. The task T4,2 consists of four communication ma-

trices. The communication matrix of the first POVM is the
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following:

A1 =

M1(1) M1(2) M1(3)

�12 tr[�12M1(1)] tr[�12M1(2)] tr[�12M1(3)]
�13 tr[�13M1(1)] tr[�13M1(2)] tr[�13M1(3)]
�14 tr[�14M1(1)] tr[�14M1(2)] tr[�14M1(3)]
�23 tr[�23M1(1)] tr[�23M1(2)] tr[�23M1(3)]
�24 tr[�24M1(1)] tr[�24M1(2)] tr[�24M1(3)]
�34 tr[�34M1(1)] tr[�34M1(2)] tr[�34M1(3)]

The bold highlights those elements of A1 that should be max-
imized. If A1 is implementable with qubits, it follows that
rankpsd(A1) � 2. But then by Proposition 3, λmax(A1) � 2.
This means that the sum of the elements highlighted in bold
cannot be greater than 2. A similar argument holds for the
other POVMs so the total outer bound on task T4,2 for qubits
is exactly 8.

We could use Proposition 4 to produce the outer bound 12
for qutrits. However, 12 is already the maximum value that
the success metric can obtain, so there is no need to prove the
outer bound for qutrits.

Let us now return to the task T4,1. In this task Bob is using
dichotomic measurements, that is, Bob is always trying to
distinguish between two possible input states from Alice. The
best strategy, therefore, tries to minimize the maximal over-
lap between Alice’s states, so that they can be distinguished
pair-wise as well as possible. This ensures there will not be
any weakness in Alice and Bob’s strategy that Charlie could
exploit. We need just one more definition before we can prove
that the bounds in Table VII are tight for T4,1.

Definition 10. The ambiguous distinguishability of two
pure states |ϕ1〉〈ϕ1| and |ϕ2〉〈ϕ2| is defined as

Psuccess = 1
2 (1 +

√
1 − |〈 ϕ1 | ϕ2 〉|2).

Proposition 5. The inner bounds presented in Table VII are
tight for the task T4,1.

Proof. Notice that the success metric (15a) consists of six
terms of the form tr[� jMi j (1)] − tr[�iMi j (1)]. We can inter-
pret this term as Psuccess − Pfail = 2Psuccess − 1 for the POVM
Mi j . Let {ϕi}4

i=1 be a Grassmannian frame for their span in Cd .

Then Psuccess � 1
2 (1 +

√
1 − 4−d

3d ) by Proposition 1. Equality

can be achieved if and only if {ϕi}4
i=1 is equiangular and that is

the best possible success chance for Bob while minimizing the
maximum overlap between Alice’s states. For qubits we get

Psuccess � 1
2 (1 +

√
2
3 ). Omitting the −1 terms we get an outer

bound of 12Psuccess = 6(1 +
√

2
3 ) ≈ 10.89897949, matching

the value in Table VII by six decimals. For qutrits the cor-
responding values are Psuccess � 1

2 (1 + 2
√

2
3 ) and outer bound

12Psuccess = 6(1 + 2
√

2
3 ) ≈ 11.65685425, again matching the

value in Table VII within numerical accuracy. For d = 4 the
maximal value of 12 is achieved as there are four distinguish-
able states.

V. FINAL THOUGHTS

In this article we continued the work done in [2] by
introducing an input for Bob in the setting of communi-
cation of partial ignorance. We called these new types of

communication tasks simply partial-ignorance communica-
tion tasks of type Tn,m, where n is an integer representing
the length of Charlie’s string s and m represents loosely the
amount of information on s that Charlie reveals to Alice.
Whatever information Charlie does not reveal to Alice he will
instead reveal to Bob, so that the partial ignorance communi-
cation task of type Tn,m is always informationally complete,
that is, Alice and Bob’s combined knowledge is enough to
solve the communication task perfectly.

