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Multipartite entanglement to boost superadditivity of coherent information in quantum
communication lines with polarization-dependent losses
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Coherent information quantifies the achievable rate of the reliable quantum information transmission through
a communication channel. Use of the correlated quantum states instead of the factorized ones may result in an
increase in the coherent information, a phenomenon known as superadditivity. However, even for simple physical
models of channels it is rather difficult to detect the superadditivity and find the advantageous multipartite states.
Here we consider the case of polarization-dependent losses and propose some physically motivated multipartite
entangled states which outperform all factorized states in a wide range of the channel parameters. We show that,
in the asymptotic limit of infinite number of channel uses, the superadditivity phenomenon takes place whenever
the channel is neither degradable nor antidegradable. Besides the superadditivity identification, we also provide
a method to modify the proposed states and get a higher quantum communication rate by doubling the number
of channel uses. The obtained results give a deeper understanding of coherent information in the multishot
scenario and may serve as a benchmark for quantum capacity estimations and future approaches toward an
optimal strategy to transfer quantum information.
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I. INTRODUCTION

Quantum information represents quantum states in a va-
riety of forms including superpositions and entanglement.
Quantum information significantly differs from classical in-
formation because quantum states cannot be deterministically
cloned in contrast to classical letters. On the other hand,
it is quantum information that should be transferred along
physical communication lines to connect quantum computers
in a network and manipulate a long-distance entanglement,
which potentially has numerous applications [1,2]. A suc-
cessful transmission of quantum information through a noisy
channel implies a perfect transfer (in terms of the fidelity)
of any quantum state by arranging appropriate encoding
and decoding procedures at the input and the output of the
channel, respectively, see Refs. [3–6]. Physical meaning of
quantum information transfer is also discussed in Ref. [7]
from the viewpoint of creating entanglement between distant
laboratories, provided the channel can be used many times.
A multishot scenario implies n uses of the communication
channel so n quantum information carriers, e.g., photons, are
treated as a whole. By �(n) we denote the average density
operator of an ensemble of n-partite states used in the quantum
communication task [3]. In this paper, we report entangled n-
partite states �(n) that enable to transmit an increasing amount
of quantum information with the increase of n.

If each of n information carriers propagates through a
memoryless noisy quantum channel �, then the average noisy
output is �⊗n[�(n)]. The decoder aims at reproducing the
encoded state. A figure of merit for this task is the achievable
communication rate that quantifies how many qubits per chan-
nel use can be reliably transmitted in the sense that the error

vanishes in the asymptotic limit of infinitely many channel
uses. The quantum capacity Q(�) is defined as the supre-
mum of achievable communication rates among all possible
encodings and decodings. The result of the seminal paper [6]
generalizes some previous observations [3–5] and shows that

Q(�) = lim
n→∞ Qn(�),

where

Qn(�) = 1

n
Q1(�⊗n), Q1(�) = sup

�

Ic(�,�),

Ic(�,�) = S(�[�]) − S(�̃[�]).

Ic(�,�) is a so-called coherent information that quantifies
an asymmetry between the von Neumann entropy S(�[�]) of
the channel output and the von Neumann entropy S(�̃[�]) of
a complementary channel output. In other words, the coherent
information effectively quantifies an asymmetry between the
receiver information S(�[�]) and the information S(�̃[�])
diluted into the environment. To make this description precise,
consider a quantum channel � : B(HA) → B(HB), where HA

and HB are the Hilbert spaces of input and output, respec-
tively, and B(H) denotes a set of bounded operators on
H. Hereafter, we consider finite-dimensional Hilbert spaces
because we will further focus on a finite-dimensional physi-
cal model of polarization-dependent losses. The Stinespring
dilation for � : B(HA) → B(HB) reads as follows in the
Schrödinger picture:

�[�] = trE [V �V †], (1)

where V : HA → HB ⊗ HE is an isometry (V †V = IA), HE

denotes the Hilbert space of the effective environment, and
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trE is the partial trace with respect to the effective environment
(see, e.g., [8]). The formula

�̃[�] = trB[V �V †]

defines a channel �̃ : B(HA) → B(HE ) that is complemen-
tary to � : B(HA) → B(HB). Since the Stinespring dilation
(1) is not unique for a given channel �, neither is the comple-
mentary channel �̃; however, all complementary channels are
isometrically equivalent (see, e.g., [8]).

Suppose two quantum channels � : B(HA) → B(HB) and
�′ : B(HA′ ) → B(HB′ ) are both degradable, i.e., there exist
quantum channels D and D′ such that �̃ = D ◦ � and �̃′ =
D′ ◦ �′; the symbol ◦ denotes a concatenation of maps. Then
the coherent information is subadditive [9] in the sense that

Ic(�AA′ ,� ⊗ �′) � Ic(�A,�) + Ic(�A′,�′). (2)

An immediate consequence of Eq. (2) is the additivity
of the one-shot capacity, Q1(� ⊗ �′) = Q1(�) + Q1(�′). If
�′ = �⊗(n−1), then we get Q1(�⊗n) = nQ1(�) by mathemat-
ical induction. Hence, if the channel � is degradable, then the
quantum capacity Q(�) coincides with the one-shot quantum
capacity Q1(�). Subadditivity of coherent information for
degradable channels significantly simplifies calculations of
the quantum capacity and shows that the quantum capacity
can be achieved with the use of classical-inspired random
subspace codes of block length 1 [3–6].

