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Quantum error correction in the noisy intermediate-scale quantum regime
for sequential quantum computing
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We use density-matrix simulations to study the performance of three distance three quantum error correction
(QEC) codes in the context of the rare-earth (RE) ion-doped crystal platform for quantum computing. We analyze
pseudothresholds for these codes when parallel operations are not available, and examine the behavior both with
and without resting errors. In RE systems, resting errors can be mitigated by extending the system’s ground-state
coherence time. For the codes we study, we find that if the ground-state coherence time is roughly 100 times
larger than the excited-state coherence time, resting errors become small enough to be negligible compared to
other error sources. This leads us to the conclusion that beneficial QEC could be achieved in the RE system with
the expected gate fidelities available in the noisy intermediate-scale quantum regime. However, for codes using
more qubits and operations, a factor of more than 100 would be required. Furthermore, we investigate how often
QEC should be performed in a circuit. We find that for early experiments in RE systems, the minimal �5, 1, 3�

would be most suitable as it has a high threshold error and uses few qubits. However, when more qubits are
available the �9, 1, 3� surface code might be a better option due to its higher circuit performance. Our findings
are important for steering experiments to an efficient path for realizing beneficial quantum error correcting codes
in early RE systems where resources are limited.

DOI: 10.1103/PhysRevA.105.062604

I. INTRODUCTION

Several platforms have been proposed for building scal-
able quantum computers, such as superconducting qubits and
trapped ions. A promising platform, and the focus of this
paper, is rare-earth (RE) ion-doped crystals [1,2]. These have
some particularly attractive features, such as ground-state life-
times of days [3] and coherence times of hours [4], high qubit
connectivity [5] which enables entangling operations on non-
nearest-neighbor qubits, and high spatial density, enabling
efficient integration with optics. RE systems also have some
unique challenges, the main one relevant to this paper being
a need to perform operations in the same quantum processor
node sequentially to minimize crosstalk between qubit ions.
The RE system uses two hyperfine ground states as the |0〉 and
|1〉 states, and a mediant excited state |e〉 is used during gate
operations. The lifetime T1 and coherence time T2 are longer
for the ground states than the excited states [3,4,6–8].

An inherent weakness of quantum computing is its sensi-
tivity to noise, and quantum error correction (QEC) is one of
the proposed solutions. Efforts have been made to study QEC
in the specific context of ion traps [9–11], superconducting
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qubits [12,13], and systems based on nitrogen-vacancy defects
in diamond [14], but it is also being discussed for ensemble
qubits in stoichiometric RE-doped crystals [15]. Because even
resting qubits can accumulate errors, e.g., through T2 deco-
herence, some degree of parallelism of operations is seen as
a requirement for beneficial QEC (see [16,17] and p. 482 in
[18]). However, because the ground-state lifetime of the rare
earths can be extended to several orders of magnitude longer
than the time for a typical gate operation, this could potentially
be relaxed in the RE case. A key point of investigation in this
paper is therefore whether beneficial quantum error correction
can be achieved using sequential operations, provided that the
ground-state coherence time is long enough compared to the
excited-state coherence time. By extending the ground-state
coherence time enough, a sort of pseudoparallelism could
possibly be achieved, in the sense that the resting errors are
small enough compared to other error sources to be neglected.
We also investigate how well the different quantum error cor-
rection protocols could be expected to perform in a rare-earth
system when performing an algorithm.

We have chosen to focus on QEC in the noisy intermediate-
scale quantum (NISQ) regime [19]. For the RE platform this
means one quantum processor node containing around 50–
100 noisy qubits, which could be available in the near future
[2]. In this regime, arbitrarily high fidelity cannot be achieved
through concatenated codes or large surface code lattices due
to lack of resources in terms of available qubits and lower gate
fidelities. Instead, it becomes important to use QEC codes
with high threshold errors and using few qubits. It is still a
challenge for many platforms to demonstrate beneficial QEC
experimentally. An important goal is therefore to investigate
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what would be required of a RE system in order to experimen-
tally demonstrate a gain from using QEC.

To summarize, the questions we want to answer are the
following.

(1) Could beneficial QEC be demonstrated in the RE sys-
tem using current protocols with projected fidelities?

(2) Can an extended resting T2 be sufficient to overcome
the demands for parallelism?

(3) How much can be gained from QEC, given reasonable
parameter values?

