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Quantum limits to resolution and discrimination of spontaneous emission lifetimes
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In this paper we investigate the quantum information theoretical limits to several tasks related to lifetime
estimation and discrimination of a two-level spontaneous optical emitter. We focus, in particular, on the model
problem of resolving two mutually incoherent exponential decays with highly overlapping temporal probability
profiles. Mirroring recent work on quantum-inspired super-resolution of point emitters, we find that direct
lifetime measurement suffers from an analog of “Rayleigh’s curse” when the time constants of the two decay
channels approach one another. We propose alternative measurement schemes that circumvent this limit and
demonstrate superiority to direct measurement for a related binary hypothesis test. Our findings add to a
growing list of examples in which a quantum analysis uncovers significant information gains for certain tasks
in optomolecular metrology that do not rely on multiphoton interference but evidently do benefit from a more
thorough exploitation of the coherence properties of single photons.
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I. INTRODUCTION

A. Background

Measurement of the spontaneous emission lifetime of one
or more single-photon emitters is a technique of central impor-
tance across the chemical and physical sciences. In the context
of single-molecule (SM) microscopy, fluorescence lifetime
is routinely used as a sensitive indicator of molecular-scale
changes in the probe’s environment [1,2]. The degree of free-
dom that determines the time delay between excitation pulse
and subsequent photodetection is thus a conduit of chemical
and physical information. Moreover, since SM emitters typi-
cally exhibit a finite budget of photocycles before irreversibly
photobleaching and since nanoscale environmental fluctua-
tions can occur on timescales comparable to the lifetime, this
resource can be an especially precious one. Thus, a careful
analysis is warranted as to how one might carry out the tasks
of lifetime estimation and discrimination as efficiently as pos-
sible with respect to photon budget, and certain metrics from
classical information theory are now routinely invoked in such
SM analyses [3].

In classical treatments of fluorescence lifetime measure-
ment, one typically models the photon arrival time as an
exponential random variable with probability density,

f (t ; τ ) = 1

τ
H (t ) e−t/τ , (1)

where τ is the fluorescence lifetime parameter and H (t ) is the
Heaviside step function defined by H (t ) = 0 for t < 0 and
H (t ) = 1 for t � 0. Note that the time origin is arbitrarily set
to account for the timing of the preceding excitation pulse as
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well as the finite distance between emitter and detector. Multi-
exponential decay can be modeled classically via a statistical
mixture of probability densities of the form in Eq. (1) with
different lifetimes {τ0, τ1, . . .}. This parametrization allows
one to compute the classical Fisher information (CFI) asso-
ciated with estimation of {τ0, τ1, . . .} (as well as the relative
amplitudes of the mixture), as presented, e.g., in Ref. [4].
The inverse of the CFI gives the classical Cramér-Rao bound
(CCRB), which sets the minimum variance of any unbiased
estimator of these parameters. Thus, the CFI and CCRB are
useful metrics for assessing the efficiency of lifetime estima-
tors given use of the time-correlated single-photon counting
(TCSPC) measurement apparatus depicted in Fig. 1, which
we, henceforth, refer to as the “direct measurement” scheme.
In practice, the estimator choice is only one optimization
concern, and a more general optimization over all possible
measurement schemes (i.e., other than direct measurement)
provides more fundamental information bounds. Such a gen-
eralization of the CFI and CCRB are given by the quantum
Fisher information (QFI) and quantum Cramér-Rao bound
(QCRB), which enumerate the information contained within
the quantum state of the system (in this case the quantum
state of the emitted photon) about the estimanda of interest,
irrespective of the choice of positive operator-valued measure
[5]. In this paper we will present and analyze the QFI, QCRB,
and related quantum information metrics for some illustrative,
challenging tasks related to lifetime measurement of sponta-
neous emission.

In particular, the majority of our discussion will be devoted
to the representative task of resolving a biexponential decay
process via estimation of the “separation” (in a generalized
sense, vide infra) of the lifetime parameters. This effort is
inspired, in part, by recent theoretical and experimental work
that demonstrates the power in applying quantum informa-
tion metrics to the analogous problem of spatial resolution
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FIG. 1. Direct measurement of fluorescence lifetime. A two-
level emitter initially prepared in its excited state with the electro-
magnetic field in vacuum will eventually decay, leaving the field in
a one-photon state. Assuming the resulting photon occupies modes
within some accepted range, a detector placed some distance z from
the emitter has a probability of recording the photon at time t propor-
tional to the correlation function that labels the vertical axis of the
inset [26]. In the long-time limit the probability profile is a one-sided
exponential with a characteristic lifetime τ . Direct measurement of
lifetime is carried out by recording the time delay between excitation
pulse and photodetection event, then repeating for many photons.
The resulting histogram of arrival times can be fit to recover an
estimate of τ .

between mutually incoherent point sources [6–22]. Namely,
the CCRB associated with estimation of the source separa-
tion as measured by direct imaging is known to diverge at
small separations (deemed “Rayleigh’s curse”), whereas, the
corresponding QCRB remains finite. The discrepancy can be
bridged by implementing a more sophisticated measurement
scheme, e.g., spatial-mode demultiplexing (SPADE) [7,13] in
order to recover otherwise wasted information. The present
study is also related to recent applications of SPADE-like
measurement techniques to the temporal resolution of shaped
ultrafast optical pulses [23–25]. Our paper is distinguished
by the facts that we consider the distinct pulse shapes (expo-
nential) and timings (∼nanoseconds) relevant for spontaneous
optical emission and by the fact that our resolution of lifetimes
refers to the difference in temporal linewidths rather than the
offset between peaks of subsequent pulses.

