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Quantum gates constructed by geometric phase are naturally robust to control errors due to the global nature of
the geometric evolution path. Therefore, how to cope with the inevitable decoherence errors is worthy of serious
attention for geometric quantum computation. Different from conventional nonadiabatic geometric quantum
computation (NGQC), which needs the same evolution time for any geometric rotation angle, we have proposed
and experimentally demonstrated nonadiabatic noncyclic geometric quantum computation (NNGQC) without
the requirement of the cyclic evolution condition, which thus reduces decoherence errors due to shortened
evolution time [J. W. Zhang et al., Phys. Rev. Lett. 127, 030502 (2021)]. In addition, the use of decoherence-free
subspaces (DFS) is another effective strategy to protect quantum gates from dephasing error and has been
studied in nonadiabatic holonomic quantum computation [G. F. Xu et al., Phys. Rev. Lett. 109, 170501 (2012)].
Motivated by previous studies, we propose a one-step scheme to implement single-qubit NNGQC operation in
DFS constructed by two Rydberg atoms, and then generalize the scheme to the two-logical-qubit case in one step.
The numerical results show that our scheme is robust against decoherence in contrast to the NGQC counterparts.
The present scheme combines the features of NNGQC and DFS and can further reduce the impact of decoherence
on gate infidelity, which may provide an option for the realization of Rydberg-atom-based quantum computation
in the future.

DOI: 10.1103/PhysRevA.105.062602

I. INTRODUCTION

Quantum computation is considered to be superior to clas-
sical computation in solving some specific problems, such as
factoring large integers [1] and searching unsorted databases
[2]. In order to implement quantum computation, a univer-
sal set of single- and two-qubit gates with high fidelity and
robustness against errors is essential. In addition, compared
with the step-by-step implementation scheme, the one-step
implementation scheme of quantum gates greatly reduces the
complexity of experimental operation and improves the feasi-
bility of experiments. Therefore, the one-step implementation
of high-fidelity robust quantum gates has attracted extensive
attention.

In view of the progress in the experimental operation of
trapping [3–5] and cooling [6], neutral atoms have become
a promising platform in the field of quantum information
[7,8]. Rydberg atoms, neutral atoms with large principal
quantum numbers that are excited to high-lying Rydberg
states, have been studied for construction of quantum logic
gates [9–14]. Although many two- and multiple-qubit gates
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based on Rydberg-Rydberg interactions (RRI) have been ex-
perimentally realized to date [3,15,16], the realization of
high-fidelity robust quantum gates still faces the challenge
of decoherence due to the inevitable interactions between the
system and its environment.

Quantum gates constructed based on geometric phases
[17–20] depend only on evolutionary paths while being inde-
pendent of evolutionary details, which is a promising strategy
for fault-tolerant quantum computation. However, the orig-
inally proposed adiabatic geometric quantum computation
[21–23] based on Abelian [18] and non-Abelian [17] phases
requires a long evolution time to meet the adiabatic condition,
which will amplify the decoherence and reduce the execution
efficiency. In order to overcome the limitation of adiabatic
conditions, nonadiabatic geometric quantum computation
(NGQC) and nonadiabatic holonomic quantum computation
based on Abelian [24,25] and non-Abelian [26–31] phases are
proposed and experimentally implemented in different quan-
tum systems such as superconducting [25,32–36], nitrogen-
vacancy centers in diamond [37–39], and nuclear magnetic
resonance [40–44]. In recent years, with the continuous devel-
opment of NGQC, different optimization schemes of NGQC
[45–47] have been proposed. However, both traditional
NGQC and time optimized NGQC meet the cyclic evolu-
tion condition, which makes NGQC sensitive to decoherence
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due to the long fixed evolution time limited by the cyclic
condition. To overcome the constraints on gate time imposed
by cyclic evolution conditions, Refs. [48,49] proposed nonadi-
abatic noncyclic geometric quantum computation (NNGQC),
which effectively overcomes the limitation of the cyclic evo-
lution condition on gate time and thus reduces the impact
of decoherence on gate fidelity, and the scheme has been
experimentally verified [50].