II. SIMULATED CODES

To answer the questions posed in Sec. I, we have used
density-matrix simulations (see Appendix B) to investigate
three distance three QEC codes (see [18] and Appendix A1)
in the context of rare-earth quantum computing. Distance 3
codes have logical codewords that are separate from each
other in three places, and represent the minimum distance
needed to correct for any one arbitrary error. The density-
matrix approach was chosen for its ability to model arbitrary
quantum processes. The QEC codes we investigate are the
�5, 1, 3� code [20] using the flag syndrome extraction scheme
of [21], the �7, 1, 3� Steane code [18,22] using the flag syn-
drome extraction scheme of [23], and the �9, 1, 3� Surface-17
code as described in [24], using the lookup table decoder of
[24] with three rounds of stabilizer measurements. Because
projective measurement directly on the data qubits destroys
the stored information, ancillary qubits have to be used for
readout. An important aspect when considering QEC in the
NISQ regime is the efficient use of qubits as a resource,
due to the limited number of qubits available. For this rea-
son, the flag protocols of [21,23] are very appealing, as only
two ancilla qubits are required. This can be compared to the
Shor-syndrome extraction method, which would need four
ancillas [25] or the Steane protocol which requires at least
seven ancillas for the Steane code [26,27]. The main feature
which makes the surface code attractive is its high threshold
error, which could be as high as 1% [28]. Surface-17 uses
17 qubits in total, of which nine are data qubits and eight
ancillas are used for measurements. However, the high qubit
connectivity of the RE system makes it so that we are not
limited to nearest-neighbor interactions for entanglement and
parity measurements [5]. In addition to this, since we propose
using fully sequential operations in each quantum processor
node, we could reduce the number of ancillas required to
just one, using only 9+1 qubits in total for the code we
from here onward call Surface-9(1). This comes at the cost
of increased run time for the error correction scheme. Table I
shows the qubit requirements for each of the simulated codes
with different readout schemes.

III. PSEUDOTHRESHOLDS

In this section we present simulation results intended to
investigate the pseudothresholds [29] of our chosen QEC
codes and extraction schemes. The pseudothreshold is the
break-even point for a given QEC protocol, and can be
seen as the point where the logical error rate is equal to
the physical error rate. The simulations were performed by

TABLE I. Overview of the QEC codes that were simulated in-
cluding the number of qubits used to represent the logical state plus
the number of ancilla qubits.

Readout scheme No. qubits
Code or decoder and ancillas

�5, 1, 3� Flag 5+2
Steane �7, 1, 3� Flag 7+2

Lookup table,
Surface-9(1) �9, 1, 3� three measurement 9+1
(Surface-17) rounds

applying one round of imperfect error correction, and the
logical error rate was calculated as the average over all starting
states corresponding to the six axes of the Bloch sphere,
i.e., |0L〉, |1L〉, |+L〉, |−L〉, etc. For more information see
Appendix B1.

We define the two-qubit gate (TQG) error rate pTQG as the
main error parameter, and error rates for other operations are
defined in terms of this. The single-qubit gate (SQG) error rate
pSQG was set to pTQG/10, which is reasonable for RE systems
[30]. We choose to treat qubit initialization and readout as
single-qubit operations, and therefore the initialization and
readout error rates, pinit and pRO, were set to two-thirds of the
SQG rate. Two-thirds is used because we choose to always
perform initialization and readout in the {|0〉, |1〉} basis, and
they are therefore unaffected by phase errors. A summary
of the values used is given in Table II, together with the
optical coherence time T2,opt and typical duration times for
the different operations. The values of the operations times
were chosen to resemble the ones found in [30,31]. In order to
reach an initialization duration shorter than the excited-state
lifetime a technique based on stimulated emission to another
short-lived crystal-field level can be used [32]. For a thorough
description of the error models used, see Appendix A2. In the
case where a resting error is included, we assume that the
damping coefficient γ is 2pTQG for TQG and initialization,
pTQG for SQG, and 20pTQG for readout. In other words, we
assume that the resting errors reduce as the two-qubit error
reduces. The relative ratios between the different resting errors
come directly from the ratios of their durations.

Figure 1(a) shows how the logical error rate varies as a
function of pTQG, i.e., the two-qubit error rate, when all error
sources are included, and Fig. 1(b) shows the case when
resting errors are excluded. The case with no resting errors is
relevant since the ground-state coherence time of RE systems
is much longer then the gate coherence time. Black, vertical
lines mark the points where the physical TQG error rate is
pTQG = 10−3. Interestingly, the �5, 1, 3�, not Surface-9(1),
performs best both when resting errors are included and ex-
cluded. There are several reasons for this, but the main one
seems to be the comparatively low SQG error that we have
used. Lowering the SQG error compared to the TQG error
improves the performance of all codes, but the effect is larger
for the �5, 1, 3� code than the other two. This discrepancy can
be explained by looking at what proportion of the operations
used in each protocol are single-qubit operations: the �5, 1, 3�
uses 60% single-qubit operations, Surface-9(1) uses 50%, and
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TABLE II. Parameter values used in simulations [30,31].

