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Efficient generation of spin cat states with twist-and-turn dynamics via machine optimization
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Spin cat states are promising candidates for achieving Heisenberg-limited quantum metrology. It is suggested
that spin cat states can be generated by adiabatic evolution. However, due to the limited coherence time, the
adiabatic process may be too slow to be practical. To speed up the state generation, we propose to use machine
optimization to generate desired spin cat states. Our proposed scheme relies only on experimentally demonstrated
one-axis twisting interactions with piecewise time-modulation of rotations designed via machine optimization.
The required evolution time is much shorter than the one with adiabatic evolution and it does not make large
modification to the existing experimental setups. Our protocol with machine optimization is efficient and easy to
be implemented in state-of-the-art experiments.
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I. INTRODUCTION

Quantum metrology can achieve higher measurement pre-
cision than classical metrology [1,2] and plays a central role
in quantum science and technology [3]. Quantum metrology
exploits quantum effects such as entanglement and quantum
correlation to achieve better measurement precision [4–6].
Many proposals and proof-of-principle demonstrations sug-
gest that entanglement can be used for improving the
measurement precision of quantum sensors [7–9]. For an
ensemble of N uncorrelated atoms, the measurement preci-
sion can only reach the standard quantum limit (SQL) [10],
which is the basic statistical scaling of 1/

√
N . By employ-

ing atom-atom entanglement, entangled states such as spin
squeezed state [11–15], Greenberger-Horne-Zeilinger (GHZ)
and NOON states [5,6,16], twin-Fock states [17–20], and spin
cat states [21,22] can beat the SQL or even approach the
fundamental limit of quantum metrology, the Heisenberg limit
(HL) [2,23], with a scaling of 1/N .

Spin cat states are promising candidates for approaching
the HL [24]. It has been shown that spin cat states with modest
entanglement can perform high-precision phase measurement
beyond the SQL even under dissipation [21]. Combined with
interaction-based readout [25], spin cat states can perform
Heisenberg-limited phase estimation only via population mea-
surement and the robustness against detection noise can be
better than using spin squeezed states [24]. The high mea-
surement precision and good robustness makes spin cat states
appealing for quantum metrology.

The main challenge against the applications of spin cat
states in practice is their generation in realistic experiments.
An efficient way to generate spin cat states is the adiabatic
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evolution [5,21,26–30]. By adiabatic sweeping the control
parameter across the spontaneous symmetry-breaking tran-
sition [5,26,31], spin cat states with different degree of
entanglement can be prepared [21,29]. However, the adiabatic
sweeping demands the control parameter varies slowly to let
the evolved state follow the instant ground state of the system.
Due to the limited coherence time in experiments, adiabatic
process is too time-consuming and hard to realize. Shortcut to
adiabaticity is a well-known approach for quickly achieving
the target state [32,33]. But for many-body quantum state
generation, this approach is not straightforward and some
approximations (e.g., in semiclassical limit) may be required
before obtaining the analytic optimal solution [34–37]. Hence,
developing efficient approach for creating spin cat states be-
comes a significant issue.

One-axis twisting (OAT) is one of the well-known strate-
gies for generating entanglement in many-body quantum
systems. Under the time-evolution of OAT interaction, an
initial spin coherent state (without entanglement) can evolve
to spin squeezed states [11,38], over-squeezed states [39,40]
and other kinds of nonclassical states [1,41–43]. To accelerate
state preparation process, twist-and-turn (TNT) dynamics is
proposed in which an additional rotation is introduced along
with OAT interaction [44–46]. Faster entanglement generation
(e.g., spin squeezing) has already been demonstrated experi-
mentally [44]. Recently, a protocol based on TNT dynamics
with a machine-designed time-dependent rotation sequence
is proposed [47], in which a higher sensitivity for concurrent
entanglement generation and sensing can be achieved [47,48].
One may also use TNT dynamics with time-dependent rota-
tion sequence for preparation of spin cat states. It is natural
to treat the state preparation process as an optimal control
problem [49–53]. Can one use machine optimization to design
suitable time-sequence of control parameter to speed up the
generation of spin cat states?
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In this article, we investigate how to efficiently gener-
ate spin cat states. At first, we illustrate how to prepare
spin cat states via adiabatic evolution. We show that the
recent proposal of adiabatic-parameter-fixed sweeping [30]
can generate spin cat states with high fidelity. However the
adiabatic process may be still too slow to be practical. To
speed up the state generation, we propose to use machine
optimization to generate a desired spin cat state based on
TNT dynamics. Our proposed scheme relies only on the de-
veloped OAT interactions with piecewise time-modulation of
rotations designed via machine optimization. Compared with
adiabatic evolution, the fidelity to the spin cat states can be
higher along with the required evolution time becomes much
shorter. It does not require large modification to the existing
experimental setups. Our scheme can be realized with state-
of-the-art techniques in a Bose-Einstein condensate (BEC)
system [54,55] or an optical cavity system with light-mediated
interactions [40,56,57]. It points out an alternative way for
generating various entangled states, which has a broad interest
for quantum technologies such as quantum metrology and
quantum computing.