To further reduce decoherence errors, in addition to the
above-mentioned reduction of gate time using NNGQC, the
use of decoherence-free subspaces (DFS) [51–54] is also an
effective way to protect quantum systems from decoherence.
Due to the symmetry structure of the coupling between the
system and the environment in DFS, the quantum information
encoded in DFS obtains a unified dynamics, so as to effec-
tively prevent the collective decoherence of the system. So
far, the DFS scheme has also been experimentally verified in
different quantum systems [53–55]. Here, if NNGQC could
be implemented in one step in DFS, then this would not
only greatly reduce the impact of environmental errors on
gate fidelity due to its suppression of dephasing and short
evolution times, but the one-step implementation also greatly
improves experimental feasibility compared to the step-by-
step NNGQC-based two-qubit gate implementation scheme in
Ref. [49].

Therefore, how to construct a Hamiltonian in the DFS that
implements NNGQC in one step becomes the key to this
problem. In this paper, we propose to construct a Hamil-
tonian under DFS for NNGQC in one step in the Rydberg
atom. This scheme realizes the general single-qubit gate and
nontrivial two-qubit gate based on NNGQC in DFS, so as
to reduce the decoherence error caused by the interaction
between environment and system in gate fidelity and realize
high-fidelity robust quantum gates. It is worth mentioning
that our scheme also has the following two advantages: (i) it
takes less time to evolve compared to the previous geometric
schemes in DFS [22,27,28,56,57] and (ii) the feature of one-
step implementation reduces the complexity of the experiment
and provides the possibility for experimental implementation
compared to the schemes in Refs. [49,57,58]. In addition,
we have conducted numerical simulations to verify the per-
formance of our scheme, including fidelity and robustness,
by comparing the proposed NNGQC-based gate in DFS with
that of the conventional NGQC-based gate in DFS and the
conventional dynamical ones in DFS [dynamical quantum
computation (DQC)] with the same dephasing error and spon-
taneous emission. Although we use the Rydberg atom system
to verify the feasibility of our scheme, any quantum platform
capable of achieving the same form of effective Hamiltonian
is feasible, which means the proposed scheme is independent
of the particular physical platform and may have the potential
for wider application.

II. UNIVERSAL SINGLE-QUBIT GATES

We now propose to construct a set of universal NNGQC-
based single-qubit gates in DFS. The basic model we study
is illustrated in Fig. 1. There is an off-resonant transition
between |r〉i and |g〉i with red detuning �i driven by a classical
field of Rabi frequency �ieiϕi . In the interaction picture, it is

FIG. 1. The diagrammatic sketch of two interacting Rydberg
atoms. In 87Rb atom i (i = 1, 2), the ground state |g〉i is excited to
the Rydberg state |r〉i by an off-resonant laser with Rabi frequency
�ieiϕi , and �i denotes the red detuning between the energy splitting
and the driving frequency �ieiϕi . U12 is the van der Waals interaction
between atoms in the Rydberg state. The distance between atoms is
d12 = 7.12 μm.

modeled by the Hamiltonian (let h̄ = 1)

HI =
∑
i=1,2

�i

2
eiϕi (|r〉i〈g| + H.c.)

+
∑
i=1,2

�i|r〉i〈r| + U12|rr〉i j〈rr| (1)

where Ui j denotes the RRI strength between the ith atom and
the jth atom and is denoted as Ui j = C6

di j
6 [59] (C6 = 1.043 ×

105 GHz μm6 is the van der Waals interaction coefficient and
di j represents the distance between the ith atom and the jth
atom). In the limit of large detuning with �i � �i, the Hamil-
tonian in Eq. (1) satisfies the conditions as �1 = �2 = �.
Using effective Hamiltonian theory, in subspace {|rg〉, |gr〉}
the Hamiltonian is rewritten as

Heff =
(

�∗
1�2

4�
− �∗

1�2

4(� + U12)

)
ei(ϕ2−ϕ1 )|gr〉〈rg| + H.c. (2)

In order to protect the quantum gates from decoherence, we
utilize two physical qubits to encode a logical qubit [60,61].
The specific encoding is

|0〉 = |gr〉, |1〉 = |rg〉. (3)

Therefore, the above effective Hamiltonian in Eq. (2) can be
rewritten as

Heff =
(

0 �eff e−iϕ

�effeiϕ 0

)
, (4)

in the basis {|0〉, |1〉} with �eff = �∗
1�2

4�
− �∗

1�2

4(�+U12 ) and ϕ =
ϕ1 − ϕ2. We consider a quantum system described by a time-
dependent two-dimensional state subspace spanned by a com-
plete set of orthonormal basis vectors {|ψk (t )〉}2

k=1, which fol-
lowing the time-dependent Schrödinger equation i d

dt |ψk (t )〉 =
Heff (t )|ψk (t )〉 and the time evolution operator can be de-
scribed as U (t, 0) = Te−i

