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Prime factorization is a difficult problem with classical computing, whose exponential hardness is the
foundation of Rivest-Shamir-Adleman cryptography. With programable quantum devices, adiabatic quantum
computing has been proposed as a plausible approach to solve prime factorization, having promising advantage
over classical computing. Here, we find there are certain hard instances that are consistently intractable for both
classical simulated annealing and unconfigured adiabatic quantum computing (AQC). Aiming at an automated
architecture for optimal configuration of quantum adiabatic factorization, we apply a deep reinforcement learning
(RL) method to configure the AQC algorithm. By setting the success probability of the worst-case problem
instances as the reward to RL, we show the AQC performance on the hard instances is dramatically improved
by RL configuration. The success probability also becomes more evenly distributed over different problem in-
stances, meaning the configured AQC is more stable as compared to the unconfigured case. Through a technique
of transfer learning, we find prominent evidence that the framework of AQC configuration is scalable—the
configured AQC as trained on five qubits remains working efficiently on nine qubits with a minimal amount of
additional training cost.
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I. INTRODUCTION

Prime factorization plays a vital role in information se-
curity as its computation complexity on classical computers
forms the foundation of Rivest-Shamir-Adleman (RSA) cryp-
tography. The capability of factorizing N into a product of
two prime integers N = p×q is enough to break the RSA
cryptosystem. It has been attracting tremendous effort in a
broad range of sciences from heuristic algorithm design [1]
and machine learning [2,3] to bioinspired computation [4,5]
and stochastic architectures [6]. Although this problem is not
expected to be NP hard, all the established classical algo-
rithms have an exponential time cost in the size of log N ,
by which the RSA cryptosystem is secure. With quantum
computing resources, Shor’s quantum-circuit-based algorithm
reduces the computation time cost to polynomial [7]. How-
ever, in the present era of noisy intermediate size quantum
(NISQ) technology [8], the experimental implementation of
Shor’s quantum factorization is largely restricted to small
integers [9,10] due to its demanding requirement on the qubit
number and gate quality.

An alternative approach to perform prime factorization on
quantum devices is through adiabatic quantum computing
(AQC) [11,12], where the factorization problem is encoded
into the ground state of a spin Hamiltonian HP. To start,
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the quantum system is prepared in the ground state of a
trivial Hamiltonian HB and then let evolve under a time (τ )
-dependent Hamiltonian

H(τ ) = [1 − λ(τ/T )]HB + λ(τ/T )HP, (1)

where λ(τ/T ) is the Hamiltonian schedule having λ(0) = 0
and λ(1) = 1 and T is the total quantum evolution time, or
equivalently the AQC computation time.

The AQC model has been used to solve prime factorization
by taking a cost function (N − p×q)2, with p and q in the
binary representation and using a fixed Hamiltonian schedule
as λ(τ/T ) = (τ/T )2 [12]. The classical binary-formed cost
function is directly promoted to a quantum Hamiltonian HP

using the quantum computation basis. One problem with this
Hamiltonian encoding is the coupling strengths scale expo-
nentially with log N , which is unphysical. This problem is
resolved with an improved encoding protocol incorporating
the multiplication table [13,14]. This approach has received
much attention in recent years [15–18], as triggered by the
fascinating progress achieved in quantum annealing devices
[19,20]. At the same time, concerns have been raised that the
spin-glass problem arising in the spin Hamiltonian encoding
may prohibit advantage in the AQC based prime factorization
over classical solvers [19,21]. Here, we propose a scheme for
AQC algorithm configuration based on reinforcement learning
and apply it to prime factorization (see Fig. 1 for illustra-
tion). In the learning process, we use a reward setting that
reflects the AQC performance on the most difficult factoriza-
tion instances. Using a soft-actor-critic RL method, we find
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FIG. 1. Schematic illustration of hard instance learning architecture for quantum adiabatic prime factorization. In phase 1, we map the
factorization problem to the quadratic unconstrained binary optimization (QUBO) problem and transfer it into an equivalent Ising type
Hamiltonian (see Appendix A). We generate instances that need the same number of qubits to factorize. Then, we separate factorization
instances into two groups according to their performance in AQC and load the intractable instances under the unconfigured AQC schedule
into the RL optimization process. In phase 2, we show the RL structure. We combine the Hamiltonian schedule [all the bm in Eq. (4)] and
DoubleOneHot Encoder as the input state to the neural networks. The critic neural network supervises the actor neural network to take actions
on the Hamiltonian schedule. A quantum adiabatic computer works under the configured schedule and provides the success probability as
feedback to the RL framework.