B. Model

We model the emitter as a two level system located at the
origin with energy splitting h̄ω0 and consider the evolution of
the coupled emitter-electromagnetic field system after initially
preparing the emitter in the excited state with the quantized
electromagnetic field in the vacuum state. We invoke the
Weisskopf-Wigner approximation and consider the long-time
limit such that at some time t later the emitter has returned
to the ground state and the electromagnetic field is left in the
one-photon state [26,27],

|ψτ 〉 =
∑

λ

∫
d3k

g(k, λ)

(ωk − ω0) + i/(2τ )
a†

k,λ|0〉, (2)

where the index λ denotes the polarization of the field mode, k
is the linear momentum, g(k, λ) subsumes relevant constants
as well as the orientational factor associated with electric
dipole emission, and a†

k,λ is the canonical bosonic creation
operator for the corresponding mode. For our purposes we
ignore the Lamb shift to the photon’s mean frequency. We can
simplify the relevant one-photon state by imagining placing
a detector with finite aperture some distance away such that
only modes within some small solid angle avail themselves
to photodetection. Let us also consider just the one linear
polarization mode that dominates in the direction of the de-
tector given the dipolar Green’s tensor [27]. Tracing out the
unimportant modes (and ignoring the informationless vacuum
contribution to the state of the field) leaves the normalized
one-photon state,

|ψτ 〉 =
∫ ∞

−∞
dω

1/
√

2πτ

(ω − ω0) + i/(2τ )
a†(ω)|0〉. (3)

In simplifying Eq. (2) to Eq. (3) we have implemented the
same assumptions as in Sec. 6.3 of Ref. [26], namely, that
the mean frequency is sufficiently large and the bandwidth
sufficiently small such that the lower limit of the integral can
be extended from 0 to −∞, and a factor ω3 appearing in
the integrand can be approximated as a constant ω3

0. These
simplifications allow us to alternatively express |ψτ 〉 in terms
of the Fourier-transformed creation operator [28] (up to a
global phase),

|ψτ 〉 =
∫ ∞

−∞
dt

H (t )√
τ

e−iω0t e−(t/2τ )a†(t )|0〉, (4)

wherein [a(t ), a†(t ′)] = δ(t − t ′). The Fourier integral in go-
ing from Eq. (3) to Eq. (4) can be computed via complex
contour integration. Define the function,

ψ (t ; τ ) ≡ H (t )√
τ

e−iω0t e−(t/2τ ), (5)

such that

|ψτ 〉 =
∫ ∞

−∞
dt ψ (t ; τ )a†(t )|0〉. (6)

We will use Eq. (6) as a starting point for the computation
of quantum information metrics described in the remainder of
the paper. Note that 〈a†(t ) a(t )〉 = |ψ (t ; τ )|2, which coincides
with the classical probability density function f (t ; τ ) as de-
fined in Eq. (1).

If the two-level system is embedded in free space the rela-
tion between lifetime τ and center frequency ω0 is fixed via

τfree = 3πε0h̄c3

ω3
0μ

2
, (7)

where ε0 is the permittivity of free space and μ is the mag-
nitude of the emitter’s transition dipole moment [26,27]. For
an emitter embedded in a dielectric medium, however, the
relationship is altered in a way that depends explicitly on the
(possibly inhomogeneous) dielectric constant [27]. We focus
our discussion by considering the case in which ω0 is fixed
(and known) but τ is variable, e.g., in response to a changing
local environment in the vicinity of the emitter.
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II. RESULTS AND DISCUSSION

A. Classical and quantum bounds of single-exponential lifetime
estimation

The QFI matrix K ∈ Rk×k , the CFI matrix J ∈ Rk×k , and
the covariance matrix 	 ∈ Rk×k of an arbitrary unbiased esti-
mator for a given set of k estimanda are related via

	 � J −1 � K−1, (8)

where the matrix inequalities are meant to indicate that
(J −1 − K−1) and (	 − J −1) are positive semidefinite. We
begin by considering an emitter decaying with a single life-
time τ to be estimated. In this case the CFI and QFI are
both scalars. For calculation of the CFI we specify a direct
measurement in which an excitation pulse that is much shorter
than the lifetime illuminates the system, then a subsequent
photodetection event is tagged by its arrival time. In practice
the time tagging must be binned, but we consider the limit-
ing case of infinitesimally short time bins for the calculation
of J . If no photodetection event occurs, then the datum is
simply thrown out. The cycle may be repeated until Nphotons

photodetections have been recorded. The per-photon CFI as-
sociated with estimation of τ from such a measurement can
be computed

J (direct)
τ =

∫ ∞

0
dt

[
∂ f (t ;τ )

∂τ

]2

f (t ; τ )
= 1

τ 2
. (9)

The CFI associated with Nphotons such photodetections is then
simply NphotonsJ (direct)

τ .
Next we compute the QFI associated with estimating τ

given the pure state |ψτ 〉, irrespective of the measurement
scheme. Since the state is pure, we can compute the per-
photon QFI directly via the Fubini-Study metric [29],

Kτ = 4 Re(〈∂τψτ |∂τψτ 〉 − |〈∂τψτ |ψτ 〉|2), (10)

with

|∂τψτ 〉 =
∫ ∞

−∞
dt

[
∂ψ (t ; τ )

∂τ

]
a†(t )|0〉. (11)

The calculation is straightforward and yields

Kτ = 1

τ 2
, (12)

and so we conclude that in this case the CFI associated with
direct measurement saturates the QFI. Direct measurement is
optimal for this particular estimation task. More interesting
cases are encountered when we consider multiexponential
decays due to incoherent mixtures of single-exponential
processes.