∫ t
0 Heff (t ′ )dt ′ = ∑2

k=1 |ψk (t )〉〈ψk (0)|,
T being time ordering. Here we choose a different set of
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time-dependent auxiliary states

|μ1(t )〉 = cos
θ (t )

2
e−i λ(t )

2 |0〉 + sin
θ (t )

2
ei λ(t )

2 |1〉,

|μ2(t )〉 = sin
θ (t )

2
e−i λ(t )

2 |0〉 − cos
θ (t )

2
ei λ(t )

2 |1〉, (5)

which satisfies the boundary condition |μk (0)〉 =
|ψk (0)〉 at time t = 0. Thus, we can rewrite the
state |ψk (t )〉 = ∑

l Clk (t )|μl (t )〉 and time evolution
operator U (t, 0) = ∑

l,k Clk|μl (t )〉〈μk (0)|. Substituting
|ψk (t )〉 = ∑

l Clk (t )|μl (t )〉 into the Schrödinger equa-
tion yields d

dt Clk (t ) = i
∑L

l=1(Gkl (t ) − Dkl (t ))Clk (t ),
where Gkl = 〈μk (t )|i d

dt |μl (t )〉 is the geometric part
and Dkl = 〈μk (t )|Heff (t ) |μl (t )〉 is the dynamical part.
We can obtain the final time (t = τ ) evolution operator
U (τ ) = ∑2

l,k=1[Tei
∫ τ

0 (G−D)dt ]lk|μl (τ )〉〈μk (0)|.
To achieve the noncyclic geometric gates, we choose

the auxiliary state |μk (t ) satisfying the von Neumann
equation [62]: d

dt 	k (t ) = −i[H (t ),	k (t )], where 	k (t ) =
|μk (t )〉〈μk (t )| denotes the projector of the auxiliary basis.
Explicitly, the control parameters of the laser can be expressed
as

�eff (t ) = θ̇

2 sin(ϕ − λ)
,

ϕ(t ) = λ − arctan

(
θ̇

λ̇ tan θ

)
. (6)

In this way, we can obtain the time evolution operator as
U (τ, 0) = eiγ |μ1(τ )〉〈μ1(0)| + e−iγ |μ2(τ )〉〈μ2(0)|, in which
the global phase γ (τ ) = ∫ τ

0 (G11 − D11)dt = − ∫ τ

0 (G22 −
D22)dt = ∫ τ

0
λ̇

2 cos θ
dt consists of the geometric phase γg =∫ τ

0 G11dt = 1
2

∫ τ

0
˙λ(t ) cos θ (t )dt and the dynamical phase

γd = ∫ τ

0 D11dt = ∫ τ

0 � sin θ cos(ϕ − λ)dt , i.e., γ = γg + γd .
Since the control parameters of the laser {�eff (t ), ϕ(t )} all
meet the von Neumann equation, the nondiagonal dynamic
and geometric phases cancel each other out, i.e., Gmk −
Dmk = 0 for (m �= k) [49]. In order to achieve a purely ge-
ometric quantum gate, we set ϕ − λ = π

2 to eliminate the
dynamic phase in the evolution process.

Next, we consider that noncyclic geometric quantum com-
putation is different from general NGQC in that it satisfies the
cyclic evolution condition, so we use a geodesic line [63,64]
to connect the end point of the actual evolution path to the
starting point to form path P2, such that path P2 comple-
ments the actual evolution path P1 into a closed path P. In
this way we know that the overall geometric phase is γg =
�angle

2

∫ λ(τ )
λ(0)

∫ θ (τ )
θ (0)

1
2 sin θdθdλ, based on the fact that the overall

geometric angle is half of the solid angle �angle enclosed by
the closed path P [46].