II. MODEL AND SPIN CAT STATES

A. Ensemble of Bose atoms

An ensemble of N two-level atoms can be regraded as N
identical spin- 1

2 particles. The system can be conveniently
described by a collective spin with spin length J = N

2 and the
states can be displayed on a generalized Bloch sphere. The
collective spin operator Ĵ contains three components, Ĵx =
1
2 (â†b̂ + b̂†â), Ĵy = i

2 (â†b̂ − b̂†â), Ĵz = 1
2 (b̂†b̂ − â†â), where

â and b̂ are the annihilation operators for particles in level |a〉
and |b〉, respectively. These collective spin operators obey the
general angular-momentum commutation relations [Ĵi, Ĵ j] =
ih̄εi jk Ĵk with i, j, k = x, y, z and εi jk the Levi-Civita symbol.
In this representation, a system state can be expressed by
|�〉 = ∑N/2

m=−N/2 Cm|J, m〉, where |J, m〉 is the Dicke basis
denoting N/2 − m particles in |a〉 and N/2 + m particles in
|b〉.

B. Spin cat states

Spin cat states are excellent candidates for achieving
Heisenberg-limited phase estimation. A spin cat state is a typ-
ical kind of macroscopic superposition of spin coherent states
(MSSCS). Generally, a MSSCS is a superposition of multi-
ple spin coherent states (SCSs) [42,43,58–61], which can be
written in the form of |�(θ, ϕ)〉M = NC (|θ, ϕ〉 + |π − θ, ϕ〉),
where NC is the normalization factor and |θ, ϕ〉 denotes the
spin coherent state (SCS) with

|θ, ϕ〉 =
∑

m

√
(2J )!

(J + m)!(J − m)!
cosJ+m

(
θ

2

)
sinJ−m

(
θ

2

)

× e−i(J+m)ϕ |J, m〉.
Since cm(θ ) = c−m(π − θ ), the coefficients are symmetric
about m = 0. We assume the two SCSs have the same az-
imuthal angle ϕ = 0, |�(θ )〉M = NC[

∑J
m=−J cm(θ )(|J, m〉 +

|J,−m〉)].

The properties of the MSSCS depends on θ . When θ =
π/2, it corresponds to a SCS |π/2, 0〉. As θ decreases, the
two superposition SCSs become separated. When

θ � θc ≡ sin−1

{
2

[
[(J − 1)!]2

2(2J )!

] 1
2J

}

is sufficiently small [21], the two SCSs become quasi-
orthogonal (or orthogonal), the MSSCS can be regarded as
a spin cat state. In this case, we abbreviate the spin cat states
as |�(θ )〉CAT, and it can be approximated as

|�(θ )〉CAT ≈ 1√
2

(|θ, ϕ〉 + |π − θ, ϕ〉)

= 1√
2

[
J∑

m=−J

cm(θ )(|J, m〉 + |J,−m〉)

]
. (1)

Note that spin cat states can be understood as a super-
position of GHZ states with different spin length. Par-
ticularly when θ = 0, it reduces to a GHZ state, i.e.,
|�(0)〉CAT = 1√

2
(|J,−J〉 + |J, J〉). The expectation of Ĵz for

a spin cat state CAT〈�(θ )|Ĵz|�(θ )〉CAT = ∑
m mc∗

m(θ )cm(θ ) =
0. Hence, the variance of a spin cat state becomes �2Ĵz =
〈�(θ )|Ĵ2

z |�(θ )〉CAT = ∑
m m2c∗

m(θ )cm(θ ). The variance can
be analytically obtained �2Ĵz ≈ 1

4 N2 cos2 θ , which only de-
pends on θ and N .

If a spin cat state |�(θ )〉CAT is input for interferometry, and
it undergoes a unitary evolution |ψout〉 = U (φ)|�(θ )〉CAT =
e−iĴzφ|�(θ )〉CAT, the quantum Fisher information (QFI) for the
output state [23,62] can be calculated as F Q