B. Classical and quantum bounds of symmetric biexponential
lifetime resolution

The most basic such case is that in which the relevant
single-photon state is an equal-probability mixture of two
single exponential decays with lifetimes τ0 and τ1 (Fig. 2)

FIG. 2. Illustration of basic lifetime resolution task. The classical
probability distribution resulting from decay with constants τ0 and τ1

(magenta plus signs and cyan asterisks, respectively). Shaded (blue)
region marks overlap between the distributions. Dashed vertical lines
mark the lifetimes along the time axis, whereas, the dotted line marks
their geometric mean τ̄ . The difference between the lifetimes is
proportional to ε2 − 1.

such that

ρ = 1
2 |ψ0〉〈ψ0| + 1

2 |ψ1〉〈ψ1|, (13)

with

|ψ0〉 =
∫ ∞

−∞
dt ψ (t ; τ0)a†(t )|0〉, (14a)

|ψ1〉 =
∫ ∞

−∞
dt ψ (t ; τ1)a†(t )|0〉. (14b)

Without loss of generality we suppose τ1 � τ0. The FI matri-
ces associated with estimating τ0 and τ1 are of dimensions
2 × 2. Rather than considering estimation of τ0 and τ1 di-
rectly, we reparameterize the task into the estimation of the
geometric mean lifetime τ̄ and the square-root ratio ε in
order to highlight the fact that it is really the latter that
poses a fundamental challenge for direct measurement. These
coordinate-transformed estimanda are defined by

τ̄ = √
τ0τ1, (15a)

ε =
√

τ1

τ0
, (15b)

such that τ0 = τ̄ /ε and τ1 = ετ̄ . Our choice of τ1 � τ0 guar-
antees ε � 1. Let the vector of parameters be defined θ =
(τ̄ , ε)T. We first consider the CFI with respect to direct mea-
surement. The relevant classical probability density function
is as follows:

fρ (t ; θ) = 1
2 f (t ; τ̄ /ε) + 1

2 f (t ; ετ̄ ), (16)

with f (t ; τ ) defined as in Eq. (1). The elements of J (direct) can
be computed from

J (direct)
i j =

∫ ∞

0
dt

[ ∂ fρ (t ;θ)
∂θi

][ ∂ fρ (t ;θ)
∂θ j

]
fρ (t ; θ)

. (17)
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FIG. 3. Per-photon Fisher information associated with estima-
tion of τ̄ and ε. Red (lower) lines correspond to the elements of
the direct measurement CFI matrix, whereas, the black (upper) lines
indicate the nonzero elements of the QFI matrix. Notably, J (direct)

εε

vanishes as ε → 1, whereas, Kεε takes its maximum value in the
same limit.

The resulting matrix is as follows:

J (direct) =
(
J (direct)

τ̄ τ̄ J (direct)
τ̄ ε

J (direct)
τ̄ ε J (direct)

εε

)
. (18)

We compute J (direct)
τ̄ τ̄ , J (direct)

τ̄ ε , and J (direct)
εε numerically and

plot their scaled (τ̄ -independent) values as functions of ε in
Fig. 3. Notably, whereas, J (direct)

τ̄ τ̄ peaks as ε → 1, J (direct)
εε

vanishes in the same limit. We plot appropriately scaled
square-root CCRB values in Fig. 4 defined by

στ̄ =
√

[(J (direct) )−1]11, (19a)

σε =
√

[(J (direct) )−1]22. (19b)

It is evident that σε diverges as ε → 1. These observations
are analogous to the onset of Rayleigh’s curse as described in
Ref. [6], wherein it becomes increasingly difficult to produce
a precise unbiased estimate of the spatial separation between

FIG. 4. Scaled (square-root) Cramér-Rao bounds associated with
estimation of τ̄ and ε. Red (lower) lines give the classical bounds for
a direct measurement, whereas, black (upper) lines indicate the quan-
tum bounds. Notably, σε diverges as ε → 1, whereas, ςε assumes its
minimum value in the same limit.

two point sources as they are brought closer together. Next
we turn our attention to computing the QFI with respect to τ̄

and ε. Since ρ represents a mixed state we must compute the
elements of K via the more general [30],

Ki j = Re Tr(LiL jρ), (20)

where Li is the symmetric logarithmic derivative (SLD)
operator associated with the parameter θi ∈ {τ̄ , ε}, defined
implicitly via

∂θiρ = 1
2 (ρLi + Liρ). (21)

Details of the calculation of K can be found in Appendix A.
The result is as follows:

K =
( 1+14ε4+ε8

(1+ε2 )4 τ̄ 2 0
0 1

ε2

)
. (22)

Note that Kτ̄ τ̄ → 1/τ̄ 2 as ε → 1. More importantly, we find
that Kεε not only remains nonzero as ε → 1, it actually
takes on its maximum value in this limit. We compare the
direct measurement CFI with the measurement-agnostic QFI
in Fig. 3. The square-root QCRBs are defined by

ςτ̄ =
√

[K−1]11, (23a)

ςε =
√

[K−1]22, (23b)

and are plotted vs the direct measurement square-root CCRBs
in Fig. 4. Evidently direct measurement leaves an increasing
fraction of available information on lifetime separation on the
table as the two time constants τ0 and τ1 approach one another.
In the regime where direct measurement has the most diffi-
culty discerning the decay constants, we next show that there
exists some alternative measurement scheme that performs
optimally.