If the channel � is antidegradable, i.e., there exists a
quantum channel A such that � = A ◦ �̃, then Ic(�,�) is
nonpositive and vanishes for pure states � = |ψ〉〈ψ |. Simi-
larly, Ic(�,�⊗n) � 0. This implies the trivial equality Q(�) =
Q1(�) = 0, i.e., all encodings are equally useless for quantum
information transmission.

If � : B(HA) → B(HB) is neither degradable nor an-
tidegradable, then it may happen that there exists an n-partite
quantum state �(n) = �A1···An such that

Ic
(
�A1···An ,�

⊗n
)

>
∑

k

Ic(�Ak ,�)

and Qn(�) > Q1(�). This case corresponds to superadditiv-
ity of coherent information, which implies that some special
quantum codes (for which �(n) is correlated) can outperform
conventional ones [for which �(n) = (�(1) )⊗n]. The super-
additivity phenomenon is predicted for qubit depolarizing
channels if n � 3 [10,11], so-called dephrasure qubit channels
if n � 2 [12] (for which superadditivity was also analyzed
experimentally [13]), a concatenation of an erasure qubit
channel with an amplitude damping qubit channel [14], some
qutrit channels and their higher-dimensional generalizations
[15,16], and a collection of specific channels if n � n0, where
n0 � 2 can be arbitrary [17]. In this paper, we focus on quan-
tum communication lines with polarization-dependent losses
[18–22], which also exhibit the coherent information superad-
ditivity for some values of attenuation factors [23].

Consider a lossy quantum communication line such that
the transmission coefficient for horizontally polarized pho-
tons, pH , differs from that for vertically polarized photons,
pV . The simplest example is a horizontally oriented linear
polarizer for which pH = 1 and pV = 0. In practice, how-
ever, all values 0 � pH � 1 and 0 � pV � 1 are attainable

(see, e.g., [24]), which leads to a two-parameter family of
qubit-to-qutrit channels

�

[(
�HH �HV

�V H �VV

)]

=

⎛⎜⎜⎝
pH�HH

√
pH pV �HV 0√

pH pV �V H pV �VV 0

0 0
(1 − pH )�HH

+(1 − pV )�VV

⎞⎟⎟⎠,

(3)

with pH and pV being the parameters. The extra (third) di-
mension in Eq. (3) corresponds to the vacuum contribution
|vac〉 that leads to no detector clicks. If pH = pV , then we get
the standard erasure channel [25,26]. If pH 
= pV , then Eq. (3)
defines a generalized erasure channel [23] (cf. a similar but
different concept in Ref. [14]) induced by the trace decreasing
operation � → �F [�] := F�F †, where

F = √
pH |H〉〈H | + √

pV |V 〉〈V |,
|H〉 and |V 〉 are the single-photon states with horizontal and
vertical polarization, respectively. The brief version of Eq. (3)
is

�[�] = F�F † ⊕ tr[(I − F †F )�] |vac〉〈vac|.
The term tr[(I − F †F )�] is the state-dependent erasure prob-
ability. Denoting G := √

I − F †F and recalling the notation
�G[�] := G�G†, the channel (3) takes the form

� = �F ⊕ (Tr ◦ �G), (4)

where Tr denotes the trash-and-prepare map � →
tr[�] |vac〉〈vac|. Interestingly, a complementary channel
�̃ can be expressed as [23]

�̃ = �G ⊕ (Tr ◦ �F ),

which is equivalent to the change pH → 1 − pH and pV →
1 − pV in Eq. (3).

The fact that � and �̃ have the same structure was used in
Ref. [23] to prove that � is antidegradable [so that Q(�) = 0]
if and only if max(pH , pV ) � 1

2 or pH = 0 or pV = 0; see
the green (medium gray) region in Fig. 1. It was also shown
in Ref. [23] that Q(�) > 0 beyond the antidegradability re-
gion. � is degradable [so that Q(�) = Q1(�)] if and only
if min(pH , pV ) � 1

2 or pH = 1 or pV = 1; see the red (dark
gray) region in Fig. 1. The final result of Ref. [23] is the
analytical proof of superadditivity relation Q2(�) > Q1(�)
for two regions of attenuation factors: (i) 1

2 < pH < 1 and
0 < pV < 1 − pH , (ii) 1

2 < pV < 1 and 0 < pH < 1 − pV ;
see the yellow (light gray) areas in Fig. 1. White regions in
Fig. 1 are terra incognita, where neither the degradability nor
the antidegradability holds, and no strategies are known to
outperform the one-shot capacity Q1(�).