CAT = 4(〈ψ ′|ψ ′〉 −
|〈ψ ′|ψout〉|2) = 4�2Ĵz ≈ N2 cos2 θ with |ψ ′〉 = d|ψout〉/dφ.
Thus the ultimate phase precision by a spin cat state is
obtained,

�φ � �φQ ≡ 1√
F Q

CAT

= 1

N cos θ
. (2)

According to the ultimate measurement bound (2), the
achievable precision of the spin cat state |�(θ )〉CAT follows the
Heisenberg scaling multiplied by a coefficient 1/ cos θ only
dependent on θ . When θ = 0, |�(0)〉CAT is the GHZ state,
its ultimate bound is the exact Heisenberg limit 1/N . When
0 < θ � θc, the ultimate bound becomes 1/(N cos θ ), still has
the Heisenberg limited scaling. For example, �φQ = 2/

√
3N ,√

2/N , 2/N for spin cat states |�(θ )〉CAT with θ = π/6, π/4,
π/3.

C. State generation

For entangled state preparation in an atomic ensemble, one
can use the Bose-Josephson Hamiltonian [39] (we set h̄ = 1
hereafter),

Ĥ (t ) = χ Ĵ2
z + �(t )Ĵx. (3)

Here, χ denotes the magnitude of the twisting strength and
�(t ) is Rabi frequency determining the rotation rate around
the Ĵx axis. The first term χ Ĵ2

z is the consequence of twist-
ing dynamics and creates the entanglement among atoms.
The second term �(t )Ĵx rotates the collective spin state in a
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perpendicular direction. In the following calculations, we set
the parameters in the unit of |χ |.

For a state preparation process with an initial pure state
|ψ0〉, the final prepared state at time T can be expressed as
|ψ (T )〉 = T̂ e−i

∫ T
0 Ĥ (t )dt |ψ0〉 with T̂ being the time-ordering

operator. To characterize how close between the prepared state
ψ (T ) and a desired state |ψd〉, one can introduce the fidelity,
which is expressed as

F (T ) = |〈ψ (T )|ψd〉|2. (4)

When |ψ (T )〉 = |ψd〉, F (T ) = 1. While F (T ) = 0 if |ψ (T )〉
is orthogonal with |ψd〉. Generally, one can start from an
initial SCS |ψ0〉 = |π/2, 0〉, which is a nonentangled state and
easy to prepare in experiments. In the following, we show how
to generate a desired spin cat state |ψd〉 = |�(θ )〉CAT with
F (T ) = |〈ψ (T )|�(θ )〉CAT|2 close to 1 by designing time-
dependent modulation of �(t ).

III. SPIN CAT STATE GENERATION VIA ADIABATIC
EVOLUTION

For the Hamiltonian (3), when |�/χ | 	 1, the system
ground state is an SU(2) SCS. The sign of χ determines the
properties of the ground state when � is not large enough.
When χ > 0 and |�/χ | 
 1, the ground state is a spin
squeezed state. While for χ < 0, the ground state becomes
a spin cat state when |�/χ | 
 1. To generate a spin cat
state, it is natural to prepare the ground state of Hamilto-
nian (3) in the limit of |�/χ | 
 1 with χ < 0. For atomic
BEC system, the negative twisting strength can be achieved by
tuning the interspecies s-wave scattering length via Feshbach
resonance [27,28].

This model is invariant under the transformation of ex-
changing mode a and mode b [30]. Under the transformation
â(b̂) → b̂(â), Ĵx → Ĵx, Ĵz → −Ĵz, hence the Hamiltonian (3)
remains unchanged. Thus, this system possesses a parity
symmetry and it guarantees the symmetry-protected adiabatic
evolution [30]. The adiabatic evolution can be happened since
there is always a finite minimum energy gap between instan-
taneous eigenstates of the same parity. With negative χ , one
possibility for generating spin cat states is the adiabatic evolu-
tion. Initially, we set �(0) to be sufficiently large, the ground
state is nearly a SCS along x axis with even parity. By sweep-
ing the Rabi frequency across the critical point �c/N |χ | = 1,
the two lowest eigenstates change from nondegenerate to de-
generate. Through adiabatically sweeping �(t )/χ to zero, the
evolved state will stay in the instant ground state and spin cat
states (also with even parity) can be prepared when �(T )/χ
is close to 0.

