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Long-distance distribution of qubit-qubit entanglement using Gaussian-correlated photonic beams
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We investigate the deterministic generation and distribution of entanglement in large quantum networks by
driving distant qubits with the output fields of a nondegenerate parametric amplifier. In this setting, the amplifier
produces a continuous Gaussian two-mode squeezed state, which acts as a quantum-correlated reservoir for the
qubits and relaxes them into a highly entangled steady state. Here we are interested in the maximal amount of
entanglement and the optimal entanglement generation rates that can be achieved with this scheme under realistic
conditions taking, in particular, the finite amplifier bandwidth, waveguide losses, and propagation delays into
account. By combining exact numerical simulations of the full network with approximate analytic results, we
predict the optimal working point for the amplifier and the corresponding qubit-qubit entanglement under various
conditions. Our findings show that this passive conversion of Gaussian into discrete-variable entanglement offers
a robust and experimentally very attractive approach for operating large optical, microwave, or hybrid quantum
networks, for which efficient parametric amplifiers are currently developed.
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I. INTRODUCTION

The distribution of entanglement between separated nodes
of small- and large-scale quantum networks is a fundamental
task for many quantum communication and quantum in-
formation processing applications [1–6]. Once established,
entanglement can be locally purified [7–11] and used for
quantum teleportation and remote gate operation protocols
that then require classical communication only [12]. The
availability of a large number of highly entangled qubit pairs,
shared among different nodes, is thus a universal and in prac-
tice one of the most essential resources for quantum network
applications.

Existing protocols for distributing entanglement in realistic
systems are mostly based on one of the following two strate-
gies [13]: A first approach is to generate a pair of entangled
qubits locally and then transfer one of the states to the dis-
tant node, for example, through a controlled emission and
reabsorption of optical or microwave photons [14–18]. This
protocol is fully deterministic but requires a sufficiently high
level of (synchronous) control on both nodes of the network.
A second strategy is to generate only weakly correlated qubit-
photon pairs from which highly entangled qubit states can
be distilled through measurements and postselection [19–24].
This approach has the advantage that it requires only little
local control and that it is intrinsically robust with respect
to losses. It is, however, only probabilistic and for many
implementations [21–24] the scalability of this approach is
limited by the low success probabilities, which also decrease
exponentially with the number of qubit pairs that must be
entangled simultaneously in this way.

A complementary third strategy for distributing entangle-
ment is to drive distant qubits with continuous beams of

quantum-correlated photons, as shown in Fig. 1. In the sim-
plest case, entangled beams of optical and/or microwave
fields can be generated in a parametric down-conversion
process [25], which produces as an output a propagating
two-mode squeezed state. This process only requires a weak
intrinsic nonlinearity as it occurs, for example, in nonlinear
optical crystals [26,27] or in driven Josephson junctions in
the microwave regime [28–33]. Therefore, parametric down-
conversion is currently the most common method to generate
entangled pairs of optical photons [34,35], however, usually
in a probabilistic and postselected manner. In contrast, here
we are interested in the regime where the parametric amplifier
is strongly pumped, such that the output fields contain many
photons on average. By using these correlated photons to drive
two spatially separated qubits, the Gaussian entanglement can
be mapped onto an entangled qubit state. This scheme has the
obvious benefit that it only relies on an externally pumped
χ (2) nonlinearity for generating the entanglement, which is
typically much easier to realize than strong few-photon in-
teractions or high-fidelity qubit-qubit gates. At the same time,
this approach does not rely on postselection and can be used
to distribute entanglement deterministically.

The basic idea of using two-mode squeezed states of light
to drive qubits into highly entangled states has been originally
discussed in a paper by Kraus and Cirac [36], and since then
several related schemes for engineering correlated reservoirs
for qubits have been described [37–44]. Importantly, these
works already show that under ideal conditions a maximally
entangled qubit state can be prepared in this way. In view of
the vastly different nature of entangled continuous-variable
states and entangled discrete-variable states, this result is a
priori not apparent. However, all these predictions rely on
the crucial assumption that the correlated photon source can
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FIG. 1. Setup. A nondegenerate parametric amplifier is used to
produce two Gaussian-correlated beams of photons, which drive two
qubits located in separate notes of the network into an entangled
state. See text for more details.

be treated as an effective Markovian reservoir, which ignores
the finite bandwidth of the parametric amplifier, propagation
delays, and other effects that are relevant for practical net-
working applications. Therefore, a systematic analysis of the
performance of this approach under realistic conditions, for
example, in terms of speed, robustness, or the fidelity of the
produced entangled states, is still wanting.

In this paper, we study the entanglement properties of
two distant qubits that are driven by the output of a realistic
two-mode parametric amplifier. In this analysis we go beyond
the usual Markov approximation and use both exact numerical
simulations as well as approximate analytic methods to eval-
uate the dynamics and steady states of the qubits, taking the
finite bandwidth of the amplifier and other relevant sources
of imperfections fully into account. This analysis allows us to
predict optimal operation points for the parametric amplifier
and assess the maximal fidelities and entanglement generation
rates that can be reached with this scheme under given exper-
imental constraints. These findings do not rely on any specific
implementation and can thus be applied for the optimization
of remote entanglement distribution schemes in various opti-
cal, microwave, or hybrid [45,46] quantum networks.

The remainder of the paper is organized as follows: In
Sec. II we introduce the setup and the individual network
components. In Sec. III we first briefly review the generation
of qubit-qubit entanglement in the infinite-bandwidth limit
and discuss the relationship between the achievable amount
of entanglement and the basic characteristics of the squeezed
reservoir. In Sec. IV we go beyond the Markov approximation
and use numerical and approximate analytic results to evaluate
the steady-state entanglement in realistic networks. Finally, in
Secs. V and VI we discuss the performance of the scheme in
asymmetric networks as well as the optimal entanglement dis-
tribution rates in a pulsed operation mode. Finally, in Sec. VII
we summarize our main findings and place them into context
with respect to the current experimental state of the art.