The goal of this paper is twofold. First, we are going to
close the gap in our understanding of the coherent-information
superadditivity region in Fig. 1. To do so we provide some
physically motivated n-partite entangled states �(n), using
which the coherent-information superadditivity region ex-
tends further and completely covers the white area in Fig. 1
in the limit n → ∞. This result is interesting per se as it
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FIG. 1. Dimensionless attenuation factors pH and pV for hor-
izontally and vertically polarized photons for which the quantum
channel (3) is degradable [red (dark gray) area], antidegradable
[green (medium gray) area], both degradable and antidegradable
(black points). Yellow (light gray) regions correspond to the
coherent-information superadditivity detected with the use of two-
letter encodings [23].

presents an analytical proof of the coherent-information su-
peradditivity for an arbitrary n � 2. Second, for fixed values
of pH and pV , we are interested in finding particular states
�(n) leading to higher values of the coherent information. In
this regard, we propose a scheme enabling one to get a higher
quantum communication rate by doubling the number of
channel uses.

II. SUPERADDITIVITY IDENTIFICATION

Technically, it is quite difficult to maximize the coherent
information Ic(�(n), �⊗n) with respect to n-qubit density op-
erators �(n) even if pH , pV , and n are all fixed. In the case of
the one-shot capacity (n = 1), the optimal state �

(1)
opt is shown

to be diagonal in the basis |H〉, |V 〉 for all pH and pV , i.e.,

�
(1)
opt = �HH |H〉〈H | + �VV |V 〉〈V |;

however, a closed-form expression for the coefficients �HH

and �VV is still missing so they appear as a solution of some
equation that can be readily solved numerically [23]. If �

is not antidegradable, then both �HH > 0 and �VV > 0 so
that Q1(�) = Ic(�(1)

opt, �) > 0. Therefore, a random subspace
code to attain Q1(�) does not need to exploit superpositions
of horizontally and vertically polarized photons in its en-
semble states. If the degradability property holds for � [see
the red (dark gray) region in Fig. 1], then Q(�) = Q1(�) =
1
n Ic((�(1)

opt )
⊗n, �⊗n) and there is no need to consider, nor benefit

from considering, states �(n) other than (�(1)
opt )

⊗n. If � is neither
degradable nor antidegradable, then there is a potential for
improvement. In Sec. II A, we review in detail an approach of
Ref. [23] to find a two-qubit state �(2) outperforming (�(1)

opt )
⊗2

in value of the two-shot coherent information Ic(�, �⊗2) for
some parameters pH and pV . In Sec. II B, we generalize that
approach to lower bound the n-shot quantum capacity Qn(�)
for an arbitrary number n of channel uses.

A. Two-shot capacity

Suppose n = 2. Consider the state

�(2) = (
�

(1)
opt

)⊗2 + �HH�VV (|HV 〉〈V H | + |V H〉〈HV |)
= �2

HH |HH〉〈HH | + �2
VV |VV 〉〈VV |

+ 2�HH�VV
|HV 〉 + |V H〉√

2

〈HV | + 〈V H |√
2

. (5)

Clearly, the diagonals of density matrices �(2) and (�(1)
opt )

⊗2

coincide in the standard basis (|HH〉, |HV 〉, |V H〉, |VV 〉).
The two photon states |HV 〉 and |V H〉 experience the
same attenuation even if pH 
= pV due to the obvious
symmetry. In fact, all vectors from the subspace H1,1 :=
Span(|HV 〉, |V H〉) are equally attenuated, which makes it
easy to calculate the output state

�⊗2
[
�(2)

] = (
�

[
�

(1)
opt

])⊗2 + pH pV �HH�VV (|HV 〉〈V H | + |V H〉〈HV |)
= p2

H�2
HH |HH〉〈HH | + p2

V �2
VV |VV 〉〈VV | + 2pH pV �HH�VV

|HV 〉 + |V H〉√
2

〈HV | + 〈V H |√
2

+ ((1 − pH )�HH + (1 − pV )�VV )
(
�

(1)
opt ⊗ |vac〉〈vac| + |vac〉〈vac| ⊗ �

(1)
opt

)
+ ((1 − pH )�HH + (1 − pV )�VV )2|vac〉〈vac| ⊗ |vac〉〈vac|.

The density operators �⊗2[�(2)] and (�[�(1)
opt])

⊗2
differ by

their action in the subspace H1,1; namely, �⊗2[�(2)] acts as a
coherent operator

2pH pV �HH�VV
|HV 〉 + |V H〉√

2

〈HV | + 〈V H |√
2

, (6)

whereas (�[�(1)
opt])

⊗2
acts as an incoherent operator

pH pV �HH�VV (|HV 〉〈HV | + |V H〉〈V H |). (7)

This leads to a readily accountable difference in spectra of the
two states. Spectrum of (6) is (2pH pV �HH�VV , 0) and that of
(7) is (pH pV �HH�VV , pH pV �HH�VV ). We have

S(�⊗2[�(2)]) = S
((

�
[
�

(1)
opt

])⊗2) − (2 log 2)pH pV �HH�VV .