Parameter Duration tdur (μs) Error symbol Error value Resting error [Fig. 1(a)] Resting error (Fig. 2)

Single-qubit gate 5 pSQG pTQG/10 pTQG γ = e
−tdur

2T2,spin

Two-qubit gate 10 pTQG pTQG 2pTQG γ = e
−tdur

2T2,spin

Readout 100 pRO pTQG2/30 20pTQG γ = e
−tdur

2T2,spin

Initialization 10 pinit pTQG2/30 2pTQG γ = e
−tdur

2T2,spin

the Steane code uses between 50 and 62.5% depending on the
syndrome measurement results. Another reason for the lower
surface code performance could be the choice of the lookup
table decoder, as other decoders could yield better results [12].
Figure 1 also shows that the surface code and Steane code are
more affected by resting errors than the �5, 1, 3� code. This
can be explained by looking at the number of operations and
qubits used in each of the protocols; the �5, 1, 3� uses 55 op-
erations in the best case and 100 operations in the worst case
scenario, and the Steane code uses 96 operations in the best
case and 276 operations in the worst case. Surface-9(1) al-
ways uses 144 operations. The different cases arise as the flag
protocols follow different paths depending on if the circuits
flag or not. Since all operations are performed sequentially,
this means that Surface-9(1) and the Steane code have more

idle time where resting errors are accumulated on more qubits
compared to the �5, 1, 3� code. The higher number of qubits
used by the Steane code and Surface-9(1) compared to the
�5, 1, 3� code also contributes to the higher error, as they have
more qubits in waiting for every operation.

IV. PSEUDOPARALLELISM

In this section we present results aiming to investigate
pseudoparallelism by varying the magnitude of resting er-
rors. The simulations were again performed by applying one
round of imperfect error correction, followed by calculating
the error rate as the average over the six axes of the Bloch
sphere. For these simulations, we used a different model for
resting errors than that of Sec. III. Instead of assuming the

FIG. 1. Pseudothresholds for our chosen codes with resting errors either included (a) or excluded (b). The logical error rates were calculated
as the average for starting states corresponding to the six axes of the Bloch sphere. In panel (a), we have assumed that the resting errors for
the different operations scale with pTQG. This assumes that if we are able to improve pTQG, we will be able to improve the resting errors by
the same factor. Black, vertical lines mark the points where the physical two-qubit error rate is pTQG = 10−3. This is approximately the error
rate where a physical system, with today’s protocols [2], could be expected to lie [30]. The purple (top), dotted lines show pTQG, and the green
(bottom) dotted lines show p2

TQG.
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FIG. 2. Logical error rate as a function of the ground-state co-
herence time T2,spin which varies between 1 ms and 1 h. The x axis
is scaled by the excited-state coherence time T2,opt = 2.5 ms. In
this simulation we have used a different model of the resting error
compared to the one used in Fig. 1(a). Here, we assume a constant
value of the two-qubit error rate, pTQG = 10−3, but the resting errors
still change due to changes in T2,spin (see Table II). This model
therefore assumes that it is possible to reduce resting errors even
though the two-qubit error rate is kept constant. The models give the
same values for all errors when pTQG = 10−3 and T2,spin = 2.5 ms,
which are reasonable values [30] for a RE system using current
protocols [2]. These points are marked with black, vertical lines in
both Figs. 1(a) and 2. Furthermore, in a RE system it is possible
to reach values for T2,spin of hours [4]. This corresponds to points
to the far right in Fig. 2, where the resting errors are small enough
compared to other error sources to be neglected. The errors here have
approximately the same values as in Fig. 1(b) when pTQG = 10−3,
which is marked with a black line in Fig. 1(b). This shows that the
resting errors can be reduced enough to become negligible.

resting errors follow pTQG, we kept the TQG error rate fixed
at pTQG = 10−3, but assumed that we can improve the resting
errors by increasing the ground-state coherence time T2,spin.
Therefore, the magnitudes of the resting errors were calcu-

lated as γ = 1 − e
−tdur

2T2,spin (see Appendix A2b) with the duration
times found in Table II.