Naively, one can linearly sweep �(t ) = �(0) + υt from
the nondegenerate regime across to the degenerate regime
with fixed the sweeping rate υ. If υ is sufficiently small, the
adiabatic evolution of the ground state can still be achieved
with high fidelity. However, this linear sweeping scheme is
not timesaving.

To perform faster ground-state adiabatic evolution, we
change the sweeping rate with time according to the in-
stantaneous energy gaps between the ground state and the
second-excited state (both with the same parity) under a
fixed adiabatic parameter ε. Since ε is fixed, we call it

FIG. 1. Spin cat state generation via adiabatic evolution with
adiabatic-parameter-fixed sweeping. Blue solid line is the variation
of Rabi frequency �(t ) versus evolution time t . Here, the total atom
number N = 100 and χ < 0. For |χ |t = 0.375, 0.55, 0.69, 0.96,
the corresponding evolved states are close to the spin cat states of
|�(0)〉CAT, |�( π

6 )〉CAT, |�( π

4 )〉CAT, |�( π

3 )〉CAT with fidelity F = 0.99,
0.98, 0.98, 0.91, respectively.

adiabatic-parameter-fixed sweeping [30]. The time-varying
Rabi frequency �(t ) = �(0) + ∫ t

0 υ(t ′) dt ′, where υ(t ) =
�̇(t ) is the instant sweeping rate of the Rabi frequency. For
adiabatic-parameter-fixed sweeping,

υ(t ) = ε[E1(t ) − E3(t )]2

|〈φ1(t )|Ĵx|φ3(t )〉| .

Here, E1(t ) and E3 respectively represent the energy of in-
stant ground state φ1(t ) and the second-excited state φ3(t ) of
Hamiltonian (3). The modulation of Rabi frequency �(t ) with
time is shown in Fig. 1. Based on the adiabatic-parameter-
fixed sweeping scheme, the total time for adiabatic evolution
can be reduced compared with the naive linear sweeping [30].
Besides, the generated states and their fidelities to the target
spin cat states are also shown in Fig. 1. The fidelities can be
above 0.9 under the condition of ε = 0.05 with total atom
number N = 100.

The adiabatic parameter ε determines the efficiency of the
sweeping. With smaller ε, the fidelity to the target spin cat
state can be higher, however the total evolution time T will
be longer. We choose ε = 0.05, 0.1, 0.2 for illustration. If
the target spin cat state is the GHZ state |�(0)〉CAT, the best
fidelity can be 0.74, 0.97, 0.99 with ε = 0.2, 0.1, 0.05, respec-
tively. The corresponding total evolution time are χT = 0.24,
0.48, 0.96. That is, to generate a GHZ state (N = 100) with
fidelity over 0.99, χT > 0.9 should be necessary. However,
this required time is shorter than π/2, which is the typical
time for generating GHZ state via OAT, see Fig. 2.

IV. SPIN CAT STATE GENERATION VIA MACHINE
OPTIMIZATION FOR QUANTUM METROLOGY

Although spin cat states can be generated by adiabatic
quantum evolution, however the adiabatic process is always
too slow to be practical. In this section, we demonstrate
how to use machine optimization to generate a desired spin
cat state. Here, we propose a different method based on
TNT dynamics. The presence of a nonzero constant term
�Ĵx can generate entanglement more rapidly than OAT. Our
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FIG. 2. Spin cat state generation via adiabatic- parameter-fixed
sweeping with different ε. Green (dash-dotted), red (dashed), and
blue (solid) lines represent the results of ε = 0.2, 0.1, and 0.05, re-
spectively. (a) The variation of Rabi frequency �(t ) versus evolution
time t . (b) The fidelity F (t ) = |〈ψ (t )|�(0)〉CAT|2 between the instant
evolved state and the target spin cat state |�(0)〉CAT versus time t .
The insets show the probability distribution P(m) = |〈J, m|ψ (T )〉|2
of the final prepared states. Here, the total atom number N = 100
and χ < 0. Conventionally, an OAT dynamics along with a π/2
pulse along the y axis can generate the spin cat state |�(0)〉CAT at
χT = π/2 (χ > 0). For reference, the result of OAT is also shown,
see the orange (dotted) line.