II. SETUP

We consider the generic setting depicted in Fig. 1, where
two distant qubits with frequencies ωq1 and ωq2 are driven
by the output fields of a nondegenerate parametric amplifier.
The amplifier consists of two distinct bosonic modes with
frequencies ω1 and ω2 and annihilation operators a1 and a2,
respectively. These modes are driven into a correlated two-

mode squeezed state via an externally pumped χ (2) process,
and each of them is connected to one of the qubits through
a unidirectional channel. In practice, such a scenario can be
realized with the help of circulators, directional couplers, or
chiral waveguides (see, for example, Refs. [14,47,48]). The
following analysis is kept deliberately general and applies to
implementations in the optical and microwave domain, as well
as mixed scenarios, where, for example, correlated pairs of
optical and microwave photons are generated via the electro-
optical effect [49,50]. However, throughout our analysis we
will assume a matching of the corresponding qubit and photon
frequencies, i.e., ωqi ≈ ωi, and that all parts of the network
are sufficiently cold such that thermal excitations can be
neglected [51].

A. Qubits

We model the qubits as simple two-level systems with a
ground state |0〉 and an excited state |1〉. The qubits decay
into the waveguide with rates γi and undergo dephasing with
rate γφ . In the absence of the amplifier and by changing into
a rotating frame with respect to the qubit frequencies ωq1 and
ωq2, the resulting dynamics for the qubit density operator ρq

is given by the master equation

ρ̇q =
∑
i=1,2

γiD[σ−
i , σ+

i ]ρq + γφ

2
D

[
σ z

i , σ z
i

]
ρq ≡ Lqρq. (1)

Here, σ− = (σ+)† = |0〉〈1| and σ z = |1〉〈1| − |0〉〈0| and we
have introduced the short notation

D[A, B]ρ = AρB − 1
2 (BAρ + ρBA) (2)

for the Liouville superoperators describing incoherent decay
and dephasing.

B. Parametric amplifier

Parametric amplification relies on a χ (2)-type process be-
tween three bosonic modes (h̄ = 1) [25],

Hχ = iχ (a†
1a†

2a0 − a1a2a†
0), (3)

where the nonlinearity χ is small, but one of the modes,
a0, is strongly pumped. Under this assumption, the pumped
mode can be treated as a classical field, a0 → α0 ∈ C, and
Hχ reduces to a two-mode squeezing interaction. This pro-
cess becomes most effective when the resonance condition
ω1 + ω2 ≈ ω0 between the three modes is fulfilled (see Fig. 1)
and is frequently employed in nonlinear optical crystals to
produce entangled photon pairs. Similar interactions also
occur in superconducting circuits, where driven Josephson
junctions are used to generate two-mode squeezed microwave
beams, and in many other devices. In the following, we fix
the pump frequency to a value of ω0 = ωq1 + ωq2, in order
to maximize the resulting qubit-qubit correlations discussed
below. The residual photon-qubit detunings are denoted by
	i = ωi − ωqi.

The parametrically generated pairs of photons in modes
a1 and a2 decay into the waveguides with rates κ1 and κ2,
respectively. By changing into a rotating frame with respect
to ωq1 and ωq2, the full dynamics of the two-mode photonic
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state ρp is described by the master equation

ρ̇p = −i[Hp, ρp] +
∑
i=1,2

κiD[ai, a†
i ]ρp ≡ Lpρp, (4)

where

Hp =
∑
i=1,2

	ia
†
i ai + i

√
κ1κ2ε

2
(a†

1a†
2 − a1a2) (5)

and ε ∼ χ |α0| is the dimensionless pump parameter, which
we can assume to be real. For 	i = 0, the value of ε = 1
marks the onset of the parametric instability, beyond which
our linearized description of the amplifier is no longer valid.
For the remainder of this work, we focus mainly on the reso-
nant case and restrict the pumping parameter to ε ∈ [0, 1).

C. Cascaded photon-qubit interactions

In the considered cascaded setting, photons emitted by the
parametric amplifier will drive the qubits located further along
the waveguides, while there is no back-action of the qubits on
the photonic modes. By assuming a waveguide with a broad
and linear dispersion relation, this scenario can be modeled in
terms of the cascaded master equation [52,53]

ρ̇ = (Lq + Lp + Lcas)ρ, (6)

where ρ is the density operator of the whole system, including
both the qubits and the photonic degrees of freedom. The last
term in Eq. (6),

Lcasρ =
∑
i=1,2

√
ηγiκi([aiρ, σ+

i ] + [σ−
i , ρa†

i ]), (7)

accounts for the cascaded, i.e., unidirectional coupling be-
tween the photons and the qubits. Here we have introduced the
additional phenomenological parameter η ∈ [0, 1]. A value of
η < 1 can either be used to model losses along the waveguide,
in which case (1 − η) is the probability that a propagating
photon is lost between the amplifier and the qubit, or addi-
tional decay channels for the qubits other than the emission
into the waveguide.

Note that in writing Eq. (6) we have already reabsorbed
all propagation phases into a redefinition of the qubit states.
For now, we have also neglected the finite propagation times
τi = di/ci, which it takes for photons with group velocity ci

to travel the distance di between the amplifier and the ith
qubit. This is usually a valid assumption for small on-chip
networks, but propagation delays can become very relevant
when discussing entanglement distribution in larger networks,
in particular when d1 
= d2. This issue will be addressed in
more detail in Sec. V below.

D. Reduced qubit state

Starting from the cascaded master equation of the full
network, Eq. (6), our main goal in the following is to study
the dynamics and stationary states of the reduced qubit state
ρq(t ) = Trp{ρ(t )} as a function of the pumping strength ε

and other system parameters. From the structure of the super-
operator Lcas it is straightforward to show that the cascaded
coupling does not affect the dynamics of the reduced state of
the amplifier, i.e., ρ̇p = Trq{Lcasρ} = 0. However, this does

not imply that the system can be factorized into a photonic and
a qubit part. In contrast, it can be explicitly shown that in such
cascaded systems a large amount of entanglement between the
individual subsystems can emerge [47]. Therefore, in general,
it is necessary to solve the full master equation in order to
obtain accurate predictions for ρq.