The simulation results are shown in Fig. 2, where we have
chosen to scale the ground-state coherence time T2,spin by the
excited-state coherence time T2,opt = 2.5 ms. The point where
T2,spin/T2,opt = 1 is marked with a black, vertical line. At this
point, the error rate and magnitude of the resting errors are ap-
proximately the same as in Fig. 1(a) at the vertical, black line
where pTQG = 10−3. As the value of T2,spin/T2,opt increases, a
plateau is reached where the resting errors are insignificant,
and the logical error rate is essentially the same as at the
vertical black line in Fig. 1(b), where resting errors are not
included. This shows that even under the constraint that all
operations in a quantum processor node must be performed

sequentially, resting errors can be reduced to the point of being
negligible in comparison with other error sources.

In a RE system the T2,spin can be improved by various
actions, such as applying a magnetic field in the right direction
[4] or applying dynamic decoupling sequences [33]. However,
these actions have a cost; for instance, applying a magnetic
field would also split the atomic levels, making the qubit
space more complicated, and running dynamic decoupling
sequences would make the gate sequences more involved.
For these reasons, it is interesting to see that there is a level
beyond which no further gain to the resting T2,spin can be
obtained. This allows experimentalists to hit a specific target
rather than arbitrarily increasing T2,spin, which serves to min-
imize the experimental efforts required to realize a quantum
computer.

It is important to note that such a target T2,spin will change
for higher distance codes, but we can estimate by how much:
each time we perform an operation on one of the data qubits,
we assume that there is a probability in the order of pTQG

for a gate error to occur. If we view resting errors as Z
errors (see Appendix A2b) we can say that the probability
for a single resting error to occur on just one of the qubits
is roughly (N − 1)prest , where N is the number of qubits, prest

is the probability for a resting error on a single qubit, and we
assume that higher orders of prest are negligible. To be able
to neglect resting errors, the probability for them occurring
must be significantly smaller than the probability of a gate
error. Studying Fig. 2, we see that the error rates flatten at
roughly T2,spin = 100T2,opt. Since the codes we use here use
approximately ten qubits, this means that resting errors be-
come negligible approximately when the probability of only
one resting error occurring on any of the qubits is an order of
magnitude lower than the probability of a gate error, which
seems reasonable.

In the NISQ regime, we aim for having roughly 100 total
qubits. Thus, implementing a distance 11 Surface code might
be a reasonable future goal. The distance 11 Surface code uses
112 = 121 data qubits, which, by our argument, would require
a T2,spin that is roughly ten times longer than that required for
Surface-9(1), i.e., T2,spin = 1000T2,opt. With T2,opt = 2.5 ms
this means the distance 11 code would require T2,spin = 2.5 s.
Achieving a T2,spin of this magnitude is still very realistic
in RE systems since coherence times of hours have been
reached experimentally [4], and we therefore see reason to be
optimistic. Although it can be noted that the method used to
increase the T2,spin might have consequences, such as splitting
levels or complicating sequences, and it remains for future
studies to determine the most optimal way to accomplish
this. It is also important to note that a typical RE quantum
processing node will likely have around 100 qubits [5], and
operations in different nodes will be able to be performed in
parallel [2]. This means that as long as we can achieve a T2,spin

that is long enough for 100 qubits, scaling up further will be
possible.

Lastly, as a side note, the main result presented in this
section could be valid for other systems than REs; i.e., as
long as the idle qubit T2 (spin) is sufficiently longer than
the T2 relevant during gate operations (optical) its effect on
the logical gate error is negligible and a pseudoparallelism is
achieved.
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V. COMPARISON WITH PHYSICAL CIRCUIT

In this section we present results meant to study the per-
formance of the error correcting codes when used in a circuit.
From the results of Sec. IV we can expect that it is experimen-
tally feasible to be able to reach a point where the ground-state
coherence time is not the main limitation when performing
error correction. For this reason, we will omit ground-state
dephasing in the following. The simulated experiment consists
of applying a logical gate (XL if the initial state is |0L〉 or
|1L〉, and ZL otherwise) ng times, which for distance 3 codes
corresponds to three physical Pauli gates, followed by a round
of error correction. The logical error rate is then calculated as
the average for starting states corresponding to the six axes of
the Bloch sphere as before. We again used the ratios for the
physical error rates given in Table II.

To be able to compare the performance of the logical circuit
to the equivalent physical circuit without error correction, we
define a gain parameter as the ratio of the total error of the
physical circuit and the total error of the logical circuit. This
parameter tells us by which factor the error per gate changes
when error correction is used compared to the physical circuit
without error correction.