C. Optimal and near-optimal measurement schemes for
symmetric biexponential lifetime resolution

1. Weighted Laguerre mode projection

In Ref. [7] Tsang and co-workers showed that for the task
of estimating the spatial separation between two incoherent
point emitters subject to a Gaussian point spread function
(PSF), direct imaging fails for small separation, whereas, a
measurement that projects onto the Hermite-Gaussian spatial
modes performs optimally. Reference [13] generalizes this
basic result by showing that projection onto a complete set
of modes with definite parity is optimal for any symmetric
PSF, and that projection onto an orthonormalized set of poly-
nomials related to the derivatives of the amplitude PSF is
efficient for the task. Here we report an analogous finding
for the task of resolving the time constants of two incoherent
and overlapping exponential decays. In particular, projection
onto exponentially weighted Laguerre polynomials achieves
optimality (Fig. 5). The connection to the spatial problem
is notable as Hermite polynomials are orthogonal over the
domain of integration (−∞,∞) with respect to a Gaussian
weighting function, whereas, the Laguerre polynomials are or-
thogonal over (0,∞) with respect to an exponential weighting
function [31]. We define the orthonormal weighted Laguerre
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FIG. 5. (a) Schematic of a mode sorting device that projects
collected photons onto the basis of exponentially weighted Laguerre
polynomials. The detector D∞ records projection onto the comple-
ment of the space spanned by the finite number of modes recorded
in the other channels. (b) Plots of the envelopes of the first few
φn functions. The high-frequency component e−iω0t is suppressed in
each for clarity.

(WL) functions via:

φn(t ; τ̄ ) = H (t )√
τ̄

e−iω0t e−(t/2τ̄ )Ln

(
t

τ̄

)
, (24)

where Ln(·) denotes the nth Laguerre polynomial for nonneg-
ative integer n. The first few such functions are plotted in
Fig. 5(b). Note that φ0(t ; τ̄ ) = ψ (t ; τ̄ ) as defined in Eq. (5).
We construct the single-photon states,

|φn(τ̄ )〉 =
∫ ∞

−∞
dt φn(t )a†(t )|0〉 (25)

associated with the projection measurement
{|φn(τ̄ )〉〈φn(τ̄ )|}n. Implementation of this measurement
on the state ρ gives an outcome with probability mass
function,

Pn(ε) = 1
2 |〈φn(τ̄ )|ψ0〉|2 + 1

2 |〈φn(τ̄ )|ψ1〉|2. (26)

Closed-form expressions for 〈φn(τ̄ )|ψ0〉 and 〈φn(τ̄ )|ψ1〉 are
given by

〈φn(τ̄ )|ψ0〉 = 2(τ̄ − τ0)n√τ̄ τ0

(τ̄ + τ0)n+1
, (27a)

〈φn(τ̄ )|ψ1〉 = 2(τ̄ − τ1)n√τ̄ τ1

(τ̄ + τ1)n+1
, (27b)

which yields

Pn(ε) = 4ε
(ε2 − 1)2n

(ε + 1)4n+2
. (28)

The CFI associated with estimation of ε can be computed via

J (WL)
εε =

∞∑
n=0

[
∂Pn
∂ε

]2

Pn
, (29)

to give

J (WL)
εε = 1

ε2
= Kεε. (30)

Thus, projection onto the WL modes saturates the QFI as-
sociated with estimation of ε. Note that in this treatment we
have implicitly assumed that τ̄ is known a priori, akin to the
spatial resolution case in which optimality of the Hermite-
Gaussian projection requires prior knowledge of the centroid
[7]. Following the approach described in Ref. [7], if τ̄ is
not known we propose an adaptive measurement scheme in
which τ̄ is first determined via direct measurement, then ε

is, subsequently, estimated from WL projections. In practice
some finite uncertainty will remain in the initial estimate of τ̄ .
We explore the effect of the temporal equivalent of “centroid
misalignment” in Appendix C. We next speculate on how one
might realize projection onto the WL modes with a physi-
cal measurement apparatus. Recent experimental studies have
demonstrated quantum pulse gates as a means to sort mixtures
of ultrafast optical pulses by their temporal mode composition
[23–25]. The method works by gating a target optical pulse
or pulse train with a temporally shaped near-infrared control
pulse. The target and control are passed together through
a nonlinear medium (periodically poled lithium niobate) re-
sulting in a frequency-shifted signal in proportion to their
overlap. This effectively produces a projection measurement
onto the mode of the control pulse [32]. A similar approach
may provide a route to experimental realization of the WL
projections described above, although it should be noted that
the ∼nanosecond pulses produced by a spontaneous optical
emitter are much longer than the ultrafast pulses treated in
Refs. [23–25].

An interesting relation among the inverse Fourier trans-
forms of the WL functions suggests another possible route
to experimental realization. We take the following convention
for the definition of the inverse Fourier transform of φn(t ),

φ̃n(ω) = 1√
2π

∫ ∞

−∞
dt φn(t )eiωt . (31)

In Appendix B we prove the relation,

φ̃n(ω) = i

(ω − ω0)τ̄ + i/2

√
τ̄

2π
exp[in�(ω − ω0; τ̄ )], (32)

where �(ω − ω0; τ̄ ) is a real-valued function. In other words,
each φ̃n differs from the others in the sequence only in its
phase, and

φ̃n(ω) = φ̃n−1(ω) exp [i�(ω − ω0; τ̄ )] (33)

for all n > 0. If we can access the functions {φ̃n(ω)}n then we
can effect the transformation φ̃n → φ̃n−1 ∀ n > 0 by impart-
ing a frequency-dependent phase delay of −�(ω − ω0; τ̄ ).
This is suggestive of the technique of ultrafast pulse shap-
ing in which the temporal profile of short optical pulses is
sculpted by passing through a 4 f system consisting of first
a dispersive element to map frequency into lateral position,
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FIG. 6. Comparison of the QFI associated with estimation of ε to
the CFI of various measurement schemes described in the text. The
label “WL0” indicates the binary truncation of the weighted Laguerre
mode sorter, whereas, “WL∞” indicates the limit in which infinitely
many such modes are detected.

followed by a spatial light modulator onto which the de-
sired frequency-dependent phase modulation is encoded, and
then a second dispersive element to recombine the spectral
modes [33,34]. In our case, however, we aim to reshape
pulses of ∼nanosecond temporal and ∼gigahertz frequency
extent, a much different regime than the ultrafast, ultrabroad-
band pulses that are typically treated with this approach.
Temporally reshaping such a narrow-band pulse would be
exceedingly difficult without somehow initially compressing
the pulse, or else taking a different route altogether [35–37].
Nonetheless, the accompanying mathematics is intriguing
enough to warrant a bit more speculation before moving on.