Then the resulting unitary evolution becomes purely ge-
ometric as U (τ ) = eiγg|μ1(τ )〉〈μ1(0)| + e−iγg|μ2(τ )〉〈μ2(0)|,
which is expressed in the subspace spanned by {|0〉, |1〉} as

U =
(

U11 U12

U21 U22

)
, (7)

where U11 = e−i λ−
2 (cos γg cos θ−

2 + i cos θ+
2 sin γg), U12 =

e−i λ+
2 (− cos γg sin θ−

2 + i sin θ+
2 sin γg), U21 = U ∗

12, and

Hadamard

effeff

FIG. 2. (a) The Rabi frequency �eff (t ) and phase ϕ(t ) of the
Hadamard gate for NNGQC and NGQC. (b) The Rabi frequency
�eff (t ) and phase ϕ(t ) of the NOT gate for NNGQC and NGQC.
Dynamics of gate fidelities of the Hadamard gate (c) and the
NOT gate (d) driven by original Hamiltonian HI (orange solid
line) and effective Hamiltonian Heff (blue dashed line), respec-
tively. �1 = �2 = 2π × 20 MHz, �1 = �2 = � = 10�1 = 2π ×
200 MHz, U12 = C6

d6
12

= 2π × 800 MHz.

U22 = U ∗
11 with λ± = λ(τ ) ± λ(0) and θ± = θ (τ ) ± θ (0).

Therefore, any single-qubit gate can be realized by selecting
different γ , λ±, and θ±. That is, the initial and final values
of auxiliary variables λ and θ are determined by the target
geometric gate.

Based on the above discussion of the auxiliary variables
λ(t ) and θ (t ) and the constraints of the pulse parameters
�eff (t ) and ϕ(t ) in Eq. (6) we set the auxiliary variables as

θ (t ) = 2�efft − θ0,

λ(t ) = φε(t ) + φ0, (8)

where ε(t ) is a step function with ε = 0 in the first time
period t ∈ [0, θ0

2�eff
] and ε = 1 in the second t ∈ [ θ0

2�eff
, τ ],

and φ

2 denotes the geometric phase φ

2 = γ = ∫ τ

0
1
2 λ̇ cos θdt

generated by the sudden change during the evolution; �eff , φ,
φ0, and θ0 are constants. With the above settings, we know
that the evolution time is τ = θ−

2�eff
.

We then illustrate the performance of our scheme using a
Hadamard gate (achieved by setting γ = π

4 , θ+ = π
2 , θ− =

3π
2 , λ+ = π

2 , and λ− = π
2 ) and a NOT gate (achieved by setting

γ = π
2 , θ+ = π , θ− = π , λ+ = 0, and λ− = π ) as examples.

First of all, according to Eq. (6) and the above discussion
about the pulse parameters, the optimized pulse parameters
are shown in Figs. 2(a) and 2(b) for the Hadamard gate and
NOT gate, respectively. It is clear that compared with the
evolution time of the conventional NGQC our scheme takes
τH = 3π

4�eff
and τX = π

2�eff
to construct the Hadamard gate and

NOT gate, respectively, which is obviously smaller than the
evolution time of the conventional NGQC, and this is the
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FIG. 3. The Hadamard gate fidelity in the case of NNGQC (a), NGQC (b) and DQC (c) and the NOT gate fidelity in the case of NNGQC
(d), NGQC (e), and DQC (f) in DFS under spontaneous emission and dephasing, respectively.

reason why the scheme works well in resisting decoherence,
as we will discuss below.

Next, we further illustrate the performance of our scheme
through numerical simulations. According to the effec-
tive approximation condition �i � �i of Eq. (2), we set
�1 = �2 = 2π × 20 MHz, �1 = �2 = � = 10�1 = 2π ×
200 MHz, U = 2π × 800 MHz, and the Stark shift term in
Heff is eliminated by further lasering. Then we plot the dy-
namics of the average fidelities of the gates driven by the
original Hamiltonian HI and the effective Hamiltonian Heff ,
respectively, in Figs. 2(c) and 2(d). Here, we introduce a con-
cept of average fidelities F (t ) = 1

2π

∫ 2π

0 dα〈ψU |U (t )|ψ (0)〉,
and the initial states of the system are expressed by |ψ (0)〉 =
cos α|0〉 + sin αeiβ |1〉 with {α, β} ∈ [0, 2π ]. From Figs. 2(c)
and 2(d), we can see that the fidelities of the gates driven
by the original Hamilton HI and the effective Hamilton Heff ,
respectively, almost fit, and the fidelities of the Hadamard and
NOT gates driven by the original Hamilton HI are divided into
0.9969 and 0.9996, which proves the validity of our original
Hamilton HI.

