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With the long coherence time, fixed-frequency transmon qubits are a promising qubit modality for quan-
tum computing. Currently, diverse qubit architectures that utilize fixed-frequency transmon qubits have been
demonstrated with high-fidelity gate performance. Nevertheless, the relaxation times of transmon qubits can
have large temporal fluctuations, causing instabilities in gate performance. The fluctuations are often believed
to be caused by nearly on-resonance couplings with sparse two-level-system (TLS) defects. To mitigate their
impact on qubit coherence and gate performance, one direct approach is to tune the qubits away from these
TLSs. In this work, to combat the potential TLS-induced performance fluctuations in a tunable-bus architecture
unitizing fixed-frequency transmon qubits, we explore the possibility of using an off-resonance microwave drive
to effectively tune the qubit frequency through the ac Stark shift while implementing universal gate operations on
the microwave-dressed qubit. We show that the qubit frequency can be tuned up to 20 MHz through the ac Stark
shift while keeping minimal impacts on the qubit control. Besides passive approaches that aim to remove these
TLSs through more careful treatments of device fabrications, this work may offer an active approach towards
mitigating the TLS-induced performance fluctuations in fixed-frequency transmon qubit devices.
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I. INTRODUCTION

With the advantages of long coherence times [1–4] and
simplified demands on the electronic control circuits, the
fixed-frequency transmon qubit [5] has been demonstrated as
a leading qubit modality for quantum computing [1]. This
can be partially manifested by the progress that diverse qubit
architectures, which utilize fixed-frequency transmon qubits,
have demonstrated with high-fidelity gate performance, such
as all-microwave-controlled qubit architecture with fixed in-
terqubit coupling [6–13], qubit architecture with tunable bus
[14] or tunable coupler [15,16], and qubit architecture com-
bining both fixed-frequency qubits and frequency-tunable
qubits [17]. However, just the same as frequency-tunable
transmon qubits [18], the relaxation times of fixed-frequency
transmon qubits can show large temporal fluctuations [19–21].
Since the current gate performance approaches the qubit
coherence limit [1], the fluctuations can lead to prominent
performance instabilities in transmon qubit devices [17,22].

For transmon qubit devices, the fluctuations in relax-
ation times are often believed to be attributed to nearly
on-resonance couplings with sparse two-level-system (TLS)
defects [18–21]. The TLS defect can act as environmental
noise coupled to the qubit with the noise spectral density
peaked around its frequency. As the frequency of the TLS
defect can have temporal fluctuations due to its couplings to
thermally fluctuating defects (i.e., low-frequency TLSs with
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frequencies less than kBT , where kB is the Boltzmann constant
and T is the working temperature of the qubit devices, typi-
cally 10 mK), this could explain the fluctuations in relaxation
times of transmon qubits [23–26]. Meanwhile, in conditions
where qubit relaxations contain non-negligible contributions
from quasiparticles, the variations of qubit relaxation times
could also be attributed to the fluctuation in the quasiparticle
density near the qubit junctions [27–29] or the fluctuations in
quasiparticle dissipation channels [30,31]. Nevertheless, for
well-shielded transmon qubit devices, transmon qubits have
been shown not yet limited by losses related to quasiparticles
[4]. Additionally, a recent result also suggests that quasiparti-
cles trapped in shallow subgap states can also behave similarly
to TLS [32].

Generally, the existence of performance fluctuations sug-
gests that, to maintain a reliable and high-fidelity gate
performance, rapid and frequent qubit characterizations are
needed [33]. Moreover, besides being frequently recharac-
terized for detecting and tracking these fluctuations, one has
also to actively mitigate the detrimental impact on gate per-
formance. For the state-of-the-art transmon qubit devices, the
TLS defects that are coupled strongly or nearly on-resonantly
to qubits are generally sparse [18,21]. Thus, to mitigate the
TLS-induced performance fluctuations, the direct and active
approach is to tune the qubit away from the dominant TLS
defect, and then a recalibration of gate operations should be
employed to find new optimal control parameters [33]. We
note that ultimately, passive approaches that aim to remove the
detrimental TLS defects through more advanced fabrication
technology, should work successfully, but currently, the exact
nature of the TLS defect is still unknown [34] and this active
approach may be a more practical solution.
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For fixed-frequency transmon qubits, to mitigate TLS-
induced performance fluctuations, one can effectively tune its
frequency through the off-resonance drive induced ac Stark
shift [21,35–37], and choose the microwave-dressed qubit
states as the basis states of a new qubit, i.e., the dressed
qubit [13,38–42]. In this way, gate operations should be im-
plemented on this microwave-dressed basis. However, while
the ac Stark shift has been recognized as an effective tool for
tuning qubit frequency, its compatibility with the gate oper-
ations on superconducting qubits is less studied [13,40,42].
In this work, to combat the potential TLS-induced perfor-
mance fluctuations in a tunable-bus architecture unitizing
fixed-frequency transmon qubits [43], we examine the pos-
sibility of tuning the qubit away from the dominant TLS
defect through the ac Stark shift while implementing universal
qubit control, including gate operations, qubit initialization,
and readout, on the microwave-dressed qubit. We show that
although parasitic interactions induced by the Stark drive ex-
ist, one can still mitigate their detrimental impacts on qubit
control. Thus, using the Stark drive, the qubit frequency can
be tuned up to 20 MHz while keeping minimal impact on the
qubit control.

The rest of the paper is organized as follows: In Sec. II, we
give brief descriptions of the microwave-dressed qubit, show-
ing how to mitigate the detrimental effect from a dominated
TLS defect through the ac Stark shift. In Sec. III, in a tunable-
bus architecture, we examine the possibility of implementing
universal qubit control, including gate operations, qubit ini-
tialization, and readout, for the microwave-dressed qubit. In
Sec. IV, we give discussions on the feasibility of the proposed
scheme for mitigating TLS-induced performance fluctuations.
Finally, we give conclusions of our investigation in Sec. V.