The same phase modulation that transforms φ̃n(ω) →
φ̃n−1(ω) ∀ n > 0 also transforms φ̃0(ω) → −φ̃∗

0 (ω). Sand-
wiching this transformation between an inverse Fourier
transform and Fourier transform implements the overall map-
ping φ0(t ) → −φ∗

0 (−t ), i.e., a reflection (up to a sign) of
the temporal profile about the origin. In other words, the
component of the signal in the zero mode would alone be
advanced to early times, and so a simple time-gating mea-
surement could pick off the projection onto this mode. One
must recognize, of course, that causality should be maintained
such that occupation of negative temporal modes is not indica-
tive of superluminal propagation but rather is an artifact of
redefining t = 0 to account for the propagation of the quies-
cent pulse through the apparatus [34]. If this time gating can
be implemented with a temporal beam splitter then one can
imagine implementing a sort of shift register that measures
projection onto the nth WL mode by way of n sequential phase
modulations followed by time gating. We reserve a deeper
investigation of this approach for future work.

One practical consideration of any experimental realization
of WL mode projection is that the measurement must real-
istically be truncated at some finite n. Figure 6 depicts the
CFI associated with the binary measurement {|φ0〉〈φ0|, I −
|φ0〉〈φ0|}, indicating very nearly optimal performance for
small ε. This is in analogy to the near optimality of bi-
nary SPADE as analyzed previously for the task of spatial
resolution [7].

FIG. 7. Schematic of proposed cascaded interferometer, iC, with
M: mirror; BS: beam splitter; D: detector. The time beam splitters
along the top edge are implemented as described in the text and as
indicated in the inset (EOM: electro-optic modulator); 50:50 beam
splitters along the left edge are alternated with τ1/2-delay stages.

2. Approximate interferometric approaches

We conclude this section by introducing and analyzing
two interferometer arrangements that circumvent the lifetime
analog of Rayleigh’s curse. First we consider the cascaded
interferometer depicted in Fig. 7 and, heretofore, referred to
as the iC apparatus. This hypothetical scheme exploits the
shift-and-scale symmetry of the exponential decay function
given by

|φ0(t ; τ̄ )|2 = 1

τ̄
H (t )e−(t/τ̄ ), (34)

which has half-life,

τ1/2 = τ̄ ln 2. (35)

We consider the transformation of the generic exponential
amplitude function ψ (t ; τ ) [Eq. (5)] after it enters the interfer-
ometer at the top left of Fig. 7. It first encounters a temporal
beam splitter that acts to transmit ψ (t )H (t − τ1/2) and reflect
ψ (t )[H (t ) − H (t − τ1/2)]. This could in theory be realized
by a Mach-Zender interferometer (Fig. 7 inset) in which a
time-dependent phase flip is applied via a synchronized EOM
placed in one arm. The transmitted portion then encounters a
cascade of similar temporal beam splitters (top edge of Fig. 7),
the mth of which reflects ψ (t ){H (t − mτ1/2) − H (t − [m +
1]τ1/2)} downward and transmits ψ (t )H (t − [m + 1]τ1/2)
rightward to the subsequent stage. Meanwhile, the portion
of the light sent downward along the leftmost edge of the
interferometer by the first temporal beam splitter is subjected
to a cascade of alternating delay stages (each set to delay by
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FIG. 8. Schematic of proposed simplified interferometer iS with
�t ≈ τ̄ ln(R/T )

an additional τ1/2 relative to the top edge) and 50:50 beam
splitters. The light reflected by the mth 50:50 beam split-
ter along the left edge has amplitude i(α/

√
2)mψ (t ){H (t −

mτ1/2) − H (t − [m + 1]τ1/2)}, where α = exp ( τ1/2

2τ
). The re-

flected outputs of the mth 50:50 beam splitter along the left
edge and the mth temporal beam splitter along the top edge
are recombined on another 50:50 beam splitter and the result-
ing interferogram is recorded at the mth detection stage. We
numerically computed the CFI associated with ε estimation
using the iC scheme. In our calculation we effectively assume
that we are free to fine-adjust phases equivalent to time delays
on the order of 2π/ω0 throughout the interferometer such
that an overall input state of ψ (t ; τ̄ ) would produce nulls in
each of the “a” detection channels. The results are plotted
in Fig. 6 and indicate near-optimal performance that cer-
tainly overcomes the vanishing information associated with
direct measurement. However, this interferometric cascade is
admittedly complicated and would be extremely difficult to
implement even for a few detection stages due to synchroniza-
tion, alignment, and loss issues. Therefore, it behooves us to
seek a simpler interferometric scheme that might not perform
as efficiently in theory but still successfully circumvents the
lifetime analog of Rayleigh’s curse.

Such a scheme is depicted in Fig. 8, which we refer to
as iS. Collected light enters iS through a beam splitter with
reflectance R = 0.9 (complex amplitude i

√
0.9) and trans-

mittance T = 0.1 (complex amplitude
√

0.1). The reflected
portion is relayed to one input of a 50:50 beam splitter without
further modulation. The initially transmitted portion is passed
through a fixed delay stage producing a time lag of τ̄ ln(R/T )
(plus some implied finely tuned adjustment on the order of
2π/ω0), which is then sent to the other input port of the 50:50
beam splitter. Time-tagged photons are then counted in the
two output channels. Numerical evaluation of the CFI associ-
ated with estimation of ε using iS confirms finite information
content as ε → 1 (Fig. 6).