III. QUBITS COUPLED TO A TWO-MODE
SQUEEZED RESERVOIR

As a starting point, it is instructive to revisit the idealized
limit of a broadband amplifier κi → ∞, where the dynamics
of the amplifier modes is much faster than the qubit evolution
and can be adiabatically eliminated. In this case, it is indeed
possible to obtain a reduced master equation for the qubit state
ρq only, which reads as

ρ̇q = Lqρq +
∑
i=1,2

∑
s=±

γiNiD
[
σ s

i , σ
−s
i

]
ρq

−√
γ1γ2{M(D[σ+

1 , σ+
2 ]ρq + D[σ+

2 , σ+
1 ]ρq) + H.c.}.

(8)

Here the occupation numbers Ni = 2η Re{I
a†

i ai
(0)} and the

squeezing term M = η[Ia1a2
(0) + Ia2a1

(0)] are determined by
the steady-state correlation spectra of the amplifier modes
IAiB j (ω) = √

κiκ j
∫ ∞

0 dt 〈Ai(t )Bj (0)〉e−iωt , evaluated at fre-
quency ω = 0. A detailed derivation of this master equa-
tion and explicit expressions for the two-time correlation
functions are given in Appendixes A and B, respectively.

In the symmetric case, κi = κ , and for 	i = 0 we obtain
the simple results

2 Re{Ia†
i ai

(ω)} = ε[�−(ω) − �+(ω)] (9)

and

Ia1a2 (ω) + Ia2a1 (−ω) = ε[�−(ω) + �+(ω)], (10)

where

�±(ω) = κ2

κ2(1 ± ε)2 + 4ω2
(11)

are Lorentzian functions. The parameters N = Ni and M in
Eq. (8) are then given by

N = εη

(
1

(1 − ε)2
− 1

(1 + ε)2

)
, (12)

M = εη

(
1

(1 − ε)2
+ 1

(1 + ε)2

)
. (13)

A. Squeezing and purity

To obtain additional intuition, we focus on the symmetric
configuration κi = κ , where we can reinterpret N = 〈a†

i ai〉ρeff

and M = 〈a1a2〉ρeff as expectation values of an effective two-
mode squeezed state

ρeff = S(reff )ρth(neff )S†(reff ). (14)

Here, ρth(neff ) is a thermal two-mode state with occupation
number neff and

S(r) = er(a†
1a†

2−a1a2 ) (15)
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is the two-mode squeezing operator. Instead of the thermal
occupation number, we can also work with the purity of the
effective state μeff = 1/(2neff + 1), in which case we obtain
the relations [54]

reff = 1

2
tanh−1

[
2|M|

2N + 1

]
, (16)

μeff = 1√
(2N + 1)2 − 4|M|2

. (17)

From the expressions given in Eqs. (12) and (13) we find that
|M|2 = N (N + η) and therefore μeff = 1 for a lossless chan-
nel. This implies that in the infinite-bandwidth limit, Eq. (8)
describes two qubits that are coupled to a two-mode squeezed
zero-temperature reservoir with a squeezing parameter

reff (ε) = 2 tanh−1(ε), (18)

which becomes arbitrarily large when ε → 1. However, this
is a consequence of the Markov approximation, where the
environment is only probed at a single frequency. Below we
will show that this is no longer true when a nonvanishing
ratio κ/γ is taken into account, in which case averaging over
a finite-frequency window 	ω 
= 0 translates into an impure
effective state with reduced squeezing. The same is already
true in the Markovian limit in the presence of transmission
losses η < 1.

B. Steady-state entanglement

From the reduced master equation in Eq. (8) we can de-
rive the steady state of the two qubits, which we express in
general as

ρ0
q =

∑
s,s′

ρ0
s,s′ |s〉〈s′|, (19)

where s = (s1, s2) with si = 0, 1 labels the two-qubit states.
For a symmetric parametric amplifier, κ1 = κ2, and for sym-
metric qubits, γ1 = γ2, there are only six nonvanishing matrix
elements,

�ρ0
00,00 = (1 + N )2(2�φ + 1 + 2N ) − |M|2(3 + 2N ),

�ρ0
10,10 = 2�φN (N + 1) + (2N + 1)[N (N + 1) − |M|2],

�ρ0
11,11 = N2(1 + 2�φ + 2N ) + |M|2(1 − 2N ),

�ρ0
11,00 = M,

and ρ0
01,01 = ρ0

10,10 and ρ0
00,11 = (ρ0

11,00)∗. Here we intro-
duced the normalization constant � = (1 + 2N ){1 + 2�φ +
4[N (N + 1 + �φ ) − |M|2)]} and the normalized dephasing
rate �φ = γφ/γ . In the Markov limit and assuming also oth-
erwise ideal conditions, γφ = 0 and η = 1, we have |M|2 =
N (N + 1), ρ0

10,10 = 0 and |ρ0
11,00|2 = ρ0

11,11ρ
0
00,00. This means

that the steady state is the pure state ρ0
q = |�q〉〈�q|,

where [14]

|�q〉 =
√

N + 1

1 + 2N
|00〉 + eiθ

√
N

1 + 2N
|11〉, (20)

and we defined M = |M|eiθ . On resonance, 	i = 0, we obtain
θ = 0 and the steady state approaches the maximally entan-
gled triplet state |�+〉 = 1√

2
(|00〉 + |11〉) for N � 1.

Before we proceed, let us provide some additional insights
about the emergence of such a pure entangled steady state, by
considering the coupling of the qubits to two isolated modes
a1 and a2 via a Jaynes-Cummings interaction of the form

Hint ∼ i(σ−
1 a†

1 − σ+
1 a1 + σ−

2 a†
2 − σ+

2 a2). (21)

An ideal two-mode squeezed state of those two modes can be
written as

|�TMS〉 = 1√
1 − x2

∞∑
n=0

xn|n〉1|n〉2, (22)

where we can set x = √
N/(N + 1) to match the convention

from above. This expression shows that the number of photons
in the two modes are perfectly correlated, suggesting that the
qubits are only excited and deexcited pairwise. However, this
argument is too naive since, for example, the action of Hint

on the state |00〉|�TMS〉 would also generate singly excited
states ∼|10〉, |01〉. To explain the existence of the steady state
given in Eq. (20) it is thus important to take into account the
coherence between the |n〉1|n〉2 components, which leads to
the following relations:

a1|�TMS〉 = xa†
2|�TMS〉, (23)

a2|�TMS〉 = xa†
1|�TMS〉. (24)

Equivalently, there exists a unique dark state of the interaction

Hint (|00〉 + x|11〉)|�TMS〉 = 0. (25)

Therefore, once the system reaches the state |�q〉 in Eq. (20),
the emission of a photon by one qubit interferes destructively
with the absorption of a photon in the other mode. When
applied to the original setting, this argument shows that the
absence of any components ∼|01〉 or ∼|10〉 in |�q〉 is a
consequence of a nonlocal interference effect between two
well-separated, but correlated parts of the network.