II. COMBATING TWO-LEVEL SYSTEM–INDUCED
FLUCTUATIONS WITH MICROWAVE-DRESSED STATES

Here, first, for easy reference and to set the notation, we
briefly review some basic properties of the qubit subjected
to an off-resonance Stark drive, including the ac Stark shift
and the decoherence of the qubit in the presence of the Stark
drive. Accordingly, in the following discussion, we call the
qubit subjected to a Stark drive as microwave-dressed qubit
or dressed qubit, and call the undriven qubit as the bare qubit.
Then, we illustrate the mechanism of mitigating the detrimen-
tal effect from a dominated TLS defect through the ac Stark
shift.

A. ac Stark shift

Here, as shown in Fig. 1, we consider a transmon qubit
driven by an always-on off-resonance microwave drive. For
illustration purposes only, the qubit is treated as an ideal
two-level system. Thus, the Hamiltonian of this driven qubit
system can be written as H = ωqσz/2 + �s cos(ωst )σx (here-
inafter, we set h̄ = 1), where ωq denotes the bare qubit
frequency, ωs and �s represent the frequency and the am-
plitude of the drive (hereafter called a Stark drive) which is
introduced to induce an ac Stark shift for the qubit. After ap-
plying the rotating wave approximation (RWA), and moving
into the rotating frame with respect to the Stark drive, the

Off-resonance drive for effec�vely 
tuning the qubit frequency

Pulse for implemen�ng 
single-qubit gate opera�ons

FIG. 1. Illustration of mitigating TLS-induced relaxation fluctu-
ations of a qubit through the off-resonance drive induced ac Stark
shift. The inset shows how the fluctuation in qubit relaxation times
occurs due to its coupling to a dominant TLS for which its frequency
can have temporal fluctuation, and how to mitigate the relaxation
fluctuations through tuning the qubit away from the TLS, i.e., tuning
from ωq [solid orange (light gray) arrow] to ω̃q [dashed orange (light
gray) arrow]. Blue solid curve denotes the noise spectral density
peaked at the TLS’s frequency ωT LS (solid black arrow), and blue
dashed line for the case when fluctuations in the TLS’s frequency
occurs (dashed black arrow) due to its couplings to thermally fluctu-
ating defects (low-frequency TLS defects).

Hamiltonian becomes Hr = �sσz/2 + �sσx/2, where �s =
ωq − ωs denotes the detuning of the qubit from the Stark
drive frequency. Finally, considering the unitary transfor-
mation U1 = exp(−iθσy/2) with θ = arctan(�s/�s), Hr can
be diagonalized and expressed as Heff = �Z/2 with � =
(�2

s + �2
s )1/2. Here, Z ≡ cos θσz + sin θσx denotes the Pauli

operator defined in the dressed basis (i.e., the eigenstates of
Hr): {

|1〉 ≡ sin
θ

2
|g〉 + cos

θ

2
|e〉,

|0〉 ≡ cos
θ

2
|g〉 − sin

θ

2
|e〉

}
. (1)

According to the above discussion, for the microwave-
driven qubit, the ac Stark shift can be expressed as δω =
� − �s ≈ �2

s /(2�s). However, since the transmon qubit is
naturally a multilevel system with a weak anharmonicity [5],
its higher energy levels can give non-negligible contributions
to the Stark shift δω. Thus, modeling the transmon qubit as
an anharmonic oscillator with the anharmonicity η and taking
the higher energy levels, especially the second-excited state
| f 〉, into considerations, the ac Stark shift [21,36] can be
approximated as (the second-order perturbation result)

δω ≈ �2
s

2�s
− (

√
2�s)2

4(�s + η)
= η�2

s

2�s(�s + η)
. (2)

B. Decoherence of the microwave-dressed qubit

We now discuss the environment-induced decoherence of
the microwave-dressed qubit. The environment noise coupled
to the qubit can be described as Hδλ = δλzσz/2 + δλ⊥σ⊥/2,
where σ⊥ represents the transverse Pauli component, δλz and
δλ⊥ denote the fluctuations in qubit parameters caused by the
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environment noise transversally and longitudinally coupled to
the qubit, respectively.

Here, we consider that Sλ(ω) ≡ 1/(2π )
∫

dt〈δλ(0)
δλ(t )〉e−iωt denotes the quantum noise spectral density
associated with parameter λ. Taking into account that
the transmon qubit devices generally work at very low
temperatures (ωq � kBT ), we neglect the absorption
process involving Sλ⊥ (−ω) and only consider the emission
process involving Sλ⊥ (+ω) (here, ω 	 ωq) [44]. Thus, the
relaxation time T̃1 and the pure dephasing time T̃φ of the
microwave-dressed qubit can be expressed as [44,45]

1

T̃1
= π

[
1 + cos2 θ

4

S̃λ⊥ (ωs,�)

2
+ sin2 θSλz (�)

]
,

1

T̃φ

= π

[
cos2 θSλz (0) + sin2 θ

4
Sλ⊥ (ωs)

]
, (3)

with S̃λ⊥ (ωs,�) = Sλ⊥ (ωs + �) + Sλ⊥ (ωs − �). The above
equation shows that, due to the Stark drive–induced state
hybridization, the environmental noise, transversally (lon-
gitudinally) coupled to the bare qubit, can contribute to
the dephasing (relaxation) of the microwave-dressed qubit.
Moreover, for the qubit relaxation, the transverse noise at the
sideband frequencies ωs + � and ωs − � contribute to the
relaxation (depolarization) of the dressed qubit. This notable
feature can be captured by a qualitative picture, i.e., depending
on the parameters (e.g., detuning and magnitude) of external
drives (Stark drives), the drives could act as distinct noise
spectral filters, allowing the qubits, i.e., spectrometers, to
sense the environment noise differently in frequency space
[45,46].