We began by analyzing the simplest communication task
of type T3,1 for bits and qubits. This proved to be a relatively
straightforward task. The tasks T4,1 and T4,2 were much more
complicated. We used various methods to establish inner and
outer bounds on success metrics. These methods included
SDPs, ultraweak monotones on communication matrices, and
frame theory for quantum states. We found out that the bit was
as good as a communication medium as any noncontextual
ontological model for both tasks T4,1 and T4,2. For T4,1 we
observed a contextual advantage for qubits and proved tight
general bounds on the success metric for qubits and qutrits.
For the task T4,2 we proved that a contextual advantage was
impossible for the operational equivalence we chose and that
the qubit did not perform any better than the bit.

The complexity involved in solving the inner and outer
bounds for communication tasks of type Tn,m grows rapidly
with n. Actually, already for T4,2 we could have chosen an-
other set of operational equivalences for preparations and
possibly included operational equivalences for measurements
as well. In general as n increases the number of prepara-
tions and measurements increases as well, and this makes the
analysis more difficult. Additionally, with large n the opti-
mal strategies might require systems with higher dimensions
and this increases the computational demands of numerical
methods. However, we believe that the methods presented
in this article serve as a good starting point when solving
communication tasks similar to those studied in this work.

There were several questions that ultimately could not be
included in the scope of this article. The first question is
what happens if we abandon the requirement of informational
completeness so that Alice and Bob’s combined knowledge
does not determine the correct answer completely. This would
certainly increase the complexity involved in solving for the
optimal strategies, but we believe the current methods would
suffice to analyze those cases as well. The second question
involves shared randomness. It is known that shared random-
ness is a powerful resource for communication [42]. Alice
and Bob’s access to shared randomness would most certainly
increase the effectiveness of their best strategies, as this would
allow them to mix strategies in a way that would at the very
least increase the worst case success probabilities for the bit.
However, the effect of shared randomness is already tedious
to analyze at the level of communication matrices. We leave
this case for future research.

As we discussed earlier, the bit turned out to be as effective
as a communication medium as any noncontextual ontolog-
ical model in the tasks T4,1 and T4,2. It is not entirely clear
to us why this is the case. We did not impose the bit to
respect any operational equivalences and the measurements
simply consist of receiving the bit that was sent. In this
sense the bit makes up a poor comparison for noncontex-
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tual models. Nevertheless, the average success probabilities
are the same. However, it must be kept in mind that the
worst case success probability is always zero for the bit. The
worst case success probability is greater than zero for qubits
in the task T4,2, but it is not clear what the actual worst-
case probability is as the see-saw method is only capable
of optimizing the average success chance (linear functions
of states and effects). Frame theory does not help either be-
cause the equality in Eq. (13) cannot be achieved. We leave
the worst-case success chance for qubits in T4,2 as an open
problem.

As a final question we could consider possible connec-
tions of the communication tasks studied in this work to

other similar communication tasks. We believe that some
partial-ignorance communication tasks could be mapped to a
corresponding random access code. It might even be possible
to map all RACs to some subset of partial-ignorance commu-
nication tasks of particular types. However, this connection is
not clear to us at present time and requires further thought.

ACKNOWLEDGMENTS

O.K. personally thanks Teiko Heinosaari for his support
during the research for this article and his insightful com-
ments. O.K. acknowledges financial support from the Turku
University Foundation during the research of this article.

[1] B. Schumacher and M. Westmoreland, Quantum Processes,
Systems, and Information (Cambridge University Press,
Cambridge, England, 2010).

[2] T. Heinosaari and O. Kerppo, Communication of partial igno-
rance with qubits, J. Phys. A: Math. Theor. 52, 395301 (2019).

[3] S. Wiesner, Conjugate coding, SIGACT News 15, 78 (1983).
[4] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, Dense

quantum coding and quantum finite automata, J. ACM 49, 496
(2002).

[5] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols,
Quantum random access codes with shared randomness,
arXiv:0810.2937.

[6] T. Heinosaari, O. Kerppo, and L. Leppäjärvi, Communication
tasks in operational theories, J. Phys. A: Math. Theor. 53,
435302 (2020).

[7] M. Navascués, S. Pironio, and A. Acín, Bounding the Set of
Quantum Correlations, Phys. Rev. Lett. 98, 010401 (2007).

[8] M. Navascués, S. Pironio, and A. Acín, A convergent hierar-
chy of semidefinite programs characterizing the set of quantum
correlations, New J. Phys. 10, 073013 (2008).