C. Nonideal squeezed reservoirs

To investigate the performance of this entanglement distri-
bution scheme also under nonideal conditions, for example,
when |M|2 < N (N + 1) or when a reduced master equa-
tion for ρq is not available, we consider the fidelity

F = |〈�+|ρ0
q |�+〉|2 � (1 + ε)4

2(1 + 6ε2 + ε4)
(26)

as a measure of how close the qubit state approaches the
maximally entangled triplet state. In addition, we can use
the concurrence of the reduced state C(ρ0

q ) [55] to quantify
directly the amount of qubit-qubit entanglement. Note that the
upper bound in Eq. (26) derived for the ideal Markovian limit
shows that already for moderate driving strengths ε � 0.5,
fidelities of about F ≈ 0.99 can be reached.

In Fig. 2 we show a plot of the steady-state fidelity F
for the steady state of master equation (8), under the as-
sumption that �φ = 0, but allowing for arbitrary values of
Ni = N and |M|2 � N (N + 1). For later convenience, these
parameters are in turn expressed in terms of the effective
squeezing parameter reff and the effective purity μeff , as de-
fined in Eqs. (16) and (17). We see that for μeff � 1, the
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FIG. 2. Contour plot of the steady-state fidelity F defined in
Eq. (26) as a function of the effective squeezing parameter reff and the
effective purity μeff . The solid lines indicate the path in this param-
eter space that one obtains by increasing ε from 0 to 1 for different
values of β = κ/γ and �φ = 0 and η = 1 (see discussion in Sec. IV).
The dashed line marks the boundary of vanishing concurrence C = 0,
above which the reduced qubit state is entangled.

fidelity approaches unity as the squeezing parameter is in-
creased, consistent with the bound stated in Eq. (26). For
values of reff � 1, the fidelity becomes almost independent of
the squeezing parameter, but decreases as F � 1

4 (1 + 3μ2
eff )

for impure reservoirs. Entanglement is present as long as
F > 0.5, which corresponds to a minimal purity of about
μeff � 1/

√
3 � 0.57. This result shows that improving the

purity of the effective photonic bath will be most relevant for
this entanglement distribution scheme.

IV. ENTANGLEMENT DISTRIBUTION
IN REALISTIC NETWORKS

Let us now address the more realistic scenario, where finite
waveguide losses, decoherence of the qubits, and, in particu-
lar, the finite bandwidth of the parametric amplifier are taken
into account. In this case, it is in general no longer possible
to eliminate the photon modes and the full cascaded master
equation in Eq. (6) must be solved numerically. In view of
the large Hilbert space required to represent the two-mode
squeezed state, these simulations become very demanding
when approaching the parametric instability ε = 1. Thus, in
the following, we restrict all numerical simulations to val-
ues of ε � 0.8, where a convergence of the results can still
be ensured by truncating the Hilbert space of each photon
mode to ntrunc � 25 states and by performing finite-size scal-
ing analysis (see Appendix C). In addition, we introduce a
filtered-mode approximation (FMA) in order to obtain also an
analytic dependence of the fidelity on all the relevant system
parameters.

A. Filtered-mode approximation

In the Markov limit studied in the previous section, the
state of the qubits obeys a master equation, where the charac-
teristic bath parameters Ni and M are determined by the output

fields of the amplifier at a single frequency, ω = 0. To go
beyond this approximation, we must take into account that the
qubits will be affected by photons within a finite region of the
spectra Sa†

i a j
(ω) and Saia j (ω) that cannot be associated with

a pure squeezed state. The relevant bandwidth of frequencies
will be determined by the dynamics of the qubits themselves
and will be roughly given by the decay rates γi. Based on this
intuition, we introduce the two filtered modes

a f ,i(t ) = √
γiκiη

∫ t

−∞
ds e−γi (t−s)/2ai(s − τi ), (27)

where, for a later generalization, we have already included
the propagation delays τi. These modes represent the output
of the two-mode amplifier, but delayed by τi and filtered by
the response of the qubits.

We can now use these filtered modes to define an adjusted
set of parameters for the qubit master equation in Eq. (8),

Ni = 〈a†
f ,ia f ,i〉, M = 〈T a f ,1a f ,2〉, (28)

where T denotes the time-ordering operator applied to the
amplifier modes a1 and a2. These parameters include the
characteristic timescales of the qubits and of the photons on
an equal footing. Specifically, we obtain

Ni = 2ηγi

∫ ∞

−∞

dω

2π

Ia†
i ai

(ω)

γ 2
i /4 + ω2

(29)

for the occupation numbers and

M = √
γ1γ2η

∫ ∞

−∞

dω

2π

[Ia1a2 (ω) + Ia2a1 (−ω)]eiω(τ2−τ1 )

(γ1/2 + iω)(γ2/2 − iω)
(30)

for the correlation parameter. These expressions explicitly
show how the effective photonic reservoir seen by the qubits
depends on the amplifier correlations within finite-frequency
windows set by the decay rates γi. The Markovian limit dis-
cussed in Sec. III is recovered in the limits γi → 0 and τi → 0.