C. Mitigating two-level system–induced coherence degradation

For the state-of-the-art transmon qubit devices, the TLS
defects that are coupled strongly or nearly on-resonantly to
qubits are generally sparse [18,21]. Therefore, one may rea-
sonably expect that when prominent degradations in qubit
relaxation times occur, the dominated contribution could be
attributed to a single TLS defect that is coupled nearly on-
resonantly to the qubit [18,20,21]. As shown in the inset of
Fig. 1, as the dominated TLS defect can generally act as an
environmental noise with the spectral density Sλ⊥ (ω) peaked
around its frequency ωT LS , pushing the qubit frequency away
from ωT LS , i.e., from ωq to ω̃q, can mitigate its impact on
the qubit relaxation time. This mitigation procedure can be
further explained by Eq. (3), which gives the expression of
the relaxation rate 1/T̃1. Specifically speaking, for the TLS-
induced noise peaked at ωT LS , by carefully choosing the Stark
drive frequency ωs and the drive amplitude �s, only the noise
at ωs ± �, in which the amplitude of the noise spectral density
is far less than that at ωT LS , contributes to the qubit relaxation.
Thus, the ac Stark shift can be introduced to protect the qubit
from the TLS noise peaked at its frequency.

Note that, compared with the bare qubit, there are two
additional decoherence channels for the microwave-dressed
qubit: (i) the amplitude-fluctuations, phase-fluctuations, and
frequency-fluctuations of the Stark drive can also act as an
additional channel contributing to qubit dephasing or relax-
ation [13,47–49]. (ii) For the case of a two-level qubit, the

computational basis, i.e., Eq. (1), only involves the {|g〉, |e〉}.
However, since the transmon qubit is a multilevel system,
the higher energy levels of the transmon qubit, such as | f 〉,
are also involved in the definition of the computational basis
for the dressed transmon qubit. This could give rise to an
additional dephasing or relaxation channel [12,50].

III. QUBIT CONTROL WITH DRESSED-BASIS
IN TUNABLE-BUS ARCHITECTURES

In this section, we examine the possibility of implement-
ing universal control on the microwave-dressed transmon
qubit, including gate operations, state initialization, and read-
out for the dressed qubit. In the following discussion, we
give our analysis on a tunable-bus architecture, where two
fixed-frequency transmon qubits Q1 and Q2 are coupled via
a tunable bus Qt [43]. In this tunable-bus architecture, the
bus can mediate an effective ZZ coupling between the two
qubits. One can turn off the ZZ coupling when implementing
single-qubit control, such as single-qubit gate operations, state
initialization, and readout. When turning on the ZZ coupling,
two-qubit controlled-Z (CZ) gates can be realized.

In the presence of a Stark drive applied to one of the
two fixed-frequency qubits, the system Hamiltonian can be
expressed as (here, for illustration purposes only, the Stark
drive is applied to Q1)

H =
∑

i=1,2,t

[
ωia

†
i ai + ηi

2
a†

i a†
i aiai

]

+
∑

k=1,2

[gk (a†
t ak + at a

†
k )]

+ �s

2
(a†

1e−iωst + a1e+iωst ), (4)

where the subscript i = {1, 2, t} labels Qi with anharmonicity
ηi and bare mode frequency ωi, ai (a†

i ) is the annihilation (cre-
ation) operator for Qi, and gk denotes the coupling strength
between the tunable bus Qt and the qubit Qk . As in Sec. II A,
in the presence of the Stark drive applied to Q1, we can define
the microwave-dressed qubit states of Q1 as the basis states
for qubit control. In this way, the tunable bus can mediate
an effective ZZ coupling between the bare qubit Q2 and the
microwave-dressed qubit Q1 [43].

Similar to the procedure given in Sec. II A, after applying
the RWA and moving into the rotating frame with respect
to the Stark drive, the ZZ coupling strength, which is de-
fined as ζZZ ≡ (E11 − E10) − (E01 − E00), can be obtained
by diagonalizing the system Hamiltonian. Here, Ejk denotes
eigenenergy of microwave-dressed qubit system associated
with doubly dressed eigenstate | j̃k〉 (involving both state hy-
bridizations from the Stark drive and the qubit-bus coupling),
which is adiabatically connected to the bare state | j0k〉 (here-
inafter, the notation |Q1 Qt Q2〉 is used, denoting the system
state). Figures 2(a)–2(c) show the strength of the ZZ coupling
between Q2 and dressed Q1 as a function of the bus frequency
ωt and the detuning �s (here denoting the detuning of Q1

from the Stark drive). The system parameters are qubit fre-
quency ω1/2π = 5.0 GHz, ω2/2π = 5.2 GHz anharmonicity
η1 = η2 = ηt = η with η/2π = −300 MHz, and qubit-bus
coupling g1 = g(ω1ωt/ω

2
ref )1/2, g2 = g(ω2ωt/ω

2
ref )1/2 with
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FIG. 2. ZZ coupling strength ζZZ as a function of the bus frequency (ωt ) and the detuning �s of qubit from the applied Stark drive
frequency. Here, the system parameters are qubit frequency ω1/2π = 5.0 GHz, ω2/2π = 5.2 GHz, anharmonicity η1 = η2 = ηt = η (η/2π =
−300 MHz), and qubit-bus coupling g1 = g2 = g (g/2π = 25 MHz) (at ω1 = ω2 = ωt = 5.5 GHz). (a)–(c) The Stark drive is applied to Q1

and (d)–(f) to Q2. The amplitude �s of the Stark drive are |�s| in panels (a) and (d), |�s|/2 in panels (b) and (e), and |�s|/4 in panels (c) and
(f). The black arrows indicate the dips and peaks due to the presence of the Stark drive–induced parasitic interactions [red (light gray) texts].
These interactions involve multi-excitation transitions, which are enabled by high-order processes, as indicated by the states involved in the
transitions. Thus, the strengths are generally far smaller than that of the qubit-bus couplings and the drive. Moreover, the Stark drive also act as
the leading contribution. This can explain that, by decreasing the drive amplitude �s, the dips and peaks slowly disappear. The horizontal black
dashed lines indicate examples of the Stark drive frequencies �s for Q1 and Q2 that are chosen to avoid the detrimental parasitic interactions
caused by the applied Stark drives.

g/2π = 25 MHz and ωref/2π = 5.5 GHz [51]. In Figs. 2(a)–
2(c), the Stark drive amplitudes �s are |�s|, |�s|/2, and
|�s|/4, respectively. In Figs. 2(d)–2(f), we also show the
results for the Stark drive applied to Q2, showing the ZZ cou-
pling between the bare qubit Q1 and the microwave-dressed
qubit Q2.