the learning process has an astonishing convergence speed—it
converges within only a few hundred measurement steps, sig-
nificantly faster as compared to previous studies using RL for
quantum state preparation [22], for parameter configuration
in quantum approximate optimization [23], and for adiabatic
quantum algorithm design [24], which takes about 104 to 106

measurement steps. The configured AQC algorithm produces
an improved success probability, more evenly distributed over
different factorization instances as compared with the uncon-
figured algorithm. Through the numerical test, we show the
approach of RL-based AQC algorithm configuration has fair
transferability.

II. EASY AND HARD INSTANCES IN
THE FACTORIZATION PROBLEM

We map the prime factorization problem into the quadratic
unconstrained binary optimization (QUBO) problem [25–27],
which can be directly transferred into the Ising type Hamilto-
nian (HP) [14,18,28]. The details are provided in Appendix A.
From the perspective of quantum spin glass, the major diffi-
culty in reaching the ground state of a spin Hamiltonian is the
existence of metastable spin configuration having large energy
barriers [21,29]. Since the energy barriers cause slow relax-
ation in simulated annealing (SA) and make the algorithm
inefficient, we group the different problem instances accord-
ing to the efficiency of SA in reaching the true ground states.

Specifically, we take a classical spin system with energy
defined by HP/‖HP‖∞, where ‖HP‖∞ denotes the maximum
coefficient in QUBO type cost function of all the instances in
the same system size, and perform the following SA protocol.
Starting from a random spin configuration corresponding to
an infinite temperature ensemble, the spin configuration is
locally updated at a randomly picked site, and then accepted

with a probability P( j) = e−β( j)�E at each step (labeled by
j), where �E is the energy cost of the local spin update.
The inverse temperature increases step by step according to
β( j) = β0e( j/ j0 ), j ∈ [0, 10 j0]. With a given j0, there is a cor-
responding success probability to reach the actual ground state
at the end of SA. The success probability tends to increase
with j0, since a slower SA has a better chance to succeed.
For each problem instance, we perform 500 parallel runs of
SA. In each run, we increase j0 until the actual ground state
is reached. The corresponding j0 is defined to be j∗0 . This
quantity measures the number of steps for SA to succeed
and can thus be used to quantify the energy barrier of the
encoding spin-glass problem and consequently the hardness
of the computation. We obtain the statistics of j∗0 out of the
parallel SA runs. In Fig. 2(a), we show the mean values of
j∗0 obtained in performing SA on factorizing 55, 65, 77, 91,
267, 291, 303, 309, 321, 327, 339, and 381, which involves
7 bits in our Hamiltonian encoding. The numbers 77 and 91
are found to be difficult to factorize, as the associated j∗0 is
typically larger than other numbers.

We also test the different performances of problem in-
stances with AQC. The time evolution of the quantum system
is formally described by a time-dependent quantum state

|ψ (τ )〉 = Tτ e−i
∫ τ

0 dτ ′H(τ ′ )|ψ (0)〉, (2)

where Tτ represents time ordering. The computation results
of AQC are collected by collapsing the final quantum state in
the computation basis. The results are stochastic in general.
The success probability of AQC to collapse onto the correct
solution tends to increase as we increase the adiabatic evolu-
tion time (T ) [17]. In the numerical test, we increase T until
the average success probability reaches a threshold Pth, which
is set at 0.1. We separate the factorization instances into easy