B. Effective squeezing parameters for nonideal amplifiers

While the derivation of a master equation in terms of the
filtered modes is only an approximation, it becomes exact
in the regime of low-qubit excitations, i.e., for small values
of ε (see Appendix D). Even for moderate and large driving
strengths it still results in a considerable improvement over
the conventional master equation discussed in Sec. III. In
particular, the FMA allows us to account for the effects of
a finite amplifier bandwidth. For example, by setting κi = κ ,
γi = γ and assuming τi = 0 for now, we obtain

N = 2ε2β(1 + 2β )η

[(β + 1)2 − β2ε2](1 − ε2)
, (31)

M = 2εβ(ε2β + β + 1)η

[(β + 1)2 − β2ε2](1 − ε2)
, (32)

where β = κ/γ is the ratio between the amplifier bandwidth
and the qubit decay. As discussed in Sec. III A and shown
explicitly in Fig. 3, these parameters can be reexpressed in
terms of an effective squeezing parameter reff and an effective
purity μeff . In this way, the fidelity of the resulting steady state
can be read off directly from the general plot in Fig. 2.
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FIG. 3. Dependence of the effective squeezing parameter and the
effective purity on the driving strength within the FMA. The different
curves are evaluated for different values of β and assuming η = 1
and symmetric conditions κi = κ and γi = γ . On the right axis, we
plot the squeezing factor Seff = e2reff in dB. Note that reff → ∞ and
μeff → 0 when ε → 1 for all values of β.

We may also use the analytic expressions for N and M from
above to evaluate the dependence of these quantities up to the
first-order corrections in the inverse bandwidth ratio 1/β,

reff � 2 tanh−1(ε) − 1

β

2ε

(1 − ε2)2
, (33)

μeff � 1 − 1

β

4ε2

(1 − ε2)2
. (34)

which is valid for β(1 − ε)2 � 1. We see that finite-
bandwidth corrections get strongly amplified as one ap-
proaches the parametric instability. In particular, the purity of
the effective squeezed reservoir, which is most relevant for
the entanglement of the reduced qubit state, decreases signif-
icantly. Thus, even for β � 1, it is not possible to assess the
achievable amount of entanglement using a purely Markovian
description.

C. Optimal fidelities

Figure 4 summarizes the performance of the entanglement
distribution scheme in realistic settings. First of all, Fig. 4(a)
shows the dependence of the fidelity F on the driving strength
ε for different ratios β = κ/γ . Here we compare the results
from a simulation of the full master equation with the pre-
dictions obtained from the FMA. In both cases, we find the
expected maximum for intermediate values of ε, which results
from an increase in squeezing on the one hand and from the
loss of purity on the other hand. While for moderate and large
driving strengths we see a deviation of the approximate results
from exact numerics, the qualitative trends are still accu-
rately captured. Importantly, in all the investigated parameter
regimes we find that the FMA agrees with or underestimates
the exact fidelity and can thus be reliably used to predict lower
bounds for the achievable amount of entanglement.

In the limit of low-pump values, the FMA becomes exact
and we obtain a simple analytic expression for the fidelity

F (ε � 1) � 1

2
+ 2βη

(1 + β )(1 + 2�φ )
ε. (35)

FIG. 4. (a) Plot of the Bell-state fidelity F as a function of the
driving strength and for different amplifier bandwidths β = κ/γ .
The solid lines represent the results obtained from the numerical
solution of the full cascaded master equation (6), which are compared
with the predictions under the FMA (dashed lines), assuming �φ = 0
and η = 1. (b) Plot of the optimal fidelity Fop and the corresponding
optimal driving strength εop (inset) under the same conditions. The
dotted line shows the analytic approximation given in Eq. (37).
(c) Plot of the optimal fidelity as a function of the qubit dephasing
�φ for η = 1 and (d) as a function of the channel transmissivity η

for �φ = 0. In both plots, we assume a value of β = 102 for the
upper curves and β = 1 for the lower curves, where the dashed lines
represent the respective FMA results. For all plots in this figure we
have set 	i = 0, κ1,2 = κ , and γ1,2 = γ .

Therefore, the fidelity increases linearly with the pump
strength [see Fig. 4(a)], with a slope that depends on all the
different sources of imperfections. To estimate the maximally
achievable fidelities, we assume that this maximum is reached
for a pumping strength ε ≈ 1 and expand F to lowest order in
(1 − ε), 1/β, �φ , and (1 − η),

F (ε ≈ 1) � 1− (1 − ε)4

16
− 3

(1 − ε)2

[
1

2β
+ �φ + (1 − η)

]
.

(36)
By optimizing this result with respect to the driving strength
we obtain

F app
op � 1 − 3 3

√
9

4

[
1

2β
+ �φ + (1 − η)

] 2
3

. (37)

Although the result in Eq. (37) is based on various crude
approximations, it still gives a good estimate for the overall
scaling of the maximal fidelity that is achievable with this
scheme in the presence of imperfections. In particular, as
shown in Fig. 4(b), for the parameter regimes of interest,
Fop > F app

op , where Fop is the exact optimized fidelity eval-
uated numerically. In Figs. 4(c) and 4(d), Fop is also shown
for different nonideal settings.

It is worth emphasizing that a fidelity of F > 0.5, and
therefore a finite amount of steady-state entanglement, can
be reached with this scheme even for rather high waveguide
losses. This is in contrast to a deterministic state transfer
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scheme, where losses of (1 − η) � 0.5 would not permit a
finite amount of entanglement.

D. Role of nonlinearities

All the results presented in this work are based on a
linearized treatment of the parametric amplifier. For driving
strengths up to ε = 0.8, the average photon number in each
mode, 〈a†

i ai〉 � 1, is still rather low and a linearized descrip-
tion should be justified in most systems of interest. However,
to estimate the impact of a finite nonlinearity in the system,
we can study the steady-state fidelity F as a function of
the Hilbert space truncation number ntrunc in our numerical
simulation. Such an investigation is presented in Appendix C
and shows that for small and moderate ε � 0.5, the amplifier
must be linear only up to photon numbers of ntrunc ≈ 4–6
in order to reach the same optimal fidelities as in the fully
linear case. As we approach the instability, the requirements
on the linearity of the amplifier become more stringent, but
only when the bandwidth is sufficiently high. For example,
ntrunc ≈ 20 is sufficient to reach F > 0.98 for ε = 0.8 and
β = 103.

V. STEADY-STATE ENTANGLEMENT
IN ASYMMETRIC NETWORKS

In our discussion so far we have neglected the finite
time that it takes for the photons to propagate from the
down-conversion source to the qubits. This is not a crucial
assumption in situations where both qubits are located approx-
imately equally far away from the amplifier. The photons then
simply take a time τ1 ≈ τ2 to propagate from the source to
the qubits, which is irrelevant for the steady-state correlations.
However, in situations where τ1 
= τ2, the qubits are driven by
photons that have been emitted at two different times. When
the time lag τ = τ2 − τ1 is too long, correlations between
these photons are lost [56]. Such situations can occur, for
example, when the amplifier and the first qubit are located
in the same laboratory, while the second beam is sent via an
optical fiber to a qubit at a remote location.