As shown in Figs. 2, compared with the result in Ref. [43],
the presence of the Stark drive causes two prominent fea-
tures:

(i) Both the zero-ZZ point and the interaction point for
resonance coupling between |101〉 and |020〉, which are used
for implementing CZ gates [43], are shifted. In addition, in
some scenarios, the zero-ZZ point can disappear. This is to be
expected because the off-resonance Stark drive can contribute
an additional ZZ coupling due to different ac Stark shifts of
the computational states [12,13,50,52–54].

(ii) There are several dips and peaks in the ZZ coupling.
After examining the system spectrum, we find that these dips
and peaks result from the resonance interactions involving the
qubits and the bus, as marked in Fig. 2. Moreover, the Stark
drive–induced transitions also participate in the processes that
enable these resonance interactions. This can explain that
by decreasing the drive amplitude �s, e.g., from Figs. 2(a)
to 2(c), these dips and peaks slowly disappear. Since these
interactions are enabled by high-order processes, the coupling
strengths are generally far smaller than that of the qubit-bus
couplings and the off-resonance drive, and the energy gaps of

their associated anticrossings typically range from sub-MHz
to a few MHz. Similar to the result discussed in Ref. [43],
for implementing fast diabatic CZ gates [55], the presence of
these parasitic interactions will give rise to a trade-off between
the error resulting from the desired interaction involving |101〉
and |020〉 and the error from these parasitic resonance interac-
tions with tiny energy gaps. Generally speaking, during the CZ

gate operations, a slow gate-speed is better for mitigating the
leakage from |101〉 to |020〉 (or leakage involving other inter-
actions with larger coupling strengths, such as the bus-qubit
interactions, which can potentially cause the leakage from the
qubits to the bus). However, to mitigate the leakage error from
these parasitic interactions with tiny anticrossings, short-time
gates are better.

According to the above discussion, to ensure high-fidelity
two-qubit gate operations, the Stark drive frequency (i.e.,
detuning �s) should be chosen carefully to avoid inducing
parasitic interactions. Without a doubt, this will limit the
available range of the frequency and the amplitude of the
Stark drive. However, as shown in Fig. 2, there still exists
available parameter regions, for which one can avoid the
detrimental parasitic interactions. As an example, the black
dashed lines in Figs. 2(a) and 2(d) denote suitable frequencies
(�s/2π = {50, 70} MHz) of the Stark drives applied to Q1

and Q2, respectively. Accordingly, Figs. 3(a) and 3(b) show
the ac-Stark shift δω versus the Stark drive amplitude �s. The
results shown in Figs. 2 and 3 indicate that by varying the
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FIG. 3. The ac-Stark shift versus the magnitude of the Stark
drive. (a) The detuning of the Stark drive applied to Q1 is �s/2π =
50 MHz, as marked in Figs. 2(a)–2(c). (b) The detuning of the Stark
drive applied to Q2 is �s/2π = 70 MHz, as marked in Figs. 2(d)–
2(f). Other system parameters are the same as those used in Fig. 2.
The blue (light gray) solid lines denote the results obtained by nu-
merical calculation, and the black dashed lines for analytical method,
i.e., according to Eq. (2). The orange squares mark the Stark drive
amplitudes which are used in Sec. III B.

amplitude of the applied Stark drive from 0 to 50 MHz, the ac-
Stark shift of the dressed qubit can be continually tuned from
0 to 20 MHz while avoiding detrimental parasitic interactions
induced by the Stark drives themselves.

In the following discussion, for illustration purposes, to ex-
amine the performance of qubit control on the dressed qubits,
the detuning �s are chosen as 50 and 70 MHz for the Stark
drives applied to the Q1 and Q2, respectively. Additionally,
we restrict our discussion to the case where the Stark drive is
only applied to one of the two qubits. The main reason will be
given in Sec. IV.

A. Qubit initialization and readout

In the presence of the always-on Stark drive, the com-
putational basis is the microwave-dressed basis. Therefore,
the qubit control, including qubit initialization and readout,
should be also operated on the dressed state. Similar to the
procedure designed for dressed spin qubits [56] or Floquet
qubits [57], by slowly ramping up or down the amplitude
of the Stark drive, the bare qubit states {|g〉, |e〉} and the
dressed qubit states {|0〉, |1〉} can be adiabatically mapped
to each other, thus enabling the initialization and readout of
the dressed qubit. In this way, the qubit initialization can be
realized by first initializing the qubit in the bare qubit state,
e.g., |g〉, and then adiabatically mapping to the corresponding
dressed state, e.g., |0〉. While for implementing qubit readout,
the reverse procedure is first applied, thus mapping the dressed
state to the corresponding bare state, and then the traditional
readout can be employed. Therefore, the fidelities of the
dressed-qubit initialization and readout depend on the applied
ramp process. Figure 4 shows the fidelity of the adiabatical
map from the dressed-qubit state |0(1)〉 to the bare state |g(e)〉
versus the ramp time tr and the Stark drive amplitude for
Q1 with the Stark detuning �s/2π = 50 MHz. The pulse
shape for ramp down process is �(t ) = �s{1 − cos[π (t −
tr )/tr]}/2, where tr denote the ramp time. As shown in Fig. 4,
high-fidelity (99.9%) state maps can be realized within 30 ns.
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(b)

1 − |〈1|e〉|2

FIG. 4. Error for Q1 in the adiabatical map from the dressed-
qubit state |0〉 (|1〉) to the bare state |g〉 (|e〉) as a function of the
ramp time tr and the Stark drive amplitude �s. (a) Map from the
dressed state |0〉 to the bare state |g〉. (b) Map from the dressed state
|1〉 to the bare state |e〉. Here, the drive detuning is �1/2π = 50 MHz
and pulse shape for the ramping process is �(t ) = �s{1 − cos[π (t −
tr )/tr]}/2. Other system parameters are the same as those in Fig. 2.