proposed scheme makes use of the same operations as the
TNT implementations, but with a time-dependent Rabi fre-
quency sequence �(t ) designed via machine optimization.
The required evolution time is much shorter than the one with
adiabatic evolution. Finally, we also use the prepared states
for phase estimation and the ultimate precision bounds follow
the Heisenberg-limited scalings, which are consistent with the
analytical analysis.

A. State generation via machine optimization

We still start from an initial SCS and design the time-
sequence of Rabi frequency via the techniques of optimiza-
tion. Without loss of generality, we consider the twisting
strength χ to be positive, which is commonly used for en-
tangled state generation such as spin squeezed states. For the
Hamiltonian (3) with total evolution time T , we consider T to
be divided into n equal segments so that the time-dependent
Rabi frequency can be parametrized as [47]

�(t ) = 
(t )Nχ/2, (5)

with 
(t ) a piecewise step function and in each segment (k =
1, 2, . . . , n),


(t ) = 
(k), (k − 1)T/n � t < kT/n (6)

can be varied individually. Thus, the time-dependent variable
�(t ) involves n variational parameters. It is assumed that these
parameters can be varied arbitrarily. Given χT and N , starting
from an initial SCS |π

2 , 0〉 one can obtain the maximal fidelity
F (T ) by optimizing �(t ). Here, we use the minimization
routine in MATLAB with the BFGS method to iteratively search
the parameters 
(k) that minimizing −F (T ). The schematic is
shown in Appendix A.

We first consider the segment number n = 20 and the target
spin cat state is a GHZ state |�(0)〉CAT. We show the results
with χT = 0.25, 0.20, 0.15 in Fig. 3. As shown, the final
prepared states can all arrive to the desired GHZ state with fi-
delity over 0.999. The optimized sequences of �(t ) are shown
in the top row, and the corresponding evolutions of fidelity
are depicted in the bottom row. The state distributions on
generalized Bloch sphere are shown in Appendix C. Note that,
the final fidelity F (χT ) = 1, 0.9999, 0.9995 for χT = 0.25,
0.20, 0.15, respectively. The longer total evolution time, the
larger final fidelity it can attain, which is consistent with our
common intuition.

More importantly, compared with the scheme of adia-
batic evolution, the scheme via machine optimization requires
much shorter evolution time T . To achieve the GHZ state
with fidelity over 0.99, |χ |T should be larger than 0.9 for
adiabatic-parameter-fixed sweeping. However, for machine
optimization, χT can be as small as 0.15, which saves up to
80% time for state generation. In addition, the variation of
�(t ) is no longer a continuous time-dependent modulation.
Instead, it becomes a step-wise variation with several seg-
ments, which is easier to realize in experiments. In practice,
the fewer segment number it requires, the more convenient the
experiment will be.

For a fixed total evolution time χT , there may be a suitable
segment number n for optimization. Generally, if segment
number is too small, the degree of freedom may not be suf-
ficient to drive the SCS into the desired state. While for large
segment number, it adds the difficulty for the numerical search
since the variational parameters become too many (especially
for large atom number). Besides, it is also experimentally
feasible if the segment number is not large. Thus, there will
be a trade-off for choosing the segment number n. Here,
we choose n = 4, 5, 10, 20 with N = 100 for illustration,
see Fig. 4. The target state is still the GHZ state |�(0)〉CAT.
Within the same χT = 0.15, the optimized control for �(t )
with n = 5, 10, 20 can attain the desired state with fidelity
over 0.99. While for n = 4, the final fidelity can only reach
F = 0.923. The final fidelity F = 0.9943, 0.9985, 0.9995 for
n = 5, 10, 20, respectively. Despite the fidelity for n = 20 is
the largest, it requires more sophisticated control for �(t ).
While for n = 5 the final fidelity is also over 0.99 and the
time-sequence of �(t ) is more easy to implement. As shown,
only n = 5 segments to vary is sufficient to drive the SCS into
the desired state and we consider n = 5 as a suitable segment
number. Therefore, we set n = 5 for generating other spin cat
states with different θ in the following. The state distributions
on generalized Bloch sphere are shown in Appendix C.