062455-2



HARD-INSTANCE LEARNING FOR QUANTUM ADIABATIC … PHYSICAL REVIEW A 105, 062455 (2022)

FIG. 2. Easy and hard factorization instances with simulated an-
nealing and adiabatic quantum computing. We separate the problem
instances into two groups according to their performances. In (a),
blue data show the j∗0 obtained in 500 parallel runs of simulated
annealing (see main text). Red data show the failure probability of
unconfigured AQC (see main text) with a total evolution time T =
6964. The red dashed line denotes the average failure probability of
all the problem instances. It reaches the threshold of failure probabil-
ity which we set to be 0.9. The problem instances that are hard with
SA which have a high value of j∗0 remain hard for the unconfigured
AQC as it yields a considerably higher failure probability compared
to other problem instances. In (b), we show the performances of
different instances with the increasing total evolution time T . We find
the success probabilities of several instances increase more slowly
than others and are under the average value at the end. We separate
them into two groups with the threshold (see main text). In these
plots, we choose numbers to factorize that are encoded by seven
spins.

and hard groups according to their individual AQC success
probabilities. The problem instances having a success proba-
bility larger (smaller) than the threshold (Pth) are counted as
easy (hard).

From Eq. (2), the final quantum state remains intact as we
rescale τ → ζ τ , and H → H/ζ , with ζ an arbitrary scaling
factor. For physical consideration, a Hamiltonian convention
is imposed by

H(τ ) → H(τ )/‖HP‖∞, (3)

where ‖HP‖∞ denotes the same meaning in simulated anneal-
ing. With this convention, the required interaction strength in
a physical system is guaranteed to be bounded.

We have checked the performance of the unconfigured
AQC with a previously used Hamiltonian schedule λ(τ/T ) =
(τ/T )2 [12]. As shown in Fig. 2(a), there are several factor-
ization instances whose failure probabilities are substantially
larger than other typical instances, e.g., with N = 77, 91. As
shown in Fig. 2(b), the success probabilities of several cases
increase quite slowly with T . The factorization problem in-
stances that are hard with SA appear to remain hard on the
unconfigured AQC.

III. ADIABATIC QUANTUM ALGORITHM
CONFIGURATION BY REINFORCEMENT LEARNING

Aiming at rescuing the hard factorization instances, we
develop an RL-based configuration scheme for the AQC algo-
rithm (see Fig. 1 for illustration). It is known in the quantum
adiabatic Grover search that different choices of Hamiltonian
schedule lead to different computation complexity [24,30].
There are different choices for configuring the AQC algorithm
in principle [31–34]. Here we choose to vary the standard
Hamiltonian schedule λ(τ/T ) to improve the algorithm per-
formance. We parametrize the Hamiltonian schedule as

λ
( τ

T

)
=

( τ

T

)
+

C∑
m=1

bm sin
(mπτ

T

)
. (4)

Here the schedule satisfies the boundary conditions λ(0) = 0
and λ(1) = 1, and the parametrization is complete if we take
the high-frequency cutoff C → ∞. Here, we set the cutoff C
as 6. The parameters (bm) are denoted by a vector b in the
following. With b → 0, the schedule goes back to the linear
form as used in standard AQC [16,17,19,35,36].