[9] M. Navascués and T. Vértesi, Bounding the Set of Finite Di-
mensional Quantum Correlations, Phys. Rev. Lett. 115, 020501
(2015).

[10] M. Navascués, A. Feix, M. Araújo, and T. Vértesi, Character-
izing finite-dimensional quantum behavior, Phys. Rev. A 92,
042117 (2015).

[11] P. Wittek, Algorithm 950: Ncpol2sdpa-Sparse Semidefinite Pro-
gramming Relaxations for Polynomial Optimization Problems
of Noncommuting Variables, ACM Trans. Math. Softw. 41, 1
(2015).

[12] P. Mironowicz, Applications of semi-definite optimization in
quantum information protocols, Ph.D. thesis, Gdansk Univer-
sity of Technology, 2015.

[13] Y. Wang, I. W. Primaatmaja, E. Lavie, A. Varvitsiotis, and
C. C. W. Lim, Characterising the correlations of prepare-and-
measure quantum networks, npj Quantum Inf. 5, 17 (2019).

[14] A. Tavakoli, E. Cruzeiro, R. Uola, and A. Abbott, Bounding
and simulating contextual correlations in quantum theory, PRX
Quantum 2, 020334 (2021).

[15] A. Tavakoli, E. Zambrini Cruzeiro, E. Woodhead, and S.
Pironio, Informationally restricted correlations: a general
framework for classical and quantum systems, Quantum 6, 620
(2022).

[16] A. Chaturvedi, M. Farkas, and V. Wright, Characterising and
bounding the set of quantum behaviours in contextuality sce-
narios, Quantum 5, 484 (2021).

[17] R. F. Werner and M. M. Wolf, Bell Inequalities and Entangle-
ment, Quantum Inf. Comput. 1, 1 (2001).

[18] Y. C. Liang and A. C. Doherty, Better Bell-inequality violation
by collective measurements, Phys. Rev. A 73, 052116 (2006).

[19] Y. C. Liang and A. C. Doherty, Bounds on quantum correlations
in Bell-inequality experiments, Phys. Rev. A 75, 042103 (2007).

[20] Y. C. Liang, C. W. Lim, and D. L. Deng, Reexamination of a
multisetting Bell inequality for qudits, Phys. Rev. A 80, 052116
(2009).

[21] A. Ambainis, M. Banik, A. Chaturvedi, D. Kravchenko, and
A. Rai, Parity oblivious d-level random access codes and class
of noncontextuality inequalities, Quantum Inf. Process. 18, 111
(2019).

[22] J. S. Bell, On the problem of hidden variables in quantum
mechanics, Rev. Mod. Phys. 38, 447 (1966).

[23] S. Kochen and E. P. Specker, The Problem of hidden variables
in quantum mechanics, J. Math. Mech. 17, 59 (1967).

[24] R. W. Spekkens, Contextuality for preparations, transforma-
tions, and unsharp measurements, Phys. Rev. A 71, 052108
(2005).

[25] R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner, and
G. J. Pryde, Preparation Contextuality Powers Parity-Oblivious
Multiplexing, Phys. Rev. Lett. 102, 010401 (2009).

[26] M. D. Mazurek, M. F. Pusey, R. Kunjwal, K. J. Resch, and R. W.
Spekkens, An experimental test of noncontextuality without
unphysical idealizations, Nat. Commun. 7, 11780 (2016).

[27] D. Schmid, R. Spekkens, and E. Wolfe, All the noncontextuality
inequalities for arbitrary prepare-and-measure experiments with
respect to any fixed set of operational equivalences, Phys. Rev.
A 97, 062103 (2018).

[28] D. Schmid and R. Spekkens, Contextual Advantage for State
Discrimination, Phys. Rev. X 8, 011015 (2018).

[29] D. Saha and A. Chaturvedi, Preparation contextuality as an es-
sential feature underlying quantum communication advantage,
Phys. Rev. A 100, 022108 (2019).

[30] R. Kunjwal, M. Lostaglio, and M. F. Pusey, Anomalous weak
values and contextuality: Robustness, tightness, and imaginary
parts, Phys. Rev. A 100, 042116 (2019).