In Fig. 5, we show the results of generating |�(0)〉CAT,
|�( π

6 )〉CAT, |�( π
4 )〉CAT, and |�( π

3 )〉CAT via optimizing �(t )
with n = 5. The orange lines are the optimized sequences of
�(t ) and the corresponding evolutions of fidelity are depicted
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FIG. 3. Spin cat state generation via machine optimization. The optimized time-sequence of Rabi frequency �(t ) for total evolution time
(a) χT = 0.25, (b) χT = 0.2, and (c) χT = 0.15. The corresponding fidelity F (t ) = |〈ψ (t )|�(0)〉CAT|2 between the instant evolved state and
the target spin cat state |�(0)〉CAT versus time t are shown in panels (d)–(f). The insets show the probability distribution P(m) = |〈J, m|ψ (T )〉|2
of the final prepared states. Here, the segment number is chosen as n = 20, the total atom number N = 100 and χ > 0.

with blue lines. Here, the total evolution time T is chosen as
the minimal evolution time that can attain the fidelity over
0.99. For N = 100, it is shown that the spin cat state |�(θ )〉CAT

with larger θ requires shorter evolution time T , which is

easier to generate in practice. Compared with the results of
adiabatic evolution in Fig. 1, the generated states via machine
optimization are closer to the target spin cat states |�(θ )〉CAT,
especially for |�(θ )〉CAT with larger θ such as θ = π

4 and π
3 .

FIG. 4. Spin cat state generation via machine optimization for a fixed total evolution time T with different segment number n. Here, the
total evolution time χT = 0.15, the total atom number N = 100 and χ > 0. The optimized time-sequence of the Rabi frequency �(t ) for
segment number (a) n = 20, (b) n = 10, (c) n = 5, and (d) n = 4. The corresponding fidelity F (t ) = |〈ψ (t )|�(0)〉CAT|2 between the instant
evolved state and the target spin cat state |�(0)〉CAT versus time t are shown in panel (e). The inset shows the enlarged region near the final
time T .
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FIG. 5. State generation via machine optimization for target spin cat state |�(θ )〉CAT with (a) θ = 0, (b) θ = π

6 , (c) θ = π

4 , and
(d) θ = π

3 . The orange lines are the optimized time-sequence of Rabi frequency �(t ). The blue lines are the corresponding fidelity
F (t ) = |〈ψ (t )|�(θ )〉CAT|2 between the instant evolved state and the target state versus time t . Here, the total atom number N = 100 and
χ > 0. The total evolution time for (a) T = 0.147, (b) T = 0.134, (c) T = 0.121, and (d) T = 0.097.

Besides, the total evolution time χT is much shorter than the
one |χ |T via adiabatic evolution.

Figure 6 shows the optimal evolution time Topt for gener-
ating the spin cat states |�(θ )〉CAT. Numerically, we find that
the optimal evolution time scales approximately linear versus
1/

√
N for spin cat states. This relation can guide us to find

the total evolution time for generating spin cat states with
larger N . For the same twisting strength χ , the required total
evolution time T for driving the SCS to a desired spin cat state
will become smaller when N gets larger.

FIG. 6. The optimal total evolution time Topt for different spin cat
state generation via machine optimization. Here, we fix the segment
number n = 5 and the fidelity between the prepared state and the
target state is F (Topt ) � 0.99. Roughly, the optimal total evolution
time Topt exhibits linear relation versus 1/

√
N .

B. Ultimate measurement precision

Finally, we use the prepared states to perform the phase
estimation via many-body interferometry. Conventionally, an
input state |ψin〉 will evolve into an output state |ψout (φ)〉 =
Û (φ)|ψin〉 under the unitary transformation Û (φ) = e−iφĴz for
phase sensing. In general, for an output state |ψout (φ)〉, the
measurement precision is limited by the quantum Cramér-Rao

FIG. 7. The ultimate measurement precision �φQ with prepared
spin cat states versus total atom number N . The spin cat states are
prepared via machine optimization with segment number n = 5. The
target states for inverted triangles, circles, squares, and triangles are
|�(0)〉CAT, |�( π

6 )〉CAT, |�( π

4 )〉CAT, |�( π

3 )〉CAT, respectively. The lines
represent the corresponding analytical bounds (2) for spin cat states.
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bound (QCRB), i.e.,

�φ � �φQ ≡ 1√
F Q

. (7)

Here, F Q = 4(〈ψ ′|ψ ′〉 − |〈ψ ′|ψout (φ)〉|2) is the QFI with
|ψ ′〉 = d|ψout (φ)〉/dφ. Then, we choose the prepared states
|ψ (T )〉 via machine optimization as the input states |ψin〉 and
calculate the corresponding QCRB �φQ according to Eq. (7).