A. Reward settings

To perform the AQC Hamiltonian schedule configura-
tion, we implement the soft actor-critic (SAC) method, a
state-of-the-art RL algorithm dealing with continuous ac-
tion control [37]. We have tested several different ways
of reward settings to connect SAC with AQC, including
Reward1, min[log(success probability)], which denotes the
minimum of the logarithm of success probabilities, Reward2,
ave[log(success probability)], which denotes the average of
the logarithm of success probabilities, Reward3, min(success
probability), which denotes the minimum of success proba-
bilities, Reward4, ave(success probability), which denotes the
average success probability, and Reward5, ave(energy), which
denotes the opposite of the average energy. The results with
the five different reward settings are shown in Fig. 3. With
the Reward1 setting, the configured AQC algorithm produces
a relatively high mean value of success probability ∼0.145,
which is larger than Pth, and the success probability distri-
bution is narrowly distributed around the mean value. The
Reward2 setting yields a larger mean value of success proba-
bility, but its distribution is too broad—there is a large number
of problem instances having success probability below Pth.
And the Reward3 setting leads to a similar performance as
Reward1, with a mean success probability slightly smaller.
The case with the Reward4 setting also produces a high mean
value of success probability with a broader distribution, which
is similar to the performance of the Reward2 setting. With
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FIG. 3. Performance of SAC configured AQC with different
reward settings. The success probabilities on all the hard fac-
torization instances are obtained by using the best Hamiltonian
schedule that is trained under the different reward settings within
the same number of training steps. We test the different reward
types including Reward1, min[log(success probability)], Reward2,
ave[log(success probability)], Reward3, min(success probability),
Reward4, ave(success probability), and Reward5, ave(energy). The
reward settings giving more weights to the worst-case problem in-
stances such as Reward1 and Reward3 produce success probabilities
more narrowly distributed. The averaging type of reward settings
such as Reward2 and Reward4 yield a larger mean value of suc-
cess probability but the distribution is much broader compared to
Reward1 and Reward3. The energy type reward produces relatively
lower success probability overall.

the Reward5 setting, although the success probability has a
narrow distribution, the mean value is much lower than other
reward settings. Through these numerical tests, we conclude
that we need a proper type of reward signal to the SAC agent
in the AQC configuration tasks to gain high success proba-
bility for all problem instances. It is a crucial prerequisite in
the RL-based AQC configuration design scheme for the hard
prime factorization instances. Conducting training processes
under different reward settings leads to distinctive information
flowing in the reinforcement learning scheme. The reward
setting taking the success probability of the hardest instances
(such as Reward1 and Reward3) provides a better guidance
for the reinforcement learning method to configure the AQC
algorithm. We choose the Reward1 setting in the following.

B. Training process

We apply SAC configuration on AQC-based prime factor-
ization for a range of composite numbers from N = 49 to
N = 633, whose Hamiltonian encoding has qubit numbers
n = 5, 6, 7, 8, 9, 10, 11. We choose the AQC evolution time
T (n) according to the time when the average success proba-
bility of all the instances reaches the threshold (Pth = 0.1) in
using the quadratic Hamiltonian schedule. From Fig. 4, it is
evident that the reward in SAC converges for all qubit num-
bers within 1600 measurement steps. Taking the RL-designed

FIG. 4. Training process of SAC configuration on AQC-based
prime factorization in the different system sizes with the qubit num-
ber of 5, 6, 7, 8, 9, 10, 11. We record the reward of min[log(success
probability)], which corresponds to the performance of the hardest
factorizing instance in each system size during the training. The bold
lines denote the results of smoothing over 80 nearby date points.
We observe that the SAC improves the performance of the hardest
instances and all the cases of rewards converge within 1600 mea-
surement steps.

Hamiltonian schedule for AQC, the quantum factorization
for all hard instances has a satisfactory success probability,
roughly uniformly distributed. This results from our careful
reward choice of using the minimum of the logarithm of
success probability in training.

The slowing down problem caused by hard instances is
thus rescued with our RL-configured AQC. We remark here
that if a higher success probability (P	) is upon request, this
can be achieved by simply repeating AQC multiple (M) times,
with M = [log(1 − P	)]/[log(1 − Pth )] [17]. This relies on
the fact that all the problem instances have a success proba-
bility above Pth. This repeating protocol does not necessarily
work if only the average success probability reaches Pth.