Furthermore, we consider that gate fidelity in open quan-
tum systems is inevitably affected by spontaneous decay and
dephasing. Therefore, the dynamic evolution of the system is
controlled by the following Lindblad master equation [65]:

i
∂ρ

∂t
= −i[HI, ρ] + 1

2

∑
i∈1,2

[�−
i L(σi ) + �zL(σz )], (9)

in which ρ is the density matrix of the system, HI is the
Hamiltonian of the system in Eq. (1), and L(σi) = 2σiρσ

†
i −

σ
†
i σiρ − ρσ

†
i σi. Also, σ i = |g〉i〈r| (i = 1, 2) represents the

spontaneous decay from the Rydberg state |r〉i to the ground
state |g〉i, and σz = |g〉i〈g| − |r〉i〈r| represents dephasing of
the system. Here we encode the Rydberg state and the ground
state as |r〉 ≡ |103S〉 and |g〉 ≡ |5S1/2, F = 2, mF = 0〉, and
the transition is a two-photon process. The decay rate from
the Rydberg state |r〉i to the ground state |g〉i is �−

1 = �−
2 =

� = 0.75 KHz (where � = 1
T and T = 1330.8 μs denotes

the lifetime of the Rydberg state |r〉 ≡ |103S〉 at about 0 K
[15,66,67]) and the dephasing rate �z ∈ (�, 10�).

Next, taking the Hadamard gate [Figs. 3(a)–3(c)] and NOT

gate [Figs. 3(d)–3(f)] as examples, we compare the robustness
of our scheme with the NGQC scheme [25,68] and DQC
scheme [69] (see the Appendix for details) in DFS under
environmental errors (spontaneous emission and dephasing).
As shown in Fig. 3, our scheme has some advantages under
the influence of decoherence error.

III. NONTRIVIAL TWO-QUBIT GATES

To implement a complete set of gate operations in any
circuit model for quantum computation requires at least one
nontrivial two-qubit gate in addition to a generic set of single-
qubit gates. Next, we will show in the following how to
implement a universal two-qubit gate based on NNGQC in
DFS in one step, and discuss the performance of this two-qubit
scheme. As shown in Fig. 4, the transitions |g〉3 ↔ |r〉3 and
|g〉4 ↔ |r〉4 are driven by two pulses of �3eiϕ3 and �4eiϕ4 ,
respectively, with the same red detuning, i.e., �3 = �4 = �.
Note that the RRI is generated when atom 2 is in the excited
state |r〉2. In the interaction picture, the Hamiltonians can be
written as (let h̄ = 1)

HI =
∑
i=3,4

�i

2
eiϕi (|r〉i〈g| + H.c.)

+
∑
i=3,4

�i|r〉i〈r| +
∑
i �= j

Ui j |rr〉i j〈rr|, (10)

where Ui j contains U23, U24, and U34 when atom 2 is in the
excited state. Then we extend the Hamiltonian to the form
of the four-atom basis, and under the condition of effective
Hamiltonian approximation �i � �i and �3 = �4 = � the
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FIG. 4. (a) Four identical Rydberg atoms in a two-dimensional
optical lattice. Atom 1 and atom 2 constitute a logic control qubit,
and atom 3 and atom 4 constitute a logic target qubit. The distances
between atoms 2–4 are the same, i.e., d23 = d24 = d34 = 3.44 μm,
and therefore they have the same van der Waals forces between them,
i.e., U23 = U24 = U34 = 2π × 104 MHz. (b) Schematic diagram of
two identical two-level atoms in atom 3 and atom 4. In atom 3
and atom 4, ground states |g〉3 and |g〉4 are driven nonresonantly
to excited states |r〉3 and |r〉4 by the classical field of Rabi fre-
quency �3eiϕ3 and �4eiϕ4 , with red detuning �3 and �4, respectively.
In order to facilitate the analysis and design, we set �3 = �4,
|�3| = |�4|.

Hamiltonian can be simplified to

Heff = �∗
3�4

4
Aei(ϕ4−ϕ3 )|grrg〉〈grgr|

+ �∗
3�4

4
Bei(ϕ4−ϕ3 )|rggr〉〈rgrg| + H.c., (11)

where A = 1
�+U24

− 1
�+U24+U34

and B = 1
�

− 1
�+U34

. We set
U23 = U24 = U34 � � to further simplify the Hamiltonian in
Eq. (11) to obtain

Heff = �∗
3�4

4�
ei(ϕ4−ϕ3 )|rggr〉〈rgrg| + H.c. (12)

According to Eq. (3) we obtain the effective Hamiltonian in
the logical subspace {|00〉, |01〉, |10〉, |11〉}:

H ′
eff =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 �′

effe
−iϕ′

0 0 �′
effe

iϕ′
0

⎞
⎟⎟⎠, (13)

where �′
eff = �∗

3�4

4�
and ϕ′ = ϕ3 − ϕ4. Since the form of

Eq. (13) is similar to that of Eq. (4), we use the same pulse
in Eq. (6) to construct one noncyclic geometric quantum
operation to obtain the evolution operator of the controlled
two-qubit gate

U ′ =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22

⎞
⎟⎠, (14)

where U11, U12, U21, and U22 are the same as the matrix
element in Eq. (7).