[31] A. Tavakoli and R. Uola, Measurement incompati-
bility and steering are necessary and sufficient for

062607-12

https://doi.org/10.1088/1751-8121/ab3ae4
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/581771.581773
http://arxiv.org/abs/arXiv:0810.2937
https://doi.org/10.1088/1751-8121/abb5dc
https://doi.org/10.1103/PhysRevLett.98.010401
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1103/PhysRevLett.115.020501
https://doi.org/10.1103/PhysRevA.92.042117
https://doi.org/10.1145/2699464
https://doi.org/10.1038/s41534-019-0133-3
https://doi.org/10.1103/PRXQuantum.2.020334
https://doi.org/10.22331/q-2022-01-05-620
https://doi.org/10.22331/q-2021-06-29-484
https://doi.org/10.1103/PhysRevA.73.052116
https://doi.org/10.1103/PhysRevA.75.042103
https://doi.org/10.1103/PhysRevA.80.052116
https://doi.org/10.1007/s11128-019-2228-3
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/PhysRevA.71.052108
https://doi.org/10.1103/PhysRevLett.102.010401
https://doi.org/10.1038/ncomms11780
https://doi.org/10.1103/PhysRevA.97.062103
https://doi.org/10.1103/PhysRevX.8.011015
https://doi.org/10.1103/PhysRevA.100.022108
https://doi.org/10.1103/PhysRevA.100.042116


PARTIAL-IGNORANCE COMMUNICATION TASKS IN … PHYSICAL REVIEW A 105, 062607 (2022)

operational contextuality, Phys. Rev. Research 2, 013011
(2020).

[32] M. F. Pusey, J. Barrett, and T. Rudolph, On the reality of the
quantum state, Nat. Phys. 8, 475 (2012).

[33] M. Leifer, Is the quantum state real? An extended review of
ψ-ontology theorems, Quanta 3, 67 (2014).

[34] E. D. Andersen, Certificates of Primal or Dual Infeasibility in
Linear Programming, Comp. Opt. Applic. 20, 171 (2001).

[35] R. J. Duffin and A. C. Schaeffer, A Class of Nonharmonic
Fourier Series, Trans. Am. Math. Soc. 72, 341 (1952).

[36] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional
Conference Series in Applied Mathematics (SIAM, Philadel-
phia, 1992).

[37] R. Balan, P. Casazza, C. Heil, and Z. Landau, Density, overcom-
pleteness, and localization of frames, Electron. Res. Announc.
Am. Math. Soc. 12, 71 (2006).

[38] T. Strohmer and R. W. Heath, Jr., Grassmannian frames with
applications to coding and communication, Appl. Comput.
Harmon. Anal. 14, 257 (2003).

[39] N. Leonhard, Correlation minimizing frames, Ph.D. thesis, Uni-
versity of Houston, 2016.

[40] L. R. Welch, Lower bounds on the maximum cross-correlation
of signals, IEEE Trans. Inform. Theory 20, 397 (1974).

[41] O. Christensen, Frames and Bases: An Introductory Course
(Birkhäuser, Basel, Switzerland, 2008).

[42] P. Frenkel and M. Weiner, Classical Information Storage in
an n-Level Quantum System, Commun. Math. Phys. 340, 563
(2015).

[43] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, England, 2004).

[44] T. Lee, Z. Wei, and R. de Wolf, Some upper and lower bounds
on PSD-rank, Math. Program. 162, 495 (2017).

062607-13

https://doi.org/10.1103/PhysRevResearch.2.013011
https://doi.org/10.1038/nphys2309
https://doi.org/10.12743/quanta.v3i1.22
https://doi.org/10.1023/A:1011259103627
https://doi.org/10.1090/S0002-9947-1952-0047179-6
https://doi.org/10.1090/S1079-6762-06-00163-6
https://doi.org/10.1016/S1063-5203(03)00023-X
https://doi.org/10.1109/TIT.1974.1055219
https://doi.org/10.1007/s00220-015-2463-0
https://doi.org/10.1007/s10107-016-1052-0