C. Configured Hamiltonian schedules

We investigate the Hamiltonian schedule during the RL
learning process for the prime factorization instances encoded
by seven qubits. During the training of SAC, the reward signal
converges within 1600 measurement steps (400 episodes with
four measurements per episode) as shown in Fig. 4. We ob-
serve that the Hamiltonian schedule parameters b converge to
a flattened plateau as shown in Fig. 5(a). The RL-configured
Hamiltonian schedule is shown in Fig. 5(b). One character-
istic feature of the RL-configured schedule is that it flattens
at the beginning, and can be approximated by a power law
λ ∼ (τ/T )7.

The RL-configured Hamiltonian schedule strongly devi-
ates from the unconfigured linear or quadratic schedule. The
performances of different Hamiltonian schedules are shown
in the inset of Fig. 5(b). The factorized integers are N =
55, 65, 77, 91, which are hard instances with unconfigured
AQC. It is evident that the RL-configured Hamiltonian sched-
ules exhibit substantially improved success probability—the
success probability has doubled for the hard instances. The
performance of the power-law schedule λ ∼ (τ/T )7 in a
seven-qubit system is better than linear and quadratic ones and
is slightly poorer than the RL-configured one.
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FIG. 5. Evolution of b during the SAC training process in the
seven-qubit system. (a) The b values converge after 200 training
episodes. For each episode, there are four measurement steps (see
more details in Appendix B). (b) The representative RL-configured
Hamiltonian schedule and the performance comparison of different
schedules. We observe the RL-configured schedule has a large flat-
tened region at the beginning. The corresponding performance of
different schedules are shown in the inset. The success probabilities
of the RL-configured schedule which is trained from a linear one are
dramatically improved. The power-law schedule λ ∼ (τ/T )7 has a
slightly lower success probability compared with the RL-configured
one.

IV. TRANSFERABILITY OF THE REINFORCEMENT
LEARNING IN AQC ALGORITHM CONFIGURATION

To further reduce the measurement cost, we investigate
the transferability of our scheme. As the weights of learning
networks are recorded during the training process, we test
the different weight transferring methods, including Case I,
transferring the recorded weights of actor networks, Case
II, transferring the recorded weights of critic networks, and
Case III, transferring both recorded weights of actor and critic
networks. We also test the case of directly transferring the pre-
vious trained schedule as the initial ansatz in the new system
size. We perform numerical tests by transferring from five-
qubit AQC to seven-qubit. The results are shown in Fig. 6(a).

We find that the transfer protocol of Case III has a similar
performance as Case I at the starting 150 measurement steps.
After that, it is evident that Case III is more stable—it con-
verges to optimal reward in a more systematic manner. The
comparison between the transfer protocol of Case II and a di-
rect training on a seven-qubit system is similar. Their collected
rewards are very close to each other at the starting 150 mea-

FIG. 6. Transferring methods in hard instance learning. The re-
ward evolution during the learning process is shown in this plot. The
bold lines denote the results of smoothing over 50 nearby date points.
(a) Comparison of different transfer protocols on the seven-qubit
system. We transfer the network data trained on five-qubit AQC to
seven qubit here. The learning process of a direct retraining on the
seven-qubit system is shown as a baseline (“purple dashed” line). The
different protocols of transferring actor weights, critic weights, all
network weights, and Hamiltonian schedule are presented by “blue
dashed dotted,” “red solid,” “green dash dotted,” and “black dotted”
lines, respectively, in this plot. (b) Training curves of transferring
the weights of actor and critic networks trained on five-, six-, and
seven-qubit systems to a nine-qubit system. All the transfer learning
processes reach an almost optimal reward within only a few mea-
surement steps, much less than the direct training.

surement steps, with tiny difference unnoticeable in the plot.
After that, the Case II transfer protocol is better than the direct
retraining. Through these numerical tests, we conclude that
the protocol of transferring actor and critic weights together
outperforms other schemes in our AQC configuration task.

To test the robustness of the transfer learning protocol
of taking all actor and critic weights, we further apply this
protocol to a system of nine qubits. The results are shown in
Fig. 6(b). We transfer the weights trained on AQC with five,
six, and seven qubits to the nine-qubit system. These training
processes taking the transfer data all have a faster conver-
gence speed than a direct retraining on the nine-qubit system,
confirming the robustness of the transfer learning protocol of
taking all weights. The applicability of this type of transfer
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learning for AQC configuration from smaller number of qubits
to larger sizes also implies the scalability of our scheme.