At this point, it seems reasonable to ask how the gain
should behave as a function of ng. From a more holistic
perspective, it could be argued that higher values of ng should
give higher gain since error correction has considerable over-
head in a number of operations. For small values of ng the
contribution of this overhead to the total error could be large in
comparison to the contribution from increasing ng. However,
for large values of ng both the logical and physical qubit
will approach a completely mixed state, and the gain should
equal 1 as there will be no way of guessing the correct state.
Therefore, we would expect to find an optimal value.

We can put this in more mathematical terms; since all
codes we study correct one error, the dominant term in the
logical error rate is proportional to the probability of getting
a weight 2 error, i.e., an error acting on two data qubits. We
use proportional here, since some weight 2 errors are equal to
a weight 1 error modulo one of the code stabilizers. Call the
logical error rate εL, and the number of operations used for
error correction N . Assuming that all operations have an error
rate of p and neglecting higher-order terms, we then have

εL ∝ p2

(
N

2

)
. (1)

Adding ng logical Pauli gates before error correction, and
assuming that the physical operations again have error rate
p, we get

εL ∝ p2

(
N + 3ng

2

)
= p2

2
(N + 3ng)(N + 3ng − 1), (2)

since a logical Pauli gate on a distance 3 code corresponds to
three physical Pauli gates. In the physical case, however, the
total error rate ε after ng operations, again neglecting higher-
order terms, is

ε ∝ p

(
ng

1

)
= png. (3)

FIG. 3. Gain, defined as the physical error when not using error
correction divided by the logical error when using error correction
calculated from Eq. (4) with C = 1 and N = 75. Here, we have
assumed that all operations have the same error rate, pTQG. The
number of logical gates performed before error correction, as well
as the number of physical gates, is given by ng. The red line marks
the value of ng which maximizes the gain for every given pTQG. As is
shown in Eq. (4), below the threshold the maximum gain is achieved
for a constant value of ng, independent of pTQG.

Thus, the gain g can be written

g = ε

εL
= C

p

ng

(N + 3ng)(N + 3ng − 1)
, (4)

where C is a constant determined by the proportion of weight
2 errors that are not equivalent to a weight 1 error modulo a
stabilizer. With the restriction that ng � 0 and N � 1 for error
correction, the gain function is concave and we can conclude
that it has a maximum. Moreover, we can conclude that below
the threshold, the gain is maximized for a constant value of ng

independent of pTQG.
Figure 3 shows a color map plot of a modified version of

Eq. (4), with a second-order term added to the numerator,
against both ng and p, with N = 75 and C = 1. The addition of
the second-order term captures the behavior of the gain func-
tion for values of p above the threshold, where no gain from
error correction can be expected and the optimal value of ng

would therefore be one which gives a completely mixed state.
In this model, the gain can be seen to achieve a maximum at
ng = 25, i.e., N/3 for values of p below the threshold. This
means that in this simplified model where all operations have
equal error rates, the optimal value of ng is the one where the
number of physical gates used before error correction is N/3.
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FIG. 4. Gain of the logical circuit with error correction compared to the physical circuit. The �5, 1, 3� code achieves maximum gain at
ng = 99, the Steane code achieves maximum gain at ng = 245, and Surface-9(1) achieves maximum gain at ng = 142.

This means that the optimal number of operations used before
error correction is the same as the number of operations used
in error correction. Moreover, the gain increases by one order
of magnitude when there is a reduction in p of one order of
magnitude. This agrees well with what we would expect, as
the error of a distance 3 code should scale as p2

TQG.
Our simple model can be compared to the full simulations

of the different codes, which can be seen in Fig. 4 where we
plot the gain as a color map against both the gate number
ng and the error rate pTQG. The qualitative behavior is very
similar to that of Fig. 3, with the gain achieving a maximum
for a constant value of ng below the threshold error rate. It
should be noted that here, the optimal ng is not just the one
which corresponds to the number of operations used in the
error correction protocol. This is because different types of
operations, e.g., TQG and SQG, are assigned different error
rates.

While Fig. 4 contains only the gain, the interested reader
can see Fig. 5 in Appendix C for the corresponding logical and
physical error rates using the optimal ng for each of the three
codes. However, when optimizing the error correcting codes
it is mostly the gain itself that matters. A technologically
relevant algorithm might require logical errors per gate less
than 10−15 [34,35], so at our level of error the gain is important
even when the errors are very small. For high error levels of
around 50% the success rate of the algorithm breaks down,
but even at relatively high total errors of, e.g., 10%, the entire
algorithm could still be successful by repeating it a couple of
times to exponentially suppress the error at a cost of only a
linear overhead.