However, note that for readout, especially for the dressed
state |1〉, after mapping back to bare state |e〉 and without
the protection of the Stark drive, the readout fidelity may
be limited by the lifetime of state |e〉. To address this, one
may take the excited-state promotion scheme, i.e., applying
an additional π pulse between the states |1〉 and |2〉 before
the adiabatic map and the measurement, as demonstrated in
previous works [58–60]. This scheme may effectively extend
the lifetime of the bare state |e〉, thus improving the readout
fidelity.

B. Gate operations

In this section, we examine the implementation of single-
qubit X gates and two-qubit CZ gates on the proposed two-
qubit system, in which a Stark drive is applied to one of the
two qubits. Note that, in the following discussion, in the two-
qubit system, single-qubit gates for one qubit are tuned up and
characterized with the other qubit in its ground state.

1. Single-qubit gate operation

Here, we consider the implementation of single-qubit X
gates. During the single-qubit gate operations, the bus fre-
quency is biased at 5.7 GHz, giving rise to a residual ZZ
coupling below 15 kHz. For both the microwave-dressed qubit
and the bare qubit, single-qubit X gates are realized using the
derivative removal by adiabatic gate (DRAG) scheme [61].
The pulse shape is �(t ) = �x(t ) + i�y(t ) with

�x(t ) = �d

2
[1 − cos (2πt/tg)], �y(t ) = −α

η
�̇x(t ), (5)

where �d is the peak pulse amplitude, tg is the gate time, α

is a free parameter for mitigating the leakage to nonoccupa-
tional energy levels. Similar to Ref. [43], the X gate is tuned
up by adjusting the driving amplitude �d and the detuning
�d of the pulse drive from the Stark drive frequency for a
fixed gate length (tg = 20 ns) and α = 0.5. Here, note that
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FIG. 5. Power Rabi oscillations for the microwave-dressed qubit.
Population (a) P0 and (b) P1 (Pi denotes the population in the dressed
state |i〉 at the end of the gate operation with fixed gate length
tg = 20 ns) as a function of the driving amplitude �d and the driving
detuning �d of the pulse drive from the Stark drive frequency. The
red (light gray) star indicates the optimal parameter set for realizing
a single-qubit X gate. Here, Q1 is initialized in the dressed state |1〉.
Other system parameters are the same as in Fig. 2. Note here that,
due to the weak anharmonicity of transmon qubits, during the gate
operations, residual populations in the noncomputational states, such
as the second-excited state, can exist. Thus, the sum of populations
in computational states |0〉 and |1〉 is less than 1. With the help of
the DRAG scheme [61], here, the population leakage is suppressed
below 2 × 10−5 over the entire region.

the optimal parameters for realizing X/2 gates can be found
similarly by performing the power Rabi characterization with
two consecutive pulses, and the single-qubit rotations around
the Y axis can be realized by controlling the phase of gate
pulses, as indicated by Eq. (A7).

As high-fidelity single-qubit gates on the bare qubit have
been well demonstrated [1], here we especially focus on
the implementation of single-qubit gates for the microwave-
dressed qubit. First, we show that, by applying an additional
pulse drive to the dressed-qubit, Rabi oscillations between
the dressed qubit states can be realized, thus offering a way
to realize single-qubit gates. Considering that a Stark drive
with the drive detuning �s/2π = 50 MHz and the amplitude
�s/2π = 30 MHz is applied to Q1, Fig. 5 shows the power
Rabi oscillation versus the driving detuning �d for the dressed
qubit Q1 initialized in the dressed state |1〉. The red (light
gray) star in Fig. 5(a) indicates an optimal parameter sets for
performing an almost perfect Rabi oscillation between |0〉 and
|1〉.

Note that, for microwave-dressed qubits, although Rabi os-
cillations can indeed be induced by adding an additional drive,
as shown in Fig. 5, the dynamics seem more complex than that
for undriven bare qubits (see Appendix A for details). This can
be partially manifested by frequency difference between the
optimal frequency of the pulse drive and the frequency of the
microwave-dressed qubit. As marked by the red stars in Fig. 5,
the detuning �d of the optimal pulse drive frequency from the
Stark drive is about 40 MHz. However, according to the ac-
Stark shift in Fig. 3(a), the detuning of the microwave-dressed
qubit Q1 from the Stark drive frequency should be about
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FIG. 6. Gate errors of the single-qubit X operations versus the
Stark drive amplitudes �s. (a) The Stark drive is applied to Q1 with
the drive detuning �s/2π = 50 MHz. (b) The Stark drive is applied
to Q2 with the drive detuning �s/2π = 70 MHz. Other system
parameters are the same as in Fig. 2.