Similarly, we illustrate the performance of the two-qubit
scheme using the controlled Hadamard and controlled NOT

gates as examples. According to the approximate conditions
required to obtain the effective Hamiltonian H ′

eff in Eq. (13),

FIG. 5. Populations and fidelities of the constructed NNGQC-
based two-qubit controlled Hadamard gate (a) and the constructed
NNGQC-based two-qubit controlled NOT gate (b) with the initial
state ψ (0) = 1

2 (|00〉 + |01〉 + |10〉 + |11〉).

we set �3 = �4 = 2π × 10 MHz, �3 = �4 = 10�4, U23 =
U24 = U34 = 100�4. As shown in Fig. 5, although there
is a local phase between the subspaces {|10〉, |11〉} and
{|00〉, |01〉} due to Stark shift, which makes the fidelity curve
fluctuate significantly with time, the controlled Hadamard
gate and NOT gate fidelities still reach 0.996 and 0.997, re-
spectively, for the initial state ψ (0) = 1

2 (|00〉 + |01〉 + |10〉 +
|11〉).

Next, we demonstrate the robustness of two-qubit con-
trolled gates based on our scheme to environmental errors.
Using the two-qubit controlled Hadamard gate and two-qubit
controlled NOT gates as examples, we compare our proposed
NNGQC-based two-qubit controlled gate scheme with the
NGQC-based two-qubit controlled gate scheme and DQC-
based two-qubit controlled gate scheme under the influence
of spontaneous emission and dephasing. As shown in Fig. 6,
our scheme has certain advantages under the influence of
decoherence error.

IV. CONCLUSION

In conclusion, we have proposed an one-step implementa-
tion of NNGQC in DFS. A set of universal NNGQC-based
single- and two-qubit gates is implemented in one step, which
not only reduces the complexity and difficulty of the experi-
mental operation but also reduces the impact of unavoidable
environmental errors due to the short evolution time (NNGQC
breaks the constraints of cyclic evolutionary conditions) and
robustness to the collective decoherence of the system (DFS
effectively prevents the collective decoherence).
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FIG. 6. The fidelities of the two-qubit controlled Hadamard gate in the case of NNGQC (a), NGQC (b), and DQC (c) and the two-
qubit controlled NOT gate fidelity in the case of NNGQC (d), NGQC (e), and DQC (f) in DFS under spontaneous emission and dephasing,
respectively.

APPENDIX: DYNAMICAL SCHEME

Here we briefly describe the dynamical scheme men-
tioned above. Based on the effective Hamiltonian Heff =
�effe−iϕ′ |0〉〈1| + H.c. in Eq. (4) we can obtain the evolution
operator as

U (�,ϕ′) =
(

cos � −ie−iϕ′
sin �

−ieiϕ′
sin � cos �

)
, (A1)

where � = �effτ and τ is the laser operation time. When set-
ting ϕ′ = 3π

2 , we can obtain the quantum gate Uy(�) = ei�σy ,
and when setting two sequential evolutions U1(� = π

2 , ϕ′ =
ϕz

2 ) and U2(� = π
2 , ϕ′ = −ϕz

2 ) we can obtain the quantum gate
Uz(ϕz ) = U2U1 = eiϕzσz . Uy(�) and Uz(ϕz ) can be combined

to form a universal set of quantum gates, i.e.,

U ′(�,ϕz ) = Uy(�)Uz(ϕz )

= Uy(�)U1U2

=
(−ei ϕz

2 cos � −e−i ϕz
2 sin �

ei ϕz
2 sin � −e−i ϕz

2 cos �

)
. (A2)

For the NOT gate, its corresponding evolution operator is
UNOT = U (θ = π

2 , ϕ′ = π ). In addition, the Hadamard gate
is obtained in three steps; the parameters in Eq. (A2) are set
as UH = U (� = π

4 , ϕ′ = − 3π
2 )U ′(� = π

2 , ϕ′ = −π
2 )U ′(� =

π
2 , ϕ′ = π

2 ).
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