When it comes to the performance of the codes, it is clear
that both the �5, 1, 3� and Surface-9(1) codes outperform the
Steane code with a large margin, both in terms of the threshold
error and the maximum gain. The �5, 1, 3� and Surface-9(1)

codes have very similar threshold values, which are slightly
higher than those found in Sec. III as discussed more in
Appendix C. Furthermore, the maximum gain of Surface-9(1)
is higher than that of �5, 1, 3�.

With Eq. (4) in mind, we can say something about why
these differences occur. We can see that the characteristics of
a QEC code are determined by N , C, and also, in our case,
the share of single-qubit operations of N . The Steane code in
our case has a high maximum N compared to the other two,
and C apparently does not compensate for this. In the case of
Surface-9(1), it is clear that the value of C compensates for the
higher number of operations it uses compared to the �5, 1, 3�
code. This is likely also the reason why Surface-9(1) achieves
a higher gain than the �5, 1, 3� code: if more weight 2 errors
are correctable by the code, adding more error locations in the
form of physical gates should have less of an impact.

One thing to take into account when running experiments
is the fact that the gain decreases slowly for values of ng

above the optimal value. This means that the error correction
overhead might be reduced by increasing ng above the optimal
value, for only a small cost in decreased gain. This depends
on the SQG error, however, as the gain will decrease faster for
higher SQG errors. This can be seen in Fig. 3, where all errors
are the same. Assuming an experimental RE system can reach
a value of pTQG = 10−3, the possible gain in error per gate is
approximately 20 for both the �5, 1, 3� code and Surface-9(1),
and approximately 10 for the Steane code.

VI. CONCLUSIONS

We have studied the performance of three QEC codes,
namely, the minimal �5, 1, 3� code, the �7, 1, 3� Steane code,
and the �9, 1, 3� Surface-9(1) code, using density-matrix sim-
ulations, in the context of RE quantum computing. Since each
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FIG. 5. Total error of the logical circuit with QEC compared to the physical circuit for the optimal ng which maximizes the gain shown in
Fig. 4. The �5, 1, 3� code uses ng = 99, the Steane code uses ng = 245, and Surface-9(1) uses ng = 142.

local processor node in a RE quantum computer requires
sequential gate operations, the values of the pseudothresholds
of all codes are highly dependent on whether resting errors
are included or not. It was found that with resting errors and
using currently expected gate fidelities, none of the codes
would allow a RE quantum computer to stay below the pseu-
dothresholds required for fault tolerant operation. However, if
the ground-state coherence time T2,spin is sufficiently long, the
magnitude of the resting errors is reduced to a point where
they are negligible in comparison to other error sources, and
beneficial QEC would be possible. For the codes and protocols
we studied, it is sufficient that the T2,spin is around two orders
of magnitude larger than the T2,opt, while a longer T2,spin is re-
quired for higher distance codes. Such long T2,spin are feasible
to achieve experimentally [4].

We also compared the error per gate when simulating QEC
on a physical circuit. We found that the optimal number of
gates is determined by the number of operations used by the
QEC protocol. The Steane code was found to be inferior to the
other options both in terms of its pseudothreshold and in terms
of the improvement in error rate compared to a physical cir-
cuit. The �5, 1, 3� code and Surface-9(1) were found to have
very similar pseudothresholds of around pTQG = 5 × 10−3

and 4 × 10−3, respectively. In terms of gain compared to a
physical circuit, Surface-9(1) was found to be slightly better
than the �5, 1, 3� code but at pTQG = 10−3 both had gain
values of around 20, compared to a gain value of around
10 for the Steane code. Given the constraints of working in
the NISQ regime, an experimentalist would likely be better
off demonstrating QEC with the �5, 1, 3� code rather than
Surface-9(1) in an early phase. This is because the �5, 1, 3�
code uses fewer qubits while still having a similar threshold

error. As the number of available qubits increases, the surface
codes become more attractive. This is partly due to their
higher gain, but also the straightforward way in which higher
distance codes can be implemented.

Finally, a large-scale RE quantum computer is envisioned
to consist of many processor nodes similar to the ones we dis-
cuss in the present paper, each containing around 100 qubits
[5], where operations in different nodes could run in parallel
[2]. Thus, how to realize QEC on a RE quantum computer
beyond the NISQ regime is beyond the scope of this paper,
but it is an important question for future research.
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APPENDIX A: BACKGROUND AND THEORY

1. Quantum error correction

In this section we give an overview of QEC that is relevant
for this paper.