60 MHz (recalling that �s/2π = 50 MHz, and the ac-Stark
shift is about δω/2π = 10 MHz for �s/2π = 30 MHz).

After finding the optimal parameter sets for implement-
ing X gates, we can characterize the gate performance using
the metric of gate fidelity [62]. Here, to quantify the per-
formance of the (isolated) single-qubit X gate applied to
one qubit (i.e., target qubit) in the coupled qubit system,
we always assume that the other nearby qubit (i.e., spectator
qubit) is in the ground state. Figure 6 shows the gate perfor-
mance of the implemented single-qubit gates. In addition, the
gate fidelity for simultaneously implementing single-qubit X
gates is also presented. From these results, one can conclude
that in the presence of a Stark drive applied to one of the
two coupled qubits, X gates applied to the bare qubit show
worse gate performances (gate error ≈10−4) than that for
the microwave-dressed qubits (gate error ≈10−5). Meanwhile,
the performances for the simultaneous X gate operations are
limited by the error from the bare qubits. After examining the
system dynamics during the gate operations, these counterin-
tuitive results can be explained by the interplay between the
Stark drive and the cross-driving crosstalk due to the qubit-
qubit coupling [43], i.e., drives, such as the Stark drive or the
gate drive, applied to Q1 can be felt by Q2 and vice versa.

To further explore the exact nature of the extra error for
bare qubits, in Fig. 7, we show the gate performance as a
function of the frequency of Q1 with Q2 fixed at 5.2 GHz.
Combined with inspections of the dynamics, we conclude
that the presence of the peaked gate error can be attributed
to various parasitic resonance transitions, resulting from
the interplay between the Stark drive and the cross-driving
crosstalk. For example, in Fig. 7(a), where the Stark drive is
applied to Q1, the significant gate error at ω1/2π = 5.0 GHz
is caused by the three-photon transition |000〉 ↔ |102〉 and
the two-photon transition |001〉 ↔ |102〉. In Fig. 7(b), where
the Stark drive is applied to Q2, the significant gate error at
ω1/2π = 4.975 GHz results from the two-photon transition
|000〉 ↔ |002〉 (|100〉 ↔ |102〉), and single-photon transition
|000〉 ↔ |001〉 (|100〉 ↔ |101〉) for ω1/2π = 5.0375 GHz.
Moreover, one can find that both the target qubit and the
spectator qubit are involved in the parasitic transitions. Since
under our definition of gate characterization, we assume that
the spectator qubit is always in its ground state, thereby, these
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FIG. 7. Gate errors of the single-qubit X operations versus the
frequency of Q1 with Q2 fixed at 5.2 GHz. (a) The Stark drive is
applied to Q1 with the drive detuning �s/2π = 50 MHz and the drive
amplitude �s/2π = 20 MHz. (b) The Stark drive is applied to Q2

with the drive detuning �s/2π = 70 MHz and the drive amplitude
�s/2π = 50 MHz. Other system parameters are the same as in
Fig. 2.

parasitic transitions can contribute to the isolated single-qubit
errors, e.g., causing leakage error.

Additionally, we note that for the target qubit Q2, the
peaked gate error at ω1/2π = 4.95 GHz, as shown in
Fig. 7(a), are caused by the transitions |000〉 ↔ |002〉 and
|001〉 ↔ |002〉. The two transitions are solely the result of the
cross-driving from Q1, which is driven by a Stark tone with a
frequency of 4.90 GHz. For Q2, in principle, this cross-drive
could be treated as an unintended Stark drive. However, since
the frequency of this unintended drive is on-resonance with
the transitions involving high-energy levels, i.e, |1〉 ↔ |2〉 of
Q2, the descriptions that are based on two-level approxima-
tion, such as in Appendix A, break down, and the high-energy
level |2〉 will affect the system dynamics significantly. In this
situation, we argue that this unintended cross-drive will give
rise to very nontrivial single-qubit addressing, causing the
extra error at ω1/2π = 4.95 GHz for Q2.

Overall, the above analysis suggests that, although the
presence of the Stark drive has only almost negligible effects
on the gate performance for the microwave-dressed qubit, its
effect on the gate performance for the nearby coupled bare
qubit, which is coupled to the dressed qubit via a tunable
bus, should be seriously considered. Recalling that during
the single-qubit gate operations, the residual ZZ couplings
are suppressed below 15 kHz. The above results further stress
that:

(i) Besides residual ZZ coupling, cross-driving crosstalk
due to qubit-qubit transversal coupling should also be taken
into consideration for implementing high-fidelity gate oper-
ations [43]. Here, the presence of the Stark drive and the
cross-driving crosstalk together lead to parasitic transitions
during single-qubit gate operations on bare qubits.

(ii) The suppression of ZZ coupling does not always
mean that the transversal coupling between qubits, which
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FIG. 8. Two-qubit CZ gate error versus the gate time with differ-
ent Stark drive amplitudes. (a) The Stark drive is applied to Q1 with
the drive detuning �s/2π = 50 MHz, and the drive amplitude are
(20, 30, 40, 45) MHz. (b) The Stark drive is applied to Q2 with the
drive detuning �s/2π = 70 MHz, and the drive amplitude are (20,
30, 40, 50) MHz. Other system parameters are the same as in Fig. 2.

can induce the cross-driving crosstalk, is also suppressed
[63]. Besides ensuring the suppression of the ZZ coupling,
these cross-driving–induced parasitic transitions should also
be minimized. The results shown in Fig. 7(b) suggest that,
for a given qubit-qubit detuning, choosing a suitable Stark
frequency can avoid these parasitic resonance transitions. In
this way, the Stark drive–induced gate error is promising to be
pushed below 10−4.

2. Two-qubit CZ gate operation

To implement two-qubit CZ gates on the two-qubit system,
where a Stark drive is applied to one of the two qubits, we
consider using the fast adiabatic scheme [43,55]. During the
gate operations, the tunable bus varies from the idle point at
5.7 GHz to the interaction point and then comes back accord-
ing to the fast adiabatic pulse (see Appendix B for details).
To implement fast CZ gates, e.g., sub-100-ns CZ gates, the
interaction point should be near the resonance point for the
interaction |101〉 ↔ |020〉, where a large ZZ coupling with
the strength of 10 MHz exists, as shown in Fig. 2. Similar to
Ref. [43], the fidelity of the implemented CZ gates are then
obtained by optimizing the pulse shape. Figure 8 shows the
CZ gate error for various gate times and different Stark drive
amplitudes.