A. Quantum networks with propagation delays

For larger networks with non-negligible propagation de-
lays, different choices for the definition of entanglement and
correlations can be considered. For quantum key distribution
schemes or similar applications, where the quantum states
are only used once, one is typically interested in correlations
between measurements that are delayed by the respective
propagation times of the transmitting photons. However, for
other applications, where quantum states are redistributed
within the network multiple times, the more relevant ques-
tion is how much entanglement there exists between different
nodes at a given point in time. In the following, we are in-
terested in this second type of scenario, where signal delays
become relevant.

In the presence of finite propagation delays, the dynamics
of the full density operator ρ(t ) can no longer be described by
the time-local master equation in Eq. (6), which was the basis
for our exact numerical simulations so far. However, as dis-
cussed in more detail in Appendix D, this master equation can

still be used to evaluate non-equal-time correlation functions,
which can be related to the steady-state expectation values of
the actual network with time delays. More precisely, given
an arbitrary product of two qubit operators O1 ≡ O1 ⊗ 12

and O2 ≡ 11 ⊗ O2, its steady-state expectation value can be
computed as

〈O1O2〉0 = 〈O1(τ2 − τ1)O2〉0|loc, (38)

assuming that τ2 > τ1. Here, 〈O1(τ )O2〉0|loc denotes a non-
equal-time correlation function, which is evaluated with the
help of the quantum regression theorem using the time-local
cascaded master equation in Eq. (6).

Based on this relation, we express the reduced steady state
of the two qubits as

ρ0
q =

3∑
μ,ν=0,x,y,z

〈
σ

μ
1 σ ν

2

〉
0σ

μ
1 σ ν

2 , (39)

where σ 0 ≡ 1. In this way, we can employ Eq. (38) to evaluate
the full two-qubit density matrix of a time-delay network
through numerical simulations of the time-local master equa-
tion given in Eq. (6). In addition, we can again use the FMA
to derive a time-local master equation for ρq only. In this
approach all the propagation delays are already included in the
parameters Ni and M in Eqs. (29) and (30), which are derived
from the retarded field operators in Eq. (27).

B. Fidelities and entanglement in the presence
of propagation delays

In Fig. 5 we consider a network with different propagation
times τ1 
= τ2 for the two beams and study the (equal-time)
steady-state entanglement as a function of τ = τ2 − τ1. In
Figs. 5(a) and 5(b) we plot, first of all, the effective squeezing
reff (τ ) and the purity μeff (τ ), as obtained from the FMA for
different values of β and ε. Within this approximation and in
the limit of β � 1 we find that

M(τ ) � 2ε(1 + ε2)

(1 − ε2)2
e−γ τ/2. (40)

This shows that in this limit the correlations decay on the
timescale set by γ , and not by the relaxation rates of the am-
plifier κ± = κ (1 ± ε). Therefore, a finite amount of squeezing
prevails up to delay times of about τ ≈ γ −1 for all driving
strengths. In contrast, the behavior of the effective purity
depends more strongly on the driving strength. This is because
a larger value of M(τ = 0) implies a larger absolute change of
M(τ ), as relevant for the purity μeff defined in Eq. (17). The
timescale that determines the decay of the purity, and there-
fore the entanglement, can become considerably shorter than
γ −1 for large driving strength. This conclusion is consistent
with the entanglement decay in delayed two-mode squeezed
states reported in Ref. [56]. In the opposite regime β � 1, the
squeezing and purity parameters are smaller to begin with, but
they are more robust and decay only after a delay τ > γ −1,
roughly independently of ε.

In Fig. 5(c) we evaluate the actual steady-state concurrence
of this system using Eq. (39) for a moderate driving strength
of ε = 0.5. We see that the dependence of C(τ ) captures
the overall trend inferred from μeff (τ ). However, the exact
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FIG. 5. (a) Time-delayed effective parameters reff (τ ) and
(b) μeff (τ ) for ε = 0.4 (solid) and ε = 0.9 (dotted) and for different
amplifier bandwidths β = 1 and 103. (c) Steady-state concurrence of
a network with time delays C(τ ) for ε = 0.5 and different values of
β. The solid lines represent the results obtained from a full numer-
ical simulation based on Eq. (39), while the dashed lines indicate
the FMA predictions. (d) Plot of the entanglement time τent , i.e.,
the minimal delay time beyond which the entanglement vanishes,
C(τent ) = 0. In all plots, η = 1, �φ = 0, and a symmetric setup with
	i = 0 have been assumed.

simulations not only predict consistently higher values for
C(τ = 0), they also show that the entanglement of the qubits is
considerably more robust with respect to time delays than the
entanglement of the filtered modes. In Fig. 5(d) we define the
delay time τent as the maximal delay time for which a finite
amount of steady-state entanglement can still be distributed.
This timescale is roughly given by τent ∼ γ −1, but can be
significantly reduced for very large driving strengths.

VI. ENTANGLEMENT DISTRIBUTION RATES

In the previous sections we have focused on the amount
of entanglement that can be reached under stationary driving
conditions. However, for practical applications it is equally
important to know how fast this entangled state can be
reached. In particular, given the possibility of distilling a
highly entangled state from many copies of a state with a low
amount of entanglement [7–11], it can be more favorable to
optimize the generation rate rather than the fidelity. These
considerations are specifically relevant for the current en-
tanglement distribution scheme since close to the parametric
instability, where the correlations are maximized, the relax-
ation time of the parametric amplifier diverges. Therefore,
even for an ideal, broadband amplifier, operating close to the
threshold might not be the optimal choice [44].

For a given application, the optimal compromise between
the entanglement generation speed and the achievable fi-
delities depends on many details, in particular also on the
local resources that are available to carry out entanglement
purification protocols. To avoid such an application-specific

discussion, we consider here only the following rudimentary
scenario: The two-mode squeezing source is running contin-
uously, while the qubits in each node are initialized in state
|0〉. At time t = 0 the coupling between the qubits and the
photonic channels is switched on for a duration T , after which
the qubits are decoupled again and stored in a local register.
This process is then repeated with a fresh pair of qubits and so
on, such that an entangled two-qubit state ρq(T ) is distributed
between the two nodes every time interval T .