The ultimate measurement precisions of the prepared states
�φQ versus total atom number N are shown in Fig. 7. Since
the prepared states have high fidelity with the desired states
|ψd〉 = |�(θ )〉CAT for θ = 0, π/6, π/4, π/3, the ultimate
precision bounds are almost the same as the corresponding
spin cat states. For all spin cat states, the ultimate measure-
ment precision is inversely proportional to the total atom
number, i.e., �φQ ∝ 1/N exhibiting the Heisenberg-limited
scaling. As expected, the scaling of spin cat state |�(θ )〉CAT

versus N is consistent with the analytical bound (2). The
measurement precision bound can be saturated by implement-
ing the interaction-based readout [24,63]. If another period
of OAT dynamics is performed before the measurement,
a Heisenberg-limited measurement precision scaling can be
achieved via the population measurement. In addition, com-
pared with the twisting echo schemes with spin squeezed
states, the interaction-based readout with spin cat states can
be more robust against detection noise [24]. This also adds
the experimental feasibility to use spin cat states for quantum
metrology.

V. SUMMARY AND DISCUSSION

In summary, we have shown how to generate spin cat states
via twist-and-turn dynamics and machine optimization. First,
spin cat states can be generated via adiabatic evolution. One
can use the adiabatic-parameter-fixed scheme to prepare the
spin cat states, which is more efficient than the naive linear
sweeping. However, the adiabatic evolution is still too slow
to be experimentally practical. To speed up the process, we
have also presented a proposal for generating spin cat states
by using the technique of machine optimization. Instead of
continuous time-dependent modulation, only a sequence of
step-wise variation with several segments is needed. More
importantly, the required total evolution time is much shorter
than the adiabatic evolution.

At last, we briefly discuss the experimental feasibility of
our proposal. The OAT interaction in our scheme had already
been realized in experimental platforms of Bose-condensed
atoms [55] or atomic ensemble interacting with a cavity light
field [56]. For Bose-condensed atoms, the twisting strength
which is the effective nonlinearity χ ∝ gaa + gbb − 2gab with
gi j = 4π h̄2ai j/m, ai j being the s-wave scattering lengths be-
tween states i and j. The sign and the amplitude of χ can be
controlled by tuning the interspecies s-wave scattering length
aab via magnetic Feshbach resonance. For 87Rb atoms, if the
two internal states are selected as |a〉 ≡ |F = 1, m = 1〉 and
|b〉 ≡ |F = 2, m = −1〉, the Feshbach resonance happens at
B = 9.092 G [28]. Particularly in experiment [55], the effec-
tive nonlinearity χ ≈ 0.4 Hz for N ≈ 400 in the presence
of magnetic field B = 9.13 G. For total atom number N =
400, a spin cat state generated via machine optimization may

be achieved within χT � 0.06, and the total evolution time
can be less than 150 ms, which is within the BEC lifetime.
Of course, it should be mentioned that unequal scattering
lengths can lead to significant complicated dynamics that
reduce χ [64]. For atomic ensemble in cavity, an effective
OAT interaction can be produced by utilizing the interaction
between atomic ensemble with a single-mode cavity light
field. The sign and the amplitude of χ can be easily tuned
by changing the detuning between the atom-cavity resonance
and the light [56]. While for the rotation operation, the time-
modulated controls of Rabi frequency �(t ) coupling the two
internal states could be implemented by precise controls of
the radio-frequency or microwave pulses [55]. Combined with
OAT interaction and time modulation of Rabi frequency, our
proposal should be easily implemented in experiments.