Hereafter, the logarithm base can be chosen at wish depending
on the preferred units of information; the base equals 2 if
the information is quantified in bits. As the complementary
channel �̃ is obtained from the direct channel � by the change
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pH → 1 − pH and pV → 1 − pV , we readily have

S(�̃⊗2[�(2)]) = S
((

�̃
[
�

(1)
opt

])⊗2)
− (2 log 2)(1 − pH )(1 − pV )�HH�VV .

Finally, we get

Ic(�(2), �⊗2)

= S(�⊗2[�(2)]) − S(�̃⊗2[�(2)])

= S
((

�
[
�

(1)
opt

])⊗2) − S
((

�̃
[
�

(1)
opt

])⊗2)
+ (2 log 2)(1 − pH − pV )�HH�VV

= 2Ic
(
�

(1)
opt, �

) + (2 log 2)(1 − pH − pV )�HH�VV

= 2Q1(�) + (2 log 2)(1 − pH − pV )�HH�VV . (8)

The coherent information is superadditive if (1 − pH −
pV )�HH�VV > 0, i.e., if pH + pV < 1 and the state �

(1)
opt is

nondegenerate. The latter condition is fulfilled if � is not an-
tidegradable. Combining these conditions we get two yellow
(light gray) regions in Fig. 1, where

Q2(�) � 1
2 Ic(�(2), �⊗2) > Q1(�).

B. n-shot capacity

Suppose n > 2. A generalization of the approach in
Sec. II A would be to consider a state (�(1)

opt )
⊗n and modify it

to a state �(n), which would differ from (�(1)
opt )

⊗n when acting
on some subspace that is symmetric with respect to permu-
tations of photons. Physically, the subspace is to be chosen
in such a way as to ensure a high enough detection probabil-
ity for all states from the subspace. Suppose pH > pV ; then
the state |H〉⊗n has the highest detection probability, but the
corresponding subspace Hn,0 := Span(|H〉⊗n) is trivial (has
dimension 1). So we consider the subspace Hn−1,1 spanned
by the vector |H〉⊗(n−1) ⊗ |V 〉 and all its photon-permuted
versions. The detection probability for all states from this
subspace equals pn−1

H pV . The following entangled n-qubit W
state belongs to Hn−1,1:

|W (n)〉 = 1√
n

(| HH · · · HH︸ ︷︷ ︸
n−1

V 〉 + | HH · · · H︸ ︷︷ ︸
n−2

V H〉 + · · ·

+ |V H · · · HHH︸ ︷︷ ︸
n−1

〉) ∈ Hn−1,1. (9)

Consider the n-qubit density operator �(n) defined through

�(n)|ϕ〉 =
{(

�
(1)
opt

)⊗n|ϕ〉 if |ϕ〉 ⊥ Hn−1,1,

n�n−1
HH �VV |W (n)〉〈W (n)||ϕ〉 if |ϕ〉 ∈ Hn−1,1.

The restriction of �(n) to the subspace Hn−1,1 is a coherent
(rank-1) operator

��(n)�Hn−1,n := n�n−1
HH �VV |W (n)〉〈W (n)|, (10)

whereas the restriction of (�(1)
opt )

⊗n to the subspace Hn−1,1 is a
mixed (rank-n) operator⌊(

�
(1)
opt

)⊗n⌋
Hn−1,n

:= �n−1
HH �VV

(| HH · · · HH︸ ︷︷ ︸
n−1

V 〉〈HH · · · HH︸ ︷︷ ︸
n−1

V |

+ | HH · · · H︸ ︷︷ ︸
n−2

V H〉〈HH · · · H︸ ︷︷ ︸
n−2

V H |

+ · · · + |V H · · · HHH︸ ︷︷ ︸
n−1

〉〈V H · · · HHH︸ ︷︷ ︸
n−1

|), (11)

but beyond that restriction

�(n) − ��(n)�Hn−1,n = (
�

(1)
opt

)⊗n − ⌊(
�

(1)
opt

)⊗n⌋
Hn−1,n

.

Using the direct sum representation (4) of the channel �,
we explicitly find its tensor power

�⊗n = �⊗n
F ⊕ · · · ⊕ [

�
⊗(n−k)
F ⊗ (Tr ◦ �G)⊗k

] ⊕ · · ·︸ ︷︷ ︸
(n

k) terms

⊕ · · · ⊕ (Tr ◦ �G)⊗n, (12)

where the brace denotes a direct sum of
(n

k

)
different terms,

with each term being a permuted tensor product of n − k
maps �F and k maps Tr ◦ �G. Let us consider how the term
�

⊗(n−k)
F ⊗ (Tr ◦ �G)⊗k affects the operators ��(n)�Hn−1,n and

�(�(1)
opt )