To analyze this scenario, we consider equal qubit decay
rates γi = γ and introduce the normalized entanglement dis-
tribution rate

R = EF (T )

γ T
. (41)

Here EF (T ) ≡ EF (ρq(T )) is the entanglement of formation,
which is related to the concurrence by [55]

EF = h

(
1 + √

1 − C2

2

)
, (42)

where h(p) = −p log2(p) − (1 − p) log2(1 − p) is the Shan-
non entropy function. The entanglement of formation has
the following meaning [57]. It quantifies the number of pure
singlet states that are needed on average to generate the state
ρ(T ) through local operations and classical communication
(LOCC) operations only. This more intuitive interpretation,
while still being easily computable, makes EF well suited for
a comparative study of entanglement rates. Note, however,
that EF is only an upper bound [55] on the number of singlet
states that can be extracted from multiple copies of ρq(T ),
which depends on the available purification protocols and
many other details that go beyond the scope of this analysis.

The behavior of the entanglement distribution rate as a
function of different parameters is summarized in Fig. 6.
First of all, in Fig. 6(a) we show the evolution of the fidelity
F as a function of the interaction time T . While for small
driving strength we find a featureless increase to the steady-
state value discussed in the previous sections, we observe
additional small modulations for large ε. These can be traced
back to the appearance of Rabi oscillations between the states
|00〉 and |11〉 in this regime. However, these oscillations are
not very pronounced and the fidelity stays well below unity
in this transient regime. Therefore, while the corresponding
entanglement rates shown in Fig. 6(b) reach their optimum for
smaller T when the driving strength is large, higher overall
values for R can be reached for moderate ε � 0.5. This is
shown in more detail in Fig. 6(c), where the maximal rate
Rmax = maxT {R(T )} is plotted as function of ε for different
amplifier bandwidths β. We see that the rate is maximized at
values of ε ≈ 0.3–0.4.

Finally, in Fig. 6(d) we plot to maximal entanglement rate
as a function of β and the waveguide losses η, which are
the most relevant network parameters, considering otherwise
ideal qubits. Again, we find appreciable rates of R � 0.1 for
a large range of parameters, including regimes with signifi-
cant losses and a comparably low-amplifier bandwidth. While
under these conditions Bell-state fidelities close to one are
not achievable, the scheme still performs very well for ap-
plications, where the distribution of a large number of weakly
entangled qubits is sufficient.
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FIG. 6. (a) Plot of the fidelity F as function of the pulse length
T and (b) the corresponding entanglement distribution rate R for
different ε. For both plots, β = 10, �φ = 0, and η = 1. (c) Depen-
dence of the maximally achievable rate Rmax on the driving strength
ε for different values of β. (d) Plot of the entanglement rate Rmax,
optimized with respect to both T and ε, maxT,ε{R}, for different
amplifier bandwidths and waveguide losses.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have presented a detailed analysis of a ro-
bust entanglement distribution scheme between distant qubits,
which only requires moderately entangled Gaussian photonic
beams. Specifically, we have investigated the performance of
this scheme under realistic experimental conditions, taking a
finite amplifier bandwidth, waveguide losses, and also prop-
agation delays into account. This analysis shows that while
reaching extremely high fidelities of the entangled state still
requires close-to-ideal conditions, the scheme is very efficient
in distributing nonideal entangled states, where it remains
rather robust with respect to common experimental imperfec-
tions. For example, compared to deterministic state-transfer
schemes, a finite amount of entanglement can be distributed
with this scheme over very lossy channels. At the same time,
the entanglement distribution rates remain high, R ∼ γ −1,
and do not suffer from the weak-driving requirement and
low-success probabilities of probabilistic entanglement distri-
bution schemes.

The analysis presented in this work was explicitly carried
out for parametric amplifiers as one of the most common
sources for entangled photon pairs, but it can be readily
generalized for other methods [58] for producing two-mode
squeezed beams. Therefore, all the results can be applied to
various quantum technology platforms, where such sources
are currently developed. In particular, in the field of circuit
QED, highly entangled and very pure sources of entangled
beams of microwave photons have been demonstrated in re-
cent years [28–33], and used for quantum illumination [59]
and quantum teleportation [60] applications. With demon-
strated purities as large as μeff ≈ 0.9 [58], such sources
can be directly applied to entangle superconducting qubits
over microwave channels. Similarly, in the optical domain

two-mode entangled states with more than 10 dB squeezing
and above-threshold purities μeff � 1/

√
3 [61–63] have al-

ready been demonstrated and can be further developed into
efficient sources for entangling distant atoms, quantum dots,
or defect centers.

An important area for applications for the presented en-
tanglement distribution scheme are hybrid quantum networks
connecting qubits in the microwave and the optical domain.
To entangle qubits with such vastly different frequencies,
optomechanical, electro-optical, and other types of quantum
transducers [64] are currently developed. Most of these trans-
ducers can be readily operated as a parametric amplifier by
simply changing the driving frequency and be used to produce
highly entangled beams of microwave and optical photons.
The generation and transduction of entanglement can then be
combined and optimized within a single device, which can
significantly boost efficiencies and reduce the control com-
plexity of such hybrid network architectures.
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APPENDIX A: DERIVATION OF THE MASTER
EQUATION FOR THE QUBIT STATE

We start by considering the cascaded master equation for
qubits and the parametric amplifier, which is spelled out in
Eq. (6). We first change to an interaction picture with re-
spect to the free evolution L0 = Lp + Lq by writing ρ(t ) =
eL0tρI (t ). In this representation, the master equation reads as

ρ̇I (t ) = Lcasc(t )ρI (t )

=
∑
i=1,2

∑
s=±

√
ηγiκie

−L0tKs
i e

L0tρI (t ), (A1)

where we defined the cascaded coupling in the interaction pic-
ture Lcasc(t ) = e−L0tLcasceL0t , and the superoperators K+

i ρ =
[aiρ, σ+

i ] and K−
i ρ = [σ−

i , ρa†
i ].