In Fig. 8(a), the Stark drive is applied to Q1, and its de-
tuning �s is 50 MHz. One can find that CZ gate errors below
10−4 can be achieved with the gate time below 100 ns. More
strikingly, in general, the larger the Stark drive amplitude �s,
the worse the CZ gate fidelity becomes. In addition, one can
also find that for gate time greater than certain values, gate
error rises. Similar conclusions can also be obtained for the
case where the Stark drive is applied to Q2, as shown in
Fig. 8(b). As the discussion given in Fig. 2, these features
can be explained by the presence of the parasitic resonance
interactions with tiny energy gaps. These parasitic resonance
interactions are caused by the Stark drive, and involve both
the qubits and the bus. During the gate operations, the qubit
system will pass through or stay nearby to these parasitic
resonance points. Generally, for leakage error due to the
parasitic interactions with tiny strengths, the longer the gate
time, the larger the error becomes [43]. The opposite is the
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FIG. 9. ZZ coupling strength ζZZ as a function of the bus fre-
quency (ωt ) with different qubit-qubit detuning (125, 150, 175, 200)
MHz. Here, Q2 is fixed at 5.2 GHz. (a)–(c) The Stark drive is applied
to Q1 with the drive detuning �s/2π = 50 MHz, and (d)–(f) for Q2

with �s/2π = 70 MHz. The amplitude �s of the Stark drive are |�s|
in panels (a) and (d), |�s|/2 in panels (b) and (e), and |�s|/4 in
panels (c) and (f). The insets enlarge the curves nearby the resonance
points of the interaction |101〉 ↔ |020〉. Other system parameters are
the same as in Fig. 2.

case for leakage error resulting from the desired interaction
|101〉 ↔ |020〉. This trade-off results in the increased error
shown in Fig. 8 for gate time exceeding certain values.

To show explicitly the presence of the parasitic resonance
interactions, Fig. 9 shows the ZZ coupling strength versus the
bus frequency with different qubit detunings. Here, the Q2 is
fixed at 5.2 GHz. As shown in Figs. 9(a)–9(c), for a given
qubit-qubit detuning, when the amplitude of the Stark drive
applied to Q1 decreases, dips and peaks caused by the parasitic
interactions also slowly disappear, in line with the expectation
(see also Fig. 2). Similar results can also be obtained for
the case where the Stark drive applied to Q2, as shown in
Figs. 9(d) and 9(e). Moreover, compared with the case where
the Stark drive applied to Q1, there exist more dips and peaks
for the case where the Stark drive applied to Q2. This explains
that the gate performance is worse when the Stark drive is
applied to Q2, as shown in Fig. 8(b). This suggests that, due to
these parasitic interactions, even without the consideration of
the qubit decoherence, long-time gates do not promise a better
gate performance.

In addition, from the results shown in Fig. 9, we can
conclude that the qubit-qubit detuning should be designed
carefully to suppress the detrimental effect from the para-
sitic interactions in the tunable-bus architecture. As shown

in Figs. 9(d) and 9(f), the smaller the qubit-qubit detuning,
the more the parasitic interactions exist. Overall, the result
shown in Figs. 8 and 9 suggests that, besides the Stark drive
frequency and amplitude, the qubit-qubit detuning can also act
as a control knob for avoiding the parasitic interactions. In this
way, even with the presence of the Stark drive for inducing the
qubit frequency shift up to 20 MHz, sub-100-ns CZ gates can
still be realized in the tunable-bus architecture with gate errors
approaching 10−4.

IV. FEASIBILITY

As demonstrated in previous works [18,21], for the state-
of-the-art transmon qubits, the TLS defects that are coupled
strongly to qubits are generally sparse in spectrum. We thus
expect that tuning qubit frequency by few MHz to tens
of MHz can mitigate the loss due to the dominant TLS
defect, thus stabilizing the qubit relaxation time. For fixed-
frequency transmon qubits, this can be realized by using the
off-resonance Stark drive–induced frequency shift. According
to the discussion given in Sec. III, we show that although
presence of Stark drives can indeed cause additional gate
errors in the tunable-bus architecture utilizing fixed-frequency
transmon qubits, high-fidelity gate operations can still be
achieved by carefully choosing Stark drive frequency, drive
amplitude, and qubit-qubit detuning. As shown in Figs. 3, 6, 8,
we illustrate that one can effectively tune the qubit frequency
up to 20 MHz through the ac Stark shift, while implementing
universal gates with errors below 0.001 on the tunable-bus
architecture. By optimizing the Stark drive frequency and
amplitude, even lower gate error, e.g., below 0.0001, should be
achieved. We thus expect that, for fixed-frequency transmon
qubits, the ac-Stark shift should be a feasible tool for mitigat-
ing TLS-induced performance fluctuations while maintaining
minimal impact on qubit control.

Note that the present study restricts to the case where the
Stark drive is only applied to one of the two qubits. Although
the present analysis can also be applied to the case where both
two qubits are subjected to the Stark drives. We expect that
in that case, the Stark drive–induced parasitic couplings will
further limit the available parameter regions for implementing
high-fidelity gate operations. Furthermore, for the state-of-art
transmon qubit device, the TLS defects coupled strongly to
qubits are generally both few in numbers and sparse in the
spectrum [18,21]. Thus, one can reasonably expect that the
circumstance, where two coupled fixed-frequency transmon
qubits are both coupled strongly to TLS defects at the same
time, should be very rare.