V. CONCLUSION

We develop a reinforcement learning based scheme for adi-
abatic quantum algorithm configuration directly targeting the
hard prime factorization instances. This is achieved by taking
the minimum of the logarithm of the success probability of the
AQC on factorization as the RL reward. By implementing the
SAC algorithm, we find the learning process converges within
only a few hundred measurements. Through numerical tests,
we have shown that our developed AQC algorithm configura-
tion scheme has fair transferability—the learning transferred
from smaller qubit number systems to larger qubit numbers
converges significantly faster than learning from scratch. This
implies our AQC algorithm configuration scheme is poten-
tially quite scalable.
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APPENDIX A: ENCODING PROTOCOL: QUADRATIC
UNCONSTRAINED BINARY OPTIMIZATION (QUBO)

Here we provide the details of mapping the factorization
problem to the quadratic unconstrained binary optimization
(QUBO) problem. The problem of prime factorization is to
factorize a given integer N into two integers p, and q, i.e.,
N → p × q.

For the first step, we divide the multiplication table (such
as Table I) and calculate the total qubit number needed
to factorize N . We define the bit length Lp = 
log2 p�,
Lq = 
log2 q�, LN = 
log2 N�, as well as the bit string
of p : (pLp = 1, pLp−1, . . . , p1, p0 = 1)2 and q : (qLq = 1,

TABLE I. Multiplication table for 143 = 11 × 13. The p and q
rows are the binary representation of the prime factor and C̃i in the
carries row is the carry bit. The bottom row is the binary representa-
tion of the number N = 143.

27 26 25 24 23 22 21 20

p 1 p2 p1 1
q 1 q2 q1 1

1 p2 p1 1
q1 p2q1 p1q1 q1

q2 p2q2 p1q2 q2

1 p2 p1 1
Carries C̃2 C̃1

p × q = 143 1 0 0 0 1 1 1 1

qLq−1, . . . , q1, q0 = 1)2, where 
a� denotes the largest integer
not larger than a and assuming p � q without loss of general-
ity. We divide the multiplication table into BK blocks with the
width W , then BK = 
(Lp + Lq)/W �. We define ρi as the sum
of the product terms in the block i(i � 1):

ρi =
i·W∑

j=1+(i−1)·W
2 j−1−(i−1)·W ∑

m+n= j
m∈[0,Lp]
n∈[0,Lq]

pm ∗ qn. (A1)

We calculate the maximum value of carry variables and
product terms in each block i(i � 1),

Bi = Ci−1 + max ρi, (A2)

where C0 = 0. To obtain Ci(i � 1), we define Mi = 
Bi/2W �
and the number of carry variables ci into block i + 1,

ci =
{

0, ifMi = 0,


log2(Mi )� + 1, otherwise,
(A3)

then Ci = 2ci − 1. And we calculate χi = ∑i−1
k=1 ck , the total

number of carry variables before (including) block i.
In the following, the total number of carry bits and sum-

mation terms in the cost function are defined as TC and
PN , respectively. If LN − BK · W > 1, then TC = ∑BK

i=1 ci and
PN = BK + 1. Otherwise, TC = ∑BK −1

i=1 ci, PN = BK . The total
auxiliary variable number TA in reducing the higher-order cou-
pling terms is (Lp − 1) · (Lq − 1). So the total qubit number
required is

TQ = (Lp − 1) + (Lq − 1) + TC + TA. (A4)

Then we turn to the second step to construct the cost
function. We define Ki as the sum of carry variable C̃ into
block i,

Ki =
ci−1∑
j=1

2 j−1C̃χi−1+ j, (A5)

and Fi as the sum of the carry variable C̃ into block i + 1,

Fi =
ci∑

j=1

2W + j−1C̃χi+ j, (A6)

as well as Vi the target value of the block i which can be read
out from the binary presentation of N directly.