D. Weak decay path detection

The discussion to this point has focused on the specific task
of estimating the square-root ratio of time constants given an
incoherent sum of two exponential decays of equal likelihood.

This exact scenario may be seldom if ever encountered in
any real experiment. It serves, however, as a basic exam-
ple demonstrating the potential power in measurement and
inference schemes that more fully exploit the finite tempo-
ral coherence available when quantum sources spontaneously
emit. Here we present an additional example of this fact by
considering a binary hypothesis test in which one aims to
discriminate between the following two states: (A) a single
exponential decay and (B) that same single exponential decay
incoherently mixed with a second weaker decay rate. To fa-
cilitate some quantification, we set the main decay channel’s
time constant to τA = 1 ns and the second channel’s constant
to τB = 1.25 ns. State A is defined by a unit probability of
decay via the main channel; state B is defined by a pA =
0.9 probability of decay via the main channel and a pB =
0.1 probability of decay via the second channel. The one-
photon density operators representing these two states are as
follows:

ρA = |ψA〉〈ψA|, (36a)

ρB = pA|ψA〉〈ψA| + pB|ψB〉〈ψB|, (36b)

with

|ψA〉 =
∫ ∞

−∞
dt ψ (t ; τA)a†(t )|0〉. (37a)

|ψB〉 =
∫ ∞

−∞
dt ψ (t ; τB)a†(t )|0〉. (37b)

and ψ (t ; τA) and ψ (t ; τB) defined as in Eq. (5). If a total of
Nphotons identically prepared photons are available for detec-
tion before a decision is made, the probability of error in the
discrimination task improves exponentially with asymptotic
scaling,

Perr ∼ 1
2 e−ξNphotons , (38)

where the factor ξ is given by the Chernoff bound for which
there exist both classical [38] and quantum [39] definitions.
The classical Chernoff bound is appropriate when discrim-
inating between two classical probability distributions. For
the specific case of discriminating states A and B by imple-
mentation of a direct lifetime decay measurement, the task is
equivalent to distinguishing between the two classical proba-
bility density functions (Fig. 9),

fA(t ) = |ψ (t ; τA)|2, (39a)

fB(t ) = pA|ψ (t ; τA)|2 + pB|ψ (t ; τB)|2. (39b)

Assuming either state is equally likely, the classical Chernoff
bound associated with direct measurement can then be com-
puted according to

ξ (direct) = − ln min
0�s�1

[ ∫ ∞

0
dt f s

A(t ) f 1−s
B (t )

]
. (40)

Direct measurement is one of infinitely many possible mea-
surement schemes that can distinguish states A and B with
some finite probability. A general measurement’s ability
to discriminate ρA and ρB (again assuming equal a priori
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FIG. 9. Illustration of weak decay path detection task. Classi-
cal probability distributions associated with states A (magenta plus
signs) and B (cyan asterisks) to be discriminated. Shading (blue)
marks the overlap of the distributions.

likelihood) is governed by the quantum Chernoff bound [39],

ξ (Q) = − ln min
0�s�1

Tr
[
ρs

Aρ1−s
B

]
. (41)

Since ρA is pure in the case under consideration the above
expression simplifies to

ξ (Q) = − ln〈ψA|ρB|ψA〉. (42)

In such a case it has been established that a projection
measurement {ρA, I − ρA} would saturate the quantum limit
to hypothesis discrimination [40]. In Fig. 10 we plot the
approximate probability of error associated with the direct
measurement classical Chernoff bound and the quantum Cher-
noff bound as a function of number of detected photons.
Evidently the error rate can be improved by orders of mag-
nitude for a number of photons feasibly detected from a
single molecule. For the same task we also analyzed the

FIG. 10. Chernoff scaling of error probabilities in discriminating
states A and B for various measurement schemes. P(Q)

err indicates the
error probability scaling dictated by the quantum Chernoff bound.

performance of measurements based on interferometers iC
and iS as described in Sec. II C 2 but with the substitution τ̄ �→
τA. We computed the classical Chernoff bounds associated
with these two schemes and plot the associated probabilities
of error in Fig. 10. These schemes do not saturate the quan-
tum bound but do offer significant improvement over direct
measurement for sufficiently many photons.

Detection of a weak decay path as described in this sec-
tion is just one example of a symmetric binary hypothesis
test related to spontaneous emission lifetime that one might
conceivably encounter. In this case the optimal measurement
is straightforward to derive (at least, on paper). For more
general symmetric binary hypothesis tests in which both pos-
sible states are mixed, the optimal measurement scheme is not
necessarily clear. Our preliminary calculations indicate that
projection measurements onto WL modes with appropriately
chosen reference lifetime, at least, offer significant improve-
ment over direct measurement. This would be in line with
the previously reported observation that Hermite-Gaussian
projection saturates the quantum Chernoff bound for certain
binary discrimination tasks related to subdiffraction imaging
[41,42]. A more thorough investigation of the performance of
WL projection measurements for generalized binary discrim-
ination tasks will be the subject of future work.