Stabilizer codes

All of the QEC codes used in this paper belong to a class
of codes known as stabilizer codes. These can be compactly
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described in terms of a number of commuting operators be-
longing to the Pauli group, consisting of tensor products of
the Pauli operators X , Y , and Z together with the identity I
and multiplicative factors ±1 and ±i [18]. These operators
are known as the stabilizers of the code [18,36]. Logical
code words |0L〉 and |1L〉 are defined as simultaneous +1
eigenstates of all of the operators in the stabilizer [18,36,37].
Errors can be detected and characterized through parity mea-
surements of the stabilizers, and based on the measured error
syndrome Si a correction operator can be applied [17]. The
error syndrome consists of the recorded parities of all of
the stabilizer measurements, and can be seen as a binary
word, e.g., Si = (1 1 −1) ↔ (0 0 1) for a hypothet-
ical code with only three stabilizers. The error syndromes
can be conveniently labeled by the corresponding decimal
number, so that, e.g., S3 = (0 1 1).

Quantum error correcting codes can also be described in
the form �n, k, d�, where n is the number of physical qubits
used for encoding, k is the number of encoded qubits, and d is
called the distance of the code. The distance d is a measure
of how different the code words of a given code are. The
distance determines how many errors a code can correct, since
a distance of d = 2t + 1 is required to correct t errors. The
distance can be seen as the minimum weight of any logical
operator on the code, that is, the minimum number of qubits
on which a logical operator on the code differs from the
identity. Logical operators for stabilizer codes can be defined
by picking operators which commute with all members of the
stabilizer group, and which obey the commutation relations
of the equivalent physical operators. One of the most famous
examples of quantum error correcting codes, the Steane code,
is a �7, 1, 3� code, which means it uses seven qubits to encode
one logical qubit with distance 3 [17,18,36].

2. Error models

In this section we describe the error model used throughout
the simulated experiment.

a. Single- and two-qubit gate errors

We have modeled SQG errors by assuming a perfect gate
is followed by an error process ESQG, given by

ESQG(ρ) = (1 − pX − pY − pZ )ρ

+ pX XρX † + pY Y ρY † + pZ ZρZ†, (A1)

where I , X , Y , and Z are the Pauli operators with corre-
sponding Pauli matrices σI , σX , σY , and σZ . Typically, we
set a value pSQG for the total SQG error rate and use pX =
pY = pZ = pSQG/3, i.e., the standard single-qubit depolariz-
ing channel [18,37]. For TQGs, such as the controlled-NOT

gate, we assume that the error operators are given by the non-
trivial two-qubit Pauli group operators, i.e., tensor products
of the form σi ⊗ σ j with corresponding probabilities given by
pi j , with i, j being I , X , Y , or Z . The error process ETQG for
the TQG is given by

ETQG(ρ) =
(

1 −
∑
i j �=II

pi j

)
ρ +

∑
i j �=II

pi jσi ⊗ σ jρσ
†
i ⊗ σ

†
j .

(A2)

For the TQG we typically set an error rate pTQG and use
pi j �=II = pTQG/15 corresponding to a two-qubit depolarizing
channel [37]. The full operation for an arbitrary gate G is thus
given by

G(ρ) = E (σGρσ
†
G), (A3)

where σG is the operation matrix for the error-free G.

b. Idle qubit errors

Because the ground-state lifetime of the rare earths can be
days, amplitude damping is neglected on resting qubits. Phase
damping is considered, and since operations are assumed to
be sequential, it is applied on all qubits except the involved
qubits of a gate during gate operations, where instead normal
gate errors are applied. Phase damping is also applied to all
qubits except the target during initialization and readout.

The standard form of the phase damping channel for one
qubit is given by the operation matrices [18]

E0 =
(

1 0
0

√
1 − γ

)
, (A4)

E1 =
(

0 0
0

√
γ

)
. (A5)

However, the channel can be equivalently represented by the
operation matrices

Ẽ0 = √
α

(
1 0
0 1

)
, (A6)

Ẽ1 = √
1 − α

(
1 0
0 −1

)
, (A7)

where α = (1 + √
1 − γ )/2 [18]. We use the latter of these

representations, since it can save some calculations during
simulations. In the case where the ground-state coherence
time T2,spin is used to calculate the damping coefficient, we
use

γ = 1 − e−t/2T2,spin , (A8)

where t is the idle time given by the duration of the operation.
The different operations used are SQG, TQG, initialization,
and readout, and we denote their operation times by tSQG,
tTQG, tinit , and tRO, respectively.

c. Initialization and readout errors

Qubits are for simplicity always initialized in the |0〉 state,
and it is assumed that there is a probability, pinit , of an
initialization error when it is instead initialized as |1〉. The
density matrix ρ after initialization for a single qubit with
initialization error rate pinit is thus

ρ = (1 − pinit )|0〉〈0| + pinit|1〉〈1| :=
(

1 − pinit 0
0 pinit

)
.