We can write down the total cost function as

fcost =
PN∑
i=1

(ρi + Ki − Fi − Vi)
2, (A7)

which can be expanded and simplified using x2 = x for x =
0, 1.

Then we turn to the third step to introduce auxiliary vari-
ables to reduce k-bit coupling terms (k � 3) using

x1x2x3 = min
x4

[x4x3 + 2(x1x2 − 2x1x4 − 2x2x4 + 3x4)],

−x1x2x3 = min
x4

[−x4x3 + 2(x1x2 − 2x1x4 − 2x2x4 + 3x4)],

(A8)
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by which the cost function is reduced to a quadratic form.
The problem of prime factorization is then converted to the
quadratic unconstrained binary optimization (QUBO) prob-
lem.

As the last step, we replace xi as (1 − σzi )/2, where σzi is
the Pauli Z matrix, and convert the cost function into the Ising
type Hamiltonian H which would be suitable for AQC. As an
illustration, we give a multiplication table for 143 = 11×13
in Table I.

The resulting equations derived from the two blocks are

(1 + p2q1 + p1q2 + 1) × 22

+ (p2 + p1q1 + q2) × 2 + (p1 + q1)

= C̃2 × 24 + C̃1 × 23 + (111)2

= 16C̃2 + 8C̃1 + 7, (A9)

1×22 + (q2 + p2 + C̃2) × 2 + (q1 + p2q2 + p1 + C̃1)

= (1000)2 = 8. (A10)

The corresponding cost functions are

f1 = (4p2q1 + 4p1q2 + 2p1q1 + 2p2 + 2q2

+ p1 + q1 − 16C̃2 − 8C̃1 + 1)2, (A11)

f2 = (p2q2 + 2p2 + p1 + 2q2 + q1 + 2C̃2 + C̃1 − 4)2.

(A12)

The high-order k(k � 3) terms in the cost function can be
reduced using Eq. (A8). As mentioned before, with the vari-
able replacement in the last step, we can get the Ising type
Hamiltonian.

APPENDIX B: FORMULATING ADIABATIC ALGORITHM
DESIGN AS A MARKOV DECISION PROCESS

Aiming at an automated architecture for optimal de-
sign of quantum adiabatic factorization, we use a Markov
decision process (MDP) [38] for the configuration of the b-
parametrized Hamiltonian schedule. In MDP, we update the
vector b according to a stochastic policy π , which generates
a sequence bt+1 = bt + at , with at random variables drawn
according to π . In our study, we consider a MDP with a finite
depth (LM). The optimal quantum adiabatic algorithm design
is then converted to searching for a MDP policy converging to
a b vector that maximizes the success probability of AQC.

Quantitatively, the optimal policy is defined to be one that
maximizes an objective of long-term reward Eπ [

∑
t (γ

t rt )],
with γ ∈ (0, 1] a discount factor and rt a reward at t th step.
The reward is defined by the success probability of AQC
taking the configuration bt .

We compare the performances of different reward settings
and choose min[log(success probability)] as the reward. This
choice automatically gives extra weight to the most difficult
problem instances having low success probability.

There are multiple RL protocols to specify the MDP policy.
Here we focus on the entropy-regularized soft actor-critic
(SAC) algorithm [37]. For SAC, the objective return is
modified to the form of Eπ [

∑
t (γ

t rt + αH[π (·|st )])], where
H is the causal policy entropy and α determines its relative

weight. The modification balances the trade-off between
exploration and exploitation. The state of RL agent is
specified to be st = {DoubleOneHotEncoder(t ), bt }, with
more details of problem setting discussed in Appendix B 2.
At each iteration, the agent chooses an action at by sampling
from the actor network and acts (adds) to bt . We assume
bt ∈ [−1, 1] and set the action element am ∈ [−0.01, 0.01].
In SAC training, the actor is supervised by the critic, who
processes the reward signal and gets updated according to the
temporal-difference error using Polyak averaging [39] with
a target to stabilize training. The whole architecture for our
quantum algorithm configuration is illustrated in Fig. 1. More
details are provided in the following parts.