⊗n�Hn−1,n . Recalling the effect of the partial trace on W

states, we see that the coherent component of �
⊗(n−k)
F ⊗ (Tr ◦

�G)⊗k[��(n)�Hn−1,n ] reads

�n−1
HH �VV pn−k−1

H pV (1 − pH )k (n − k)|W (n−k)〉〈W (n−k)|
⊗ (|vac〉〈vac|)⊗k, (13)

whereas �
⊗(n−k)
F ⊗ (Tr ◦ �G)⊗k[�(�(1)

opt )
⊗n�Hn−1,n ] has the

completely incoherent component

�n−1
HH �VV pn−k−1

H pV (1 − pH )k

× (| HH · · · HH︸ ︷︷ ︸
n−k−1

V 〉〈HH · · · HH︸ ︷︷ ︸
n−k−1

V |

+ | HH · · · H︸ ︷︷ ︸
n−k−2

V H〉〈HH · · · H︸ ︷︷ ︸
n−k−2

V H | + · · ·

+ |V H · · · HHH︸ ︷︷ ︸
n−k−1

〉〈V H · · · HHH︸ ︷︷ ︸
n−k−1

|)
⊗ (|vac〉〈vac|)⊗k. (14)

The operator (13) has the only nonzero eigenvalue,
whereas the operator (14) has n−k coincident nonzero eigen-
values, with traces of the two operators being the same.
Therefore, the only nonzero eigenvalue of the operator (13) is
(n − k) multiplied by any nonzero eigenvalue of the operator
(14). This leads to a simple expression for the difference in
entropies, namely,

S
(
�

⊗(n−k)
F ⊗ (Tr ◦ �G)⊗k

[
�(n)

])
= S

(
�

⊗(n−k)
F ⊗ (Tr ◦ �G)⊗k

[(
�

(1)
opt

)⊗n])
− �n−1

HH �VV pV pn−k−1
H (1 − pH )k (n − k) log(n − k).

(15)

Since the operators (10) and (11) are invariant with respect
to permutations of photons, each term in the brace in Eq. (12)
results in the same entropy decrement as in Eq. (15). Summing
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all the decrements, we get

S
(
�⊗n

[
�(n)

]) = S
(
�⊗n

[(
�

(1)
opt

)⊗n]) − �n−1
HH �VV

n−1∑
k=0

(
n

k

)
pV pn−k−1

H (1 − pH )k (n − k) log(n − k).

Similarly, for the complementary channel we have

S(�̃⊗n[�(n)]) = S
(
�̃⊗n

[(
�

(1)
opt

)⊗n]) − �n−1
HH �VV

n−1∑
k=0

(
n

k

)
(1 − pV )(1 − pH )n−k−1 pk

H (n − k) log(n − k).

Finally, we get

Qn(�) − Q1(�) � 1

n

[
Ic(�(n), �⊗n) − Ic

(
(�(1)

opt )
⊗n, �⊗n

)]
= 1

n
�n−1

HH �VV

n−1∑
k=0

(
n

k

)
(n − k) log(n − k)

[
(1 − pV )(1 − pH )n−k−1 pk

H − pV pn−k−1
H (1 − pH )k

]
= �n−1

HH �VV

n−1∑
k=0

(
n − 1

k

)
log(n − k)

[
(1 − pV )(1 − pH )n−k−1 pk

H − pV pn−k−1
H (1 − pH )k

]
= �n−1

HH �VV

n−1∑
k=0

(
n − 1

k

)
(1 − pH )n−k−1 pk

H [(1 − pV ) log(n − k) − pV log(k + 1)]. (16)

If the obtained expression (16) is positive, then we success-
fully identify the coherent-information superadditivity in the
form Qn(�) > Q1(�). Suppose � is not antidegradable; then
�HH > 0, �VV > 0, and Qn(�) > Q1(�) if the sum in Eq. (16)
is positive.

In the above analysis, we assumed pH > pV . The converse
case pV > pH obviously reduces to the considered one if we
replace |H〉 ↔ |V 〉 in Eq. (9). Therefore, we make the follow-
ing conclusion: Qn(�) > Q1(�) if � is not antidegradable and
wn(pH , pV ) > 0, where

wn(pH , pV ) :=
n−1∑
k=0

(
n − 1

k

)
(1 − pH )n−k−1 pk

H

× [(1 − pV ) log(n − k) − pV log(k + 1)]

(17)

if pH > pV ,

wn(pH , pV ) :=
n−1∑
k=0

(
n − 1

k

)
(1 − pV )n−k−1 pk

V

× [(1 − pH ) log(n − k) − pH log(k + 1)]

(18)

if pV > pH .
In the case n = 2, the condition w2(pH , pV ) > 0 is equiv-

alent to pH + pV < 1, i.e., we reproduce the results of
Sec. II A. If n � 3, then the region of parameters pH and
pV , where Qn(�) > Q1(�), is strictly larger than the region,
where Q2(�) > Q1(�); see Fig. 2. Interestingly, the greater
n the larger the region where Qn(�) > Q1(�). If n = 104,
then the condition w104 (pH , pV ) > 0 defines a region in the
plane (pH , pV ), which almost coincides with the area where
� is neither degradable nor antidegradable (see Fig. 2). This
observation motivates us to study the asymptotic behavior of
wn(pH , pV ).