III. CONCLUSION

In conclusion, we have surveyed several scenarios relevant
to estimation, resolution and discrimination of the lifetime of
a quantum optical emitter from the perspective of quantum in-
formation theory. Whereas the Fisher information associated
with estimation of a single exponential lifetime is saturated by
a direct TCSPC measurement, the conventional measurement
scheme is fundamentally challenged when presented with
statistical mixtures of exponential decays. Namely, we find
that the direct-measurement CFI for estimating the separation
between two mutually incoherent highly overlapping decays
vanishes as the two decay constants approach one another. In
the same limit, however, the QFI remains finite, indicating that
a carefully redesigned measurement can potentially uncover
a wealth of hidden information. We prove that a projective
measurement onto exponentially weighted Laguerre modes
would saturate the QFI, and we speculate on possible routes
to experimental realization. Beyond the specific example of
biexponential resolution, our results suggest that a variety of
tasks related to lifetime classification stand to benefit from a
more thorough exploitation of the emitted photon’s coherence.
We analyzed the discrimination of: (A) a single-exponential
decay from (B) the same decay mixed with a weak second
decay channel by enumerating the quantum and classical
Chernoff bounds.

There remains a significant amount of research to be per-
formed in order to assess the experimental relevance of the
findings presented here. As a starting point we have invoked a
simplistic model for photon emission by a two-level quantum
emitter with fixed energy splitting and a variable lifetime. The
situation encountered under practical experimental conditions
can be much more complicated especially for single-molecule
fluorophores embedded in condensed environments under am-
bient conditions. The optical spectra of molecular emitters are

062603-8



QUANTUM LIMITS TO RESOLUTION AND … PHYSICAL REVIEW A 105, 062603 (2022)

much richer (even in vacuum) due to coupling to vibrational
modes. In reality a change in the environment of an emitter
can also cause shifts in energy levels, resulting in a more
convoluted spectrotemporal response. In our paper we have
assumed a fixed and known ω0. Whereas the metrics we derive
do not depend explicitly on ω0, and, whereas, they do not
require any multiphoton interference, a degree of spectral
homogeneity from photon to photon might nonetheless be
important.

Limitations of the physical model aside, our results tie in
nicely with recent and ongoing work that demonstrates novel
quantum-information-inspired approaches to super-resolving
the positions of mutually incoherent emitters [6–21] and the
temporal offsets of ultrafast pulses [23–25]. That the lifetime
equivalent of Rayleigh’s curse can be overcome by projec-
tion onto a particular set of weighted orthogonal polynomials
is an intriguing generalization of the previous observation
that projection onto a different set of weighted orthogo-
nal polynomials does the same for the spatial curse [7,13].
Just as preliminary work describing the resolution of exactly
two point emitters has led to recent consideration of more
general imaging scenarios [43–46], resolution and discrimi-
nation of more complex lifetime mixtures will be the subject
of future investigation. Finally, the work presented here is
one of a few recent studies that highlights the utility in
generalizing the now-familiar information-theoretic tasks of
single-molecule microscopy to the realm of quantum informa-
tion theory [47–50]. Given the preciousness of photons and
the zoo of parameters commonly estimated and classified in
single-molecule microscopy, we anticipate this will continue
to be a fruitful line of inquiry. Further research in this vein is
underway.
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APPENDIX A: DERIVATION OF EQ. (22)

Equation (20) defines the elements of the QFI matrix in
terms of the SLD, whereas Eq. (21) gives an implicit relation
between the SLD and the density operator ρ. To compute the
SLDs Lτ̄ and Lε given the state defined in Eq. (13) we make
use of the following explicit relation:

Li =
∑

k,l;Dk+Dl �=0

2

Dk + Dl
〈ek|∂θiρ|el〉|ek〉〈el |, (A1)

where {|ek〉} are orthonormal eigenvectors of the operator ρ

with associated eigenvalues {Dk} such that

ρ =
∑

k

Dk|ek〉〈ek|. (A2)

Whereas the relevant Hilbert space is infinite, we need only
consider as many |ek〉 as it takes to provide a basis for
span{|ψ0〉, |ψ1〉, |∂τ̄ψ0〉, |∂τ̄ψ1〉, |∂εψ0〉, |∂εψ1〉}. In this case
four such vectors constitute such a basis. The states |e1〉 and

|e2〉 can be arrived at by inspection,

|e1〉 = 1√
2(1 + χ )

(|ψ0〉 + |ψ1〉), (A3a)

|e2〉 = 1√
2(1 − χ )

(|ψ0〉 − |ψ1〉), (A3b)

for which

D1 = 1 + χ

2
, (A4a)

D2 = 1 − χ

2
, (A4b)

and

χ ≡ 〈ψ0|ψ1〉 = 2
√

τ0τ1

τ0 + τ1
. (A5)

Next |e3〉 and |e4〉 can be found via a modified Gram-Schmidt
process. First we define

|v3〉 = |∂τ0ψ0〉 − 〈e1|∂τ0ψ0〈|e1〉 − 〈e2|∂τ0ψ0〉|e2〉, (A6a)

|v4〉 = |∂τ1ψ1〉 − 〈e1|∂τ1ψ1〉|e1〉 − 〈e2|∂τ1ψ1〉|e2〉, (A6b)

and normalize to give

| f3〉 = |v3〉
‖v3‖ , (A7a)

| f4〉 = |v4〉
‖v4‖ . (A7b)

Noting that

〈 f3| f4〉 = χ, (A8)

we then arrive at

|e3〉 = 1√
2(1 + χ )

(| f3〉 + | f4〉), (A9a)

|e4〉 = 1√
2(1 − χ )

(| f3〉 − | f4〉), (A9b)

for which

D3 = D4 = 0. (A10)

With {|e1〉, |e2〉, |e3〉, |e4〉} and {D1, D2, D3, D4} now in hand,
Lτ̄ and Lε can be computed directly via Eq. (A1). Finally, K
can be computed via Eq. (20), yielding the result of Eq. (22).