1. Pseudocode of reinforcement learning process

Algorithm 1. SAC-configured AQC

Require X: prime factorization instances; T : evolution time; θ :
initialized policy parameters; φ, φ̂: initialized critic and target
parameters; b0: initialized schedule; �tw: measure frequency; Pth:
success probability threshold

Ensure configured schedule b1, b2, . . . , bC

Hp ←− QUBOEncoding(X)
Xhard ←− SELECT(X, Pth )
b ← b0

for each episode do
for each step t in episode length do

st ← [DoubleOneHot(t ), bt ]
Sample at ∼ πθ (st )
bt+1 ← bt + at

while MonotonicConstraint(bt+1) is false do
Resample at ∼ πθ (st )
bt+1 ← bt + at

end while
st+1 ← [DoubleOneHot(t + 1), bt+1]
If t mod �tw = 0 then

rt ← QuantumEvolution(bt+1, T, Xhard )
else

rt ← 0
end if

end for
Buffer ← (st , at , rt , st+1)
for each gradient step do

θ ← θ − ∇θLoss(θ )
φ ← φ − ∇φLoss(φ, φ̂)
φ̂ ← ηφ̂ + (1 − η)φ

end for
end for

2. DoubleOneHot environment

The episode length, quantum schedule, and time step in the
episode are denoted by L, b ∈ R6, and t ∈ [1, L], respectively.

State. State st contains a sequential encoder, in which we
use two one-hot encoders with 10 bits, respectively, repre-
senting 100 steps at large with fixed 20 dimensions. Hence
this sequential encoder turns episode length L into a one-hot
vector with 20 dimensions and six parameters in Hamiltonian
schedule are denoted as b ∈ R6.

Action. The learned policy maps state into action denoted
as a ∈ R6. At each step t , we define action at ∈ R6 as how
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far should the agent reach based on current schedule bt ∈ R6

and current step encoded by two one-hot encoders denoted as
double-one-hot(t ).

Reward. Measure the action at sampled from policy πθ if
it satisfies the monotonic constraint enforced on the evolution
path. And return the minimum logarithm of success probabil-
ity as a reward signal.

DoubleOneHotEnv. The problem setting can be abbrevi-
ated as follows:

st = [double-one-hot(t ), bt ] ∈ R26, t ∈ {1, 2, . . . , 100},
π : at ∼ πθ (·|st ),

rt = Measure(at + bt � bt+1),

st+1 = [double-one-hot(t + 1), bt+1] ∈ R26.

3. Hyperparameters

Hyperparameters used in the SAC-configured AQC al-
gorithm are listed below, which are categorized into Env,
Learner, and Network. In terms of Env hyperparameters, we
specify the parameter space in Hamiltonian schedule and ac-
tion stride at first and then formulate the state and Markov
decision process as known environment setting. Subsequently,
the exploration space is mainly determined by episode length.
The reward signal is measured once after n steps and amplified
by reward scale. Finally, other direct hyperparameters about
Learner and Network are listed in Table II.

TABLE II. SAC-configured AQC parameters.

Parameter Value

Env
Action stride [−0.01, 0.01]
Schedule parameter space [−1.0, 1.0]
Environment setting DoubleOneHotEnv
Number of episodes 1000
Episode length 40
Reward scale 5
Measure every n steps 10
Reward type min[log(success probability)]

Learner
Optimizer Adam
Learning rate 3×10−4

Discount 0.9
Alpha 0.02
Polyak (η) 0.995
Target update interval 2
Gradient steps 2

Network
Number of hidden layers 2
Actor hidden layer size 256
Critic hidden layer size 512
Batch size 128
Actor maximum std 1
Actor minimum std −10
Random steps 0
Buffer size 106
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