The binomial distribution {(n−1
k

)
(1 − p)n−k−1 pk}n−1

k=0 tends
to the normal distribution N (np, np(1 − p)) with the mean
value np and the standard deviation

√
np(1 − p) when 0 <

p < 1 and n tends to infinity [27]. Therefore, the terms with
k ≈ npH contribute the most to Eq. (17) and the terms with
k ≈ npV contribute the most to Eq. (18). In the asymptotic
limit n → ∞ we have

wn(pH , pV ) ≈ (1 − 2pV ) log n + (1 − pV ) log(1 − pH )

− pV log pH if pH > pV , (19)

wn(pH , pV ) ≈ (1 − 2pH ) log n + (1 − pH ) log(1 − pV )

− pH log pV if pV > pH . (20)

FIG. 2. Nested superadditivity regions Qn(�) > Q1(�) [yellow
(light gray) areas] in the parameter space (dimensionless attenuation
factors pH and pV for horizontally and vertically polarized photons)
with boundaries depicted for various values: n = 2 (dotted line),
n = 3, 10, 102, 103, 104 (dashed lines from left to right).
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Hence, wn(pH , pV ) > 0 in the asymptotic limit n → ∞ if
0 < pV < 1

2 < pH < 1 or 0 < pH < 1
2 < pV < 1, which is

exactly the region, where � is neither degradable nor an-
tidegradable (see Fig. 2).

Suppose the parameters pH and pV are fixed. Exploiting the
asymptotic formulas (19) and (20) and solving the inequality
wn(pH , pV ) � 0, we estimate the number n needed to observe
the superadditivity phenomenon Qn > Q1:

n � n0 :=
⎧⎨⎩

( p
pV
H

(1−pH )1−pV

) 1
1−2pV if 0 < pV < 1

2 < pH < 1,( p
pH
V

(1−pV )1−pH

) 1
1−2pH if 0 < pH < 1

2 < pV < 1.

If n � n0, then the proposed states yield the following benefit
in the quantum communication rate:

1

n
Ic(�(n), �⊗n)

≈ Q1(�)

+
{

(1 − 2pV )�n−1
HH �VV log n if 0 < pV < 1

2 < pH < 1,

(1− 2pH )�HH�n−1
VV log n if 0 < pH < 1

2 < pV < 1.

III. SUPERADDITIVITY IMPROVEMENT

The goal of the previous section was to detect the coherent-
information superadditivity in the widest region of parameters
pH and pV . In this section we discuss how to get a higher
quantum communication rate (for fixed values of pH and pV )
by using the channel multiple times.

Our approach is to combine two n-qubit states �(n) from
Sec. II and slightly modify them to get a better 2n-qubit
state ξ (2n). To illustrate this approach, consider the region
0 < pV < 1 − pH < 1

2 , where Q2 > Q1 (see Sec. II A).
Let �(2) be a partially coherent state given by Eq. (5). The
four-qubit state �(2) ⊗ �(2) inherits some superpositions in the
subspace spanned by 12 vectors: |HHHV 〉, |HHV H〉,

|HV HH〉, |HV HV 〉, |HVV H〉, |HVVV 〉, |V HHH〉,
|V HHV 〉, |V HV H〉, |V HVV 〉, |VV HV 〉, and |VVV H〉. On
the other hand, the states |HHVV 〉 and |VV HH〉 incoherently
contribute to �(2) ⊗ �(2) though they have the same detection
probability p2

H p2
V . We use the latter fact to construct a more

coherent version of the state �(2) ⊗ �(2) as follows:

ξ (4) := �(2) ⊗ �(2) + �2
HH�2

VV (|HHVV 〉〈VV HH |
+ |VV HH〉〈HHVV |).

The states �(2) ⊗ �(2) and ξ (4) have the almost identical spec-
tra, with the difference being in the eigenspace spanned by
|HHVV 〉 and |VV HH〉. That difference is translated into the
operators �⊗4

F [ξ (4)] and �⊗4
F [�(2) ⊗ �(2)], which results in

S
(
�⊗4

F [ξ (4)]
) = S

(
�⊗4

F [�(2) ⊗ �(2)]
)

− (2 log 2)p2
H p2

V �2
HH�2

VV .

Since the partial trace of the operator
(|HHVV 〉〈VV HH | + |VV HH〉〈HHVV |) with respect to any
photon vanishes, this means that �⊗3

F ⊗ (Tr ◦ �G)[ξ (4)] =
�⊗3

F ⊗ (Tr ◦ �G)[�(2) ⊗ �(2)], etc., so that the density
operators ξ (4) and �(2) ⊗ �(2) are both mapped to the
same operator when affected by any map involving the
trash-and-prepare operation Tr for at least one of the qubits.
Recalling the fact that �⊗4 = [�F ⊕ (Tr ◦ �G)]⊗4, we get

S(�⊗4[ξ (4)]) = S(�⊗4[�(2) ⊗ �(2)])

− (2 log 2)p2
H p2

V �2
HH�2

VV .

Similarly,

S(�̃⊗4[ξ (4)]) = S(�̃⊗4[�(2) ⊗ �(2)])

− (2 log 2)(1 − pH )2(1 − pV )2�2
HH�2

VV .