APPENDIX B: PROOF OF EQ. (32)

Equations (24) and (31) can be combined to give

φ̃n(ω) = 1√
2πτ̄

∫ ∞

0
dt ei[(ω−ω0 )+i/(2τ̄ )]t Ln

(
t

τ̄

)
. (B1)

Change in variables to the unitless real number,

T = t/τ̄ , (B2)

and unitless complex number,

ζ = (ω − ω0)τ̄ + i

2
(B3)
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FIG. 11. Phase angle � as defined in Eq. (B19). We apply 2π

phase wrapping to enforce continuity.

leads to the more compact expression,

φ̃n(ω) =
√

τ̄

2π

∫ ∞

0
dT eiζT Ln(T ). (B4)

We will prove by induction that the relation,

φ̃n(ω) = i

ζ

√
τ̄

2π

(
1 + iζ

iζ

)n

(B5)

holds for all n � 0. We begin with the base case of n = 0. The
integral,

φ̃0(ω) =
√

τ̄

2π

∫ ∞

0
dT eiζT (B6)

can be computed directly to give

φ̃0(ω) = i

ζ

√
τ̄

2π
. (B7)

Thus, Eq. (B5) indeed holds in the base case of n = 0.

FIG. 12. Fisher information for ε estimation by projection onto
shifted WL modes {φn(t ; τ̌ )}n with various mismatched mean life-
times τ̌ �= τ̄ . Similar to the performance of centroid-mismatched
SPADE vis-à-vis spatial resolution [7], the effect of mismatch is a
diminished (and eventually vanishing) CFI at sufficiently small ε.
Importantly, bounding the mismatch below some small but finite
threshold leaves a considerable range for which J (WL)

εε � J (direct)
εε .

FIG. 13. Monte Carlo simulation of biexponential resolution
task, with Nphotons = 105 and results averaged over 105 trials. Here
we fixed τ̄ = 1 ns and varied ε. At each ε we generated random
data corresponding to a direct measurement and a WL projection
measurement, then used the maximum likelihood estimator (MLE)
appropriate for each modality to produce estimates ε̌. The root-mean-
square-errors (RMSE) of both MLEs are plotted. We also plot the
CRBs associated with direct measurement and WL projection for
comparison. For sufficiently large ε the RMSEs are bounded by their
respective CRBs as must be the case for any unbiased estimator. At
very small ε the RMSE of the MLE deviates from the CRB due to
the onset of bias in the estimators. Nonetheless, the WL projection
significantly outperforms direct measurement at small ε.

Next we assume that

φ̃k (ω) = i

ζ

√
τ̄

2π

(
1 + iζ

iζ

)k

(B8)

holds ∀ k ∈ {0, . . . , n − 1} and consider φ̃n(ω),

φ̃n(ω) =
√

τ̄

2π

∫ ∞

0
dT eiζT Ln(T ). (B9)

We integrate by parts to give

φ̃n(ω) =
√

τ̄

2π

{
1

iζ
[Ln(T )eiζT ]|∞0

− 1

iζ

∫ ∞

0
dT L′

n(T )eiζT

}
. (B10)

Noting that Ln(0) = 1 ∀ n and that

lim
T →∞

[Ln(T )eiζT ] = 0, (B11)

due to the decaying exponential portion simplifies Eq. (B10)
to

φ̃n(ω) = i

ζ

√
τ̄

2π

{
1 +

∫ ∞

0
dT L′

n(T )eiζT

}
. (B12)

From the well-known Rodrigues equation for Laguerre poly-
nomials [51] one can deduce the recursion relation,

d

dT
Ln(T ) =

(
d

dT
− 1

)
Ln−1(T ) (B13)
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for n > 0, which can be applied repeatedly to rewrite
Eq. (B12),

φ̃n(ω) = i

ζ

√
τ̄

2π

{
1 −

n−1∑
k=0

∫ ∞

0
dT Lk (T )eiζT

}

= i

ζ

√
τ̄

2π

{
1 −

√
2π

τ̄

n−1∑
k=0

φ̃k (ω)

}
. (B14)

Invoking our assumption in Eq. (B8),

φ̃n(ω) = i

ζ

√
τ̄

2π

{
1 − i

ζ

n−1∑
k=0

[
1 + iζ

iζ

]k
}

. (B15)

The geometric series in the above equation can be substituted
by its closed-form solution:

φ̃n(ω) = i

ζ

√
τ̄

2π

{
1 − i

ζ

[1 − ( 1+iζ
iζ

)n

1 − ( 1+iζ
iζ

) ]}
, (B16)

which can be simplified to yield Eq. (B5), thus, concluding
this portion of the proof.

We end this Appendix by establishing the relationship be-
tween Eq. (B5) and Eq. (32). From Eq. (B5) and the definition

in Eq. (B3) follows:

φ̃n(ω) = i

(ω − ω0)τ̄ + i/2

√
τ̄

2π

{
(ω − ω0)τ̄ − i/2

(ω − ω0)τ̄ + i/2

}n

.

(B17)
The complex number enclosed in curly brackets in Eq. (B17)
clearly has unit magnitude and so can be written

(ω − ω0)τ̄ − i/2

(ω − ω0)τ̄ + i/2
= ei� (B18)

for some real number �. The phase function is given explicitly
by

�(ω − ω0; τ̄ ) = tan−1

[ −(ω − ω0)τ̄

(ω − ω0)2τ̄ 2 − 1/4

]
. (B19)

Equation (32) follows directly. The function �(ω − ω0; τ̄ ) is
plotted in Fig. 11.

APPENDIX C: ADDITIONAL SUPPORTING FIGURES

Figure 12 shows the effect of mean-lifetime mismatch on
J (WL)

εε . Results of a Monte Carlo simulation of the biexponen-
tial resolution task are given in Fig. 13.
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