(A9)

We assume that readout in the computational basis |0〉, |1〉
is subject to a declaration error, e.g., where a measurement
result of −1 is incorrectly declared as +1 and vice versa.
In the general case we use a symmetric declaration error,
where the states ρ± after measurement of +1 and −1 are
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given by

ρ+ = (1 − pRO)p+ρ+1 + pRO p−ρ−1, (A10)

ρ− = (1 − pRO)p−ρ−1 + pRO p+ρ+1, (A11)

where ρ±1 are the resulting density matrices after error-free
measurement, p± is the probability to measure +1 and −1,
and pRO is the probability of a declaration error. An id-
iosyncrasy of the RE system is that declaration errors are
asymmetrical, so that a measurement result of −1 has a prob-
ability to be declared as +1, but a declaration of −1 is always
correct. This is due to the nature of the readout via the dipole
mechanism where only one of the states is excited [31]. The
states ρ± after measuring +1 and −1 are given by

ρ+ = p+ρ+1 + pRO p−ρ−1, (A12)

ρ− = (1 − pRO)p−ρ−1 (A13)

in the asymmetrical case.

APPENDIX B: DENSITY-MATRIX SIMULATION

The density-matrix simulations were performed using a
MATLAB framework. The density-matrix approach was chosen
for its ability to model arbitrary quantum processes, such as,
for example, T2 decoherence [12]. It would also be possible
in future implementations to find exact representations for all
gate operations, including different error sources. In contrast
to the more common Monte Carlo based simulations used in,
e.g., [9,21,24], a completely analytical method was chosen.
Faulty gates are modeled as a perfect gate operation given by,
e.g., one of the Pauli operators, followed by a noise channel
as described in Appendix A2a. Measurements in the Z ba-
sis are also handled analytically, where the resulting density
matrix is calculated for each measurement outcome and then
handled separately. With this method, simulating one round
of error correction is done by calculating the final states ρi

corresponding to error syndromes Si, e.g., (0 0 1), and
then summing all of these weighted by the probability pi of
measuring syndrome Si as

ρ f =
∑

i

piρi, (B1)

where ρ f is the final density matrix. This method is convenient
for smaller codes, as it does not involve simulating a large
number of rounds to get a large enough data set. However,
for larger codes with more stabilizer measurements, the prob-
lem quickly becomes prohibitively complex and expensive to

calculate, even when several optimization techniques such as
sparse matrix operations and caching of expensive function
calls are employed. The method lends itself well to paral-
lelization since all outcomes are calculated independently, so
it is possible that considerable speedup could be achieved
using a graphical processing unit.

Calculating logical error rate and code performance

For our code performance measure, we have used the log-
ical error rate defined as the probability of an uncorrectable
error being present after the error correction procedure. After
an imperfect round of error correction, the density matrix will
be in a mixed state. This can be taken to a pure state by per-
forming one round of perfect, i.e., error-free, error correction.
This will take correctable errors to the correct codeword, and
uncorrectable errors to the opposite code word. To calculate
logical error rates, we define the reduced logical density matrix
ρred

L for pure states by

ρred
L = tr(ρ ′)I + tr(XLρ ′)X + tr(YLρ ′)Y + tr(ZLρ ′)Z,

(B2)

where XL, YL, and ZL are the logical Pauli operators defined for
the given code, and X , Y , and Z are the regular Pauli matrices.
By writing the error-free state |ψL〉 of the logical qubit as a
linear combination of the logical basis vectors |0L〉, |1L〉 by

|ψL〉 = α|0L〉 + β|1L〉, (B3)

we can define the reduced logical state vector |ψ red
L 〉 as∣∣ψ red

L

〉 = α|0〉 + β|1〉. (B4)

The logical error rate εL can then be calculated from the
fidelity between ρred

L and |ψ red
L 〉 by

εL = 1 − 〈
ψ red

L

∣∣ρred
L

∣∣ψ red
L

〉
. (B5)

APPENDIX C: TOTAL ERROR OF THE CODES

In Fig. 5 one can see the total logical and physical error
as a function of the error rate pTQG using the optimal ng for
each of the three QEC codes. The optimal ng is the number
of logical gates that should be applied before the QEC code
to maximize the gain, and ng was determined based on the
results presented in Fig. 4. Note that when applying logical
gates before the QEC protocol, the error rate threshold for
beneficial error correction is higher compared to the results
presented in Sec. III, which is reasonable since QEC has a
substantial overhead in terms of gate operations that need to
be applied as discussed in the main text.
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