These relations lead to a greater coherent information as
compared to twice the expression (8), namely,

Ic(ξ (4), �⊗4) = S(�⊗4[ξ (4)]) − S(�̃⊗4[ξ (4)])

= S(�⊗4[�(2) ⊗ �(2)]) − S(�̃⊗4[�(2) ⊗ �(2)]) + (2 log 2)�2
HH�2

VV

[
(1 − pH )2(1 − pV )2 − p2

H p2
V

]
= 2Ic(�(2), �⊗2) + (2 log 2)�2

HH�2
VV

[
(1 − pH )2(1 − pV )2 − p2

H p2
V

]
= 4Q1(�) + (4 log 2)�HH�VV (1 − pH − pV ) + (2 log 2)�2

HH�2
VV

[
(1 − pH )2(1 − pV )2 − p2

H p2
V

]
. (21)

Dividing Eq. (21) by 4, we get a better lower bound

Q4(�) − Q1(�) � 1
4 Ic(ξ (4), �⊗4) − Q1(�)

= [
1 + 1

2�HH�VV (1 − pH − pV + 2pH pV )
]

× (log 2)(1 − pH − pV )�HH�VV . (22)

The lower bound (22) significantly outperforms the lower
bound (16) for n = 4 in a wide range of parameters pH and
pV . For instance, if pH = 0.7 and pV = 0.2, then Eq. (22)
yields Q4(�) − Q1(�) � 6.3 × 10−3 bits, whereas Eq. (16)
yields Q4(�) − Q1(�) � 9.1 × 10−5 bits.

Clearly, the presented approach works well to extend the
n-qubit state �(n) from Sec. II B to a 2n-qubit state ξ (2n)

by modifying the state (�(n) )⊗2 in the subspace spanned by
|H〉⊗n ⊗ |V 〉⊗n and |V 〉⊗n ⊗ |H〉⊗n. Similarly, the modified
2n-qubit state ξ (2n) can further be improved to a 4n-qubit state
and so on ad infinitum. Starting with the two-qubit state in
Sec. II A, we get the following result:

Q(�) − Q1(�) � (log 2)(1 − pH − pV )
∞∑

m=0

�2m

HH�2m

VV

2m

×
2m−1∑
k=0

(1− pH )2m−k−1(1− pV )2m−k−1 pk
H pk

V .
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IV. CONCLUSIONS

A phenomenon of the coherent-information superadditivity
makes it possible to enhance the quantum communication
rate by using clever codes. In this paper, we have studied
the superadditivity phenomenon in physically relevant quan-
tum communication lines with polarization-dependent losses.
Such lines represent a two-parameter family of generalized
erasure channels �, with the attenuation factors pH and pV

for horizontally and vertically polarized photons being the
parameters. In prior research, two-shot capacity Q2(�) was
shown to be greater than the one-shot capacity Q1(�) for some
values of pH and pV within the region pH + pV < 1 [23].
Interestingly, if pH + pV � 1, then � is input degradable in
the sense that there exists a quantum channel ϒ such that
�̃ = � ◦ ϒ . Making an analogy with the case of standard
degradable channels, it is tempting to conjecture that the input
degradability implies Qn(�) = Q1(�) if pH + pV � 1. Our
study shows that this conjecture is false: the three-qubit state
�(3) in Sec. II B insures Q3(�) > Q1(�) if pH + pV = 1 and
0 
= pH 
= pV 
= 0; see Fig. 2.

The more the number of channel uses in Sec. II B the wider
the region of parameters pH and pV , where the superadditiv-
ity phenomenon takes place. In the limit of infinitely many
channel uses, we have proved the strict inequality Q(�) >

Q1(�) for all pH and pV satisfying 0 < pV < 1
2 < pH < 1

or 0 < pH < 1
2 < pV < 1, i.e., Q(�) > Q1(�) whenever � is

neither degradable nor antidegradable. A feature of the state
proposed in Sec. II B is that it has a clear physical meaning:
�(n) has an entangled component proportional to |W (n)〉〈W (n)|,
which in turn has a high detection probability and whose
structure is preserved by polarization-dependent losses due
to the permutation symmetry. Clearly, one could alternatively
use another Dicke state [28,29] instead of |W (n)〉; however, the
detection probability would be less in that case.

In this work, we were interested not only in the super-
additivity identification but also in its improvement with
the increase of channel uses. In Sec. II B, we proposed a
method how to get a higher quantum communication rate by
doubling the number of channel uses. We believe that the
scheme is far from being optimal, which necessitates a further
search of better codes, e.g., by using a neural network state
ansatz [30,31]. Nonetheless, our analytically derived states
with known asymptotic values of coherent information may
serve as a benchmark for future codes generated by numerical
optimization.

ACKNOWLEDGMENT

The author thanks Maksim E. Shirokov for fruitful com-
ments. This work was supported by the Russian Science
Foundation under Grant No. 19-11-00086, https://rscf.ru/en/
project/19-11-00086/.

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[2] M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-
dimensional quantum entanglement, Nat. Rev. Phys. 2, 365
(2020).

[3] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A
55, 1613 (1997).