V. CONCLUSION

In this work, we explore the possibility of combating
TLS-induced temporal fluctuations in relaxation rates of
fixed-frequency qubits with microwave-dressed states. Our
analysis focus on the tunable-bus architecture, where fixed-
frequency qubits are coupled via a tunable bus, however, we
expect that many of our conclusions may also be applied to
other qubit architectures utilizing fixed-frequency transmon
qubits. While during gate operations, the Stark drive can lead
to additional gate errors due to parasitic interactions induced
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by the Stark drive, one can mitigate their detrimental impacts
on qubit control by carefully choosing the drive parameters
and the system parameters. In this way, we show that one
can effectively tune the qubit frequency through ac Stark shift
up to 20 MHz while keeping minimal impacts on the qubit
control including qubit initialization, qubit readout, and gate
operations.
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APPENDIX A: SINGLE Q-BIT GATE OPERATIONS
WITH MICROWAVE-DRESSED QUBITS

For illustration purpose and without loss of generality, here
we begin our analysis based on a two-level system subjected
to two microwave drives, for which its dynamics is governed
by the following Hamiltonian:

Hlab = ωq

2
σz + �s cos (ωst )σx + �d cos (ωdt + φ)σx, (A1)

where ωq denotes the bare qubit transition frequency, �s is
the frequency of the Stark drive (for effectively tuning the
qubit frequency) with amplitude �s, and ωd is the frequency
of the gate pulse drive (for implementing single-qubit gate
operations) with amplitude �d . φ denotes the relative phase
between the Stark drive and the gate pulse drive.

After applying the RWA, and moving into the rotating
frame with respect to the off-resonant Stark drive, the Hamil-
tonian can be expressed as HR = H0 + HI with

H0 = �s

2
σz + �s

2
σx,

HI = �d

2
[σ+e−i(�d t+φ) + σ−e+i(�d t+φ)], (A2)

where �s = ωq − ωs (�d = ωd − ωs) denotes the detuning of
the qubit bare frequency (pulse driving frequency) from the
Stark driving frequency. Considering the unitary transforma-
tion U1 = exp(−iθσy/2) with θ = arctan(�s/�s) that intends
to diagonalize H0 in the dressed qubit basis (i.e., the dressed
basis is defined as the eigenstates of H0),{

|1〉 ≡ sin
θ

2
|g〉 + cos

θ

2
|e〉, |0〉 ≡ cos

θ

2
|g〉 − sin

θ

2
|e〉

}
,

(A3)

one can obtain the following dressed system Hamiltonian
Hdress = U †

1 HRU1, (i.e., the Hamiltonian in the dressed basis),

Hdress = [� − �d sin θ cos (�dt + φ)]
Z

2

+ �d cos θ cos (�dt + φ)
X

2

+ �d sin (�dt + φ)
Y

2
, (A4)

where � = (�2
s + �2

s )1/2 denotes the microwave-dressed
qubit detuning, and {X = cos θσx − sin θσz, Y = σy, Z =
cos θσz + sin θσx} represent the Pauli operators defined on the
dressed basis. According to the following unitary transforma-
tion [35,64,65]:

U2 = exp

(
−i

Z

2

[
�t − �d sin θ

�d
sin (�dt + φ)

])
, (A5)

and using the Jacobi-Anger relations, one can obtain the ef-
fective Hamiltonian HJ = U †

2 HdressU2 + i∂t (U
†
2 )U2, i.e.,

HJ = �d cos θ

4
(ei�d t+iφ + e−i�d t−iφ )

×
[

ei�t S+
∞∑

n=−∞
Jn

(
�d sin θ

�d

)
e−in(�d t+φ) + H.c.

]

− �d

4
(ei�d t+iφ − e−i�d t−iφ )

×
[

ei�t S+
∞∑

n=−∞
Jn

(
�d sin θ

�d

)
e−in(�d t+φ) − H.c.

]
,

(A6)

where H.c. denotes the Hermitian conjugate, Jn is the nth-
order Bessel function of the first kind, and S± = (X ± iY )/2.
Applying the RWA and dropping high-order Bessel functions,
one can obtain the following effective Hamiltonian describing
the usual single-qubit driven terms,

Heff = �d cos2 θ
2

2
J0

(
�d sin θ

�d

)
[e−iφS+ei(�−�d ) + H.c.].

(A7)

For system parameters used in the present work, one
has |�d | ∼ |�s| ∼ |�| and the peak amplitude of the pulse
drive �d ∼ |�|. We thus expect that the RWA breaks and
other terms given in Eq. (A6), which involve high-order
Bessel functions, can have non-negligible effects on the
system dynamics. When considering �d ≈ �, these terms
contribute as off-resonance transitions during the single-gate
operations, thus shifting the frequency of the dressed qubit
[35,65,66]. This can explain the frequency mismatch dis-
cussed in Sec. III B 1.

APPENDIX B: PULSE SHAPING FOR IMPLEMENTING
TWO-QUBIT CZ GATES

In the present work, similar to Ref. [43], we use the fast
adiabatic gate scheme for implementing CZ gates by tuning
the bus frequency. Here, for easy reference, we give brief
descriptions of the pulse shape for realizing CZ gates. During
the CZ gate operation, the tunable bus frequency ωt varies
from the idle point (θi) to the interaction point (θ f ) and then
back according to a fast adiabatic pulse. Expressed in terms of
Fourier basis functions, the pulse shape is described as [55]

θ (t ) = θi + θ f − θi

2

∑
n=1,2,3,...

λn

[
1 − cos

2nπt

T

]
, (B1)
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with constraints on the odd coefficients �n odd λn = 1. Here,
the control angle is defined as θ ≡ arctan(2J101/�101), where
J101 represents the strength of the interaction |101〉 ↔ |020〉,
�101 represents the detuning of the qubit system from the
resonance point of the interaction |101〉 ↔ |020〉, and T is the
gate time.

For implementing CZ gates, we consider the
pulse shape defined in Eq. (B1) with three Fourier
terms, for which the associated coefficients are
{λ1, λ2, 1 − λ1}. The free parameters {λ1, λ2, θ f } are
then determined by numerically optimizing the CZ gate
fidelity.
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