Our methods can also be extended to generate other sig-
nificant entangled states such as spin squeezed states [53] and
twin Fock states [65]. It provides a powerful tool and points
out a new way for designing optimized quantum metrology
protocols [66–68].
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APPENDIX A: PROCEDURE OF OUR SCHEME AND
BROYDEN-FLETCHER-GOLDFARB-SHANNO METHOD

The procedure of our protocol via machine optimization
is shown in Fig. 8. Initially, we input the spin coherent state
for time evolution. For given atom number N and interaction
strength χ , we can write the Hamiltonian and determine the
final evolved state |ψ (T )〉. Thus, the fidelity is a function of

FIG. 8. The schematic of procedure via machine optimization.
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FIG. 9. GHZ state generation via machine optimization. The fi-
nal fidelity (at the final time T ) versus the total evolution time T .


(t ). Then, by using the BFGS algorithm, we can numeri-
cally search the optimized sequence of �(t ) = 
(t )Nχ/2 by
minimizing −F (T ).

Here, the BFGS method is used for minimization. In
numerical optimization, the quasi-Newton method is an
iterative method of solving unconstrained nonlinear opti-
mization problems. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm is one of the most commonly used algo-
rithms in quasi-Newton method. BFGS algorithm determines
the descent direction by preconditioning the gradient with

curvature information. The curvature information is related to
the Hessian matrix of the loss function. However, for vari-
ous practical problems, the computing efforts of the Hessian
matrices are very expensive, or the evaluation of the Hessian
matrix is difficult, even the Hessian matrices are not available
analytically. The quasi-Newton method is such a class of
methods which needs not compute the Hessian matrices but
generates a series of approximate matrices, and at the same
time maintains a fast rate of convergence. BFGS algorithm
is a standard routine in programming software. For example
with Python, BFGS algorithm can be realized by the pack-
age scipy.optimize.minimize. For more details, please see the
book Optimization Theory and Methods [69].

APPENDIX B: THE OPTIMAL TOTAL EVOLUTION TIME

Here, we show how to choose the optimal total evolu-
tion time. As an example, we consider generating the GHZ
state with atom number N = 100. We consider the segment
number n = 20 in our machine optimization protocol. By
choosing different total evolution time T , one can get different
sequences of 
(t ) via machine optimization and obtain the
maximal fidelity at the final time. In Fig. 9, the final fidelity
versus the total evolution time T is shown. It is clear that, with
sufficiently long evolution time, the fidelity to the target GHZ
state can reach 1. As evolution time decreases, the final fi-
delity will gradually reduce. For χT = 0.15, F (T ) = 0.9995,
for χT = 0.14, F (T ) = 0.995, the fidelity begins to drop at
χT = 0.15 so that we choose χT = 0.15 for illustration in
Fig. 3 and Fig. 4. In Fig. 10, we show how the sequences

FIG. 10. GHZ state generation via machine optimization with different total evolution time. The state distributions on the Bloch sphere for
different time are shown. The blue (solid) lines are the sequence of 
(t ) and the orange (dotted) lines are the corresponding fidelity.

062456-8



EFFICIENT GENERATION OF SPIN CAT STATES WITH … PHYSICAL REVIEW A 105, 062456 (2022)

FIG. 11. Spin cat state generation via machine optimization for a fixed total evolution time T with different segment number n. The state
distributions on the generalized Bloch sphere for different time are shown. The blue (solid) lines are the sequence of 
(t ) and the orange
(dotted) lines are the corresponding fidelity.

of 
(t ) vary with time and the corresponding fidelity with
different χT . In Fig. 6, we give the dependence of optimal
evolution time on the atom number N . The optimal evolution
time for given N is searched via dichotomy numerically with
F (T ) ≈ 0.99.

APPENDIX C: STATE DISTRIBUTION ON GENERALIZED
BLOCH SPHERE

The distribution on generalized Bloch sphere provides
a natural way to display property of quantum many-body
states. One can project the final state |ψ (T )〉 into the Q

representation

Q(θ, ϕ) = 2J + 1

4π
〈θ, ϕ|ρ|θ, ϕ〉, (C1)

with ρ = |ψ (T )〉〈ψ (T )|.
The state distributions on the generalized Bloch sphere at

different instant time for n = 20 with N = 100 are shown
in Fig. 10. Here, the target state is the GHZ state. While
in Fig. 11, the state distributions on the generalized Bloch
sphere at different instant time for χT = 0.15 with different
segment number n are shown. For all the processes, the ini-
tial SCS will first evolve to squeezed, over-squeezed states,
then gradually become fragmented and finally reach the GHZ
state.
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