[4] H. Barnum, M. A. Nielsen, and B. Schumacher, Information
transmission through a noisy quantum channel, Phys. Rev. A
57, 4153 (1998).

[5] P. W. Shor, Quantum error correction, in Lecture notes of MSRI
Workshop on Quantum Information and Cryptography, Novem-
ber 4–8, 2002 (unpublished), available at https://www.msri.org/
workshops/203/schedules/1181.

[6] I. Devetak, The private classical capacity and quantum capacity
of a quantum channel, IEEE Trans. Inf. Theory 51, 44 (2005).

[7] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, 2013).

[8] A. S. Holevo, Quantum Systems, Channels, Information. A
Mathematical Introduction (de Gruyter, Berlin, 2012).

[9] I. Devetak and P. Shor, The capacity of a quantum channel for
simultaneous transmission of classical and quantum informa-
tion, Commun. Math. Phys. 256, 287 (2005).

[10] D. P. DiVincenzo, P. W. Shor, and J. A. Smolin, Quantum-
channel capacity of very noisy channels, Phys. Rev. A 57, 830
(1998).

[11] J. Fern and K. B. Whaley, Lower bounds on the nonzero capac-
ity of Pauli channels, Phys. Rev. A 78, 062335 (2008).

[12] F. Leditzky, D. Leung, and G. Smith, Dephrasure Channel and
Superadditivity of Coherent Information, Phys. Rev. Lett. 121,
160501 (2018).

[13] S. Yu, Y. Meng, R. B. Patel, Y.-T. Wang, Z.-J. Ke, W. Liu,
Z.-P. Li, Y.-Z. Yang, W.-H. Zhang, J.-S. Tang, C.-F. Li, and
G.-C. Guo, Experimental Observation of Coherent-Information
Superadditivity in a Dephrasure Channel, Phys. Rev. Lett. 125,
060502 (2020).

[14] V. Siddhu and R. B. Griffiths, Positivity and nonadditivity
of quantum capacities using generalized erasure channels,
IEEE Trans. Inf. Theory 67, 4533 (2021).

[15] V. Siddhu, Entropic singularities give rise to quantum transmis-
sion, Nat. Commun. 12, 5750 (2021).

[16] F. Leditzky, D. Leung, V. Siddhu, G. Smith, and J. A. Smolin,
Generic nonadditivity of quantum capacity in simple channels,
arXiv:2202.08377.

[17] T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García,
and S. Strelchuk, Unbounded number of channel uses may be
required to detect quantum capacity, Nat. Commun. 6, 6739
(2015).

[18] N. Gisin and B. Huttner, Combined effects of polarization mode
dispersion and polarization dependent losses in optical fibers,
Opt. Commun. 142, 119 (1997).

[19] B. T. Kirby, D. E. Jones, and M. Brodsky, Effect of polariza-
tion dependent loss on the quality of transmitted polarization
entanglement, J. Lightwave Technol. 37, 95 (2019).

[20] C. Li, M. Curty, F. Xu, O. Bedroya, and H.-K. Lo,
Secure quantum communication in the presence of

062606-7

https://rscf.ru/en/project/19-11-00086/
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1038/s42254-020-0193-5
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/PhysRevA.57.4153
https://www.msri.org/workshops/203/schedules/1181
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1103/PhysRevA.57.830
https://doi.org/10.1103/PhysRevA.78.062335
https://doi.org/10.1103/PhysRevLett.121.160501
https://doi.org/10.1103/PhysRevLett.125.060502
https://doi.org/10.1109/TIT.2021.3080819
https://doi.org/10.1038/s41467-021-25954-0
http://arxiv.org/abs/arXiv:2202.08377
https://doi.org/10.1038/ncomms7739
https://doi.org/10.1016/S0030-4018(97)00236-8
https://doi.org/10.1109/JLT.2018.2879754


SERGEY N. FILIPPOV PHYSICAL REVIEW A 105, 062606 (2022)

phase- and polarization-dependent loss, Phys. Rev. A 98,
042324 (2018).

[21] S. N. Filippov, Trace decreasing quantum dynamical maps:
Divisibility and entanglement dynamics, arXiv:2108.13372.

[22] S. N. Filippov, Entanglement robustness in trace decreasing
quantum dynamics, Quanta 10, 15 (2021).

[23] S. N. Filippov, Capacity of trace decreasing quantum operations
and superadditivity of coherent information for a generalized
erasure channel, J. Phys. A: Math. Theor. 54, 255301 (2021).

[24] I. Bongioanni, L. Sansoni, F. Sciarrino, G. Vallone, and P.
Mataloni, Experimental quantum process tomography of non-
trace-preserving maps, Phys. Rev. A 82, 042307 (2010).

[25] M. Grassl, T. Beth, and T. Pellizzari, Codes for the quantum
erasure channel, Phys. Rev. A 56, 33 (1997).

[26] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Capacities of
Quantum Erasure Channels, Phys. Rev. Lett. 78, 3217 (1997).

[27] Z. Govindarajulu, Normal approximations to the classical dis-
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