By assuming that the relaxation time of the amplifier is
fast compared to the timescale of the qubit dynamics, we can
approximate the full density operator by the product ρI (t ) �
ρ0

p ⊗ ρq,I (t ), where ρ0
p is the steady state of the photonic

system Lpρ
0
p = 0. Up to second order in Lcasc(t ) and under

the validity of the usual Born-Markov approximation, we can
then derive a master equation for the reduced qubit state
ρq,I (t ) = Trp{ρI (t )}, which is given by

ρ̇q,I (t ) =
∫ t

−∞
dτ Trp{Lcasc(t )Lcasc(τ )ρ0

p ⊗ ρq,I (t )}. (A2)

After inserting the explicit expression for Lcasc(t ) and undoing
the transformation to the interaction picture, the result can be
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written in a compact form as

ρ̇q(t ) = Lqρq(t ) +
2∑

i, j=1

η
√

γiγ j

∑
s,s′=±

∫ t

−∞
dτ Css′

i j (t − τ )

× ss′[σ−s
i , eLq (t−τ )

[
σ−s′

j , e−Lq (t−τ )ρq(t )
]]

. (A3)

Here we have introduced the bosonic correlation functions

Css′
i j (τ ) = √

κiκ j〈: as
i (τ )as′

j (0) :〉, (A4)

where we identified a+
i ≡ a†

i and a−
i ≡ ai and assumed

the normal ordering prescription 〈: as(τ )a(0) :〉 =
Trp{aseLpτ (aρ0

p )} = 〈as(τ )a(0)〉, while 〈: as(τ )a†(0) :〉 =
Trp{aseLpτ (ρ0

pa†)} = 〈a†(0)as(τ )〉.
Consistent with the Markov approximation, we also ne-

glect the slow dynamics of the qubits in Eq. (A3), which
leaves us with

ρ̇q(t ) = Lqρq(t ) +
2∑

i, j=1

η
√

γiγ j

×
∑

s,s′=±
ss′Iss′

i j (0)
[
σ−s

i ,
[
σ−s′

j , ρq(t )
]]

, (A5)

where Iss′
i j (ω) = ∫ ∞

0 dτ Css′
i j (τ )e−iωτ is evaluated at resonance

ω = 0. To proceed, we make use of the general relation Is,s
i j =

(I−s,−s
i j )∗ and additional simplifications Is,s

ii = Is,−s
12 = Is,−s

21 =
0, which we derive in Appendix B for the setup at hand. With
these relations and identifying Ni = 2η Re{I+−

ii (0)} and M =
η[I−−

12 (0) + I−−
21 (0)], we end up with the master equation in

Eq. (8) together with a small Hamiltonian correction

H ′ = −η
∑

i

γiIm{I+−
ii (0)}σ z

i . (A6)

These frequency shifts can be compensated by local qubit
detunings and we also find that Im{I+−

ii (0)} = 0 for the
symmetric parameters considered in most of our examples.
Therefore, this correction is neglected in the main part of the
paper.

APPENDIX B: CORRELATION FUNCTIONS AND
SPECTRA OF THE PARAMETRIC AMPLIFIER

In this Appendix, we summarize the general results for the
spectra of the two amplifier modes for arbitrary parameters.
Since in the operation regime of interest the amplifier is linear,
this can be done most conveniently by converting the master
equation in Eq. (4) into an equivalent set of quantum Langevin
equations [66,67] for the Heisenberg operators a1(t ) and a2(t )
(see also Appendix D). These equations read as

ȧ1 = −
(

i	1 + κ1

2

)
a1 +

√
κ1κ2ε

2
a†

2 − √
κ1 fin,1, (B1)

ȧ2 = −
(

i	2 + κ2

2

)
a2 +

√
κ1κ2ε

2
a†

1 − √
κ2 fin,2, (B2)

where fin,i are independent white-noise operators
satisfying [ fin,i(t ), f †

in, j (t
′)] = δi jδ(t − t ′). By intro-

ducing the vectors v = (a1, a†
2, a2, a†

1)� and f =
(
√

κ1 fin,1,
√

κ2 f †
in,2,

√
κ2 fin,2,

√
κ1 f †

in,1)�, these equations can

be written in a compact form as

v̇ = Mv − f , (B3)

where the matrix M is given by

M =

⎛
⎜⎜⎜⎝

−i	1 − κ1
2

ε
√

κ1κ2

2 0 0
ε
√

κ1κ2

2 i	2 − κ2
2 0 0

0 0 −i	2 − κ2
2

ε
√

κ1κ2

2

0 0 ε
√

κ1κ2

2 i	1 − κ1
2

⎞
⎟⎟⎟⎠.

(B4)
For long times t → ∞, the formal solution of Eq. (B3) is

v(t ) = −
∫ t

−∞
dτ eM(t−τ ) f (τ ). (B5)

From this result we obtain the full covariance matrix in steady
state, V0 = 〈vv†〉(t → ∞), as

V0 =
∫ ∞

0
ds eMsReM

†s, (B6)

where R = diag(κ1, 0, κ2, 0) is a diagonal matrix. Since M
is block diagonal, the matrix exponential and therefore the
individual entries of the covariance matrix can be solved ana-
lytically. We obtain

〈a†
i ai〉 = (κ̄ − κi )κ̄ε2

4	̄2 + (1 − ε2)κ̄2
, (B7)

〈a1a2〉 =
√

κ1κ2(−2i	̄ + κ̄ )ε

4	̄2 + (1 − ε2)κ̄2
, (B8)

where κ̄ = κ1 + κ2 and 	̄ = 	1 + 	2. All other expectation
values vanish, i.e., 〈a†

1a2〉 = 〈a2
i 〉 = 0.

To evaluate the spectra we make use of the quantum regres-
sion theorem

∂τ 〈v(τ )v†〉 = M〈v(τ )v†〉, (B9)

and define

I (ω) =
∫ ∞

0
dτ 〈v(τ )v†〉e−iωτ = 1

iω1 − MV0. (B10)

The spectra for the photon occupation numbers and correla-
tions can be obtained elementwise as Ia†

1a1
(ω) = κ1[I (ω)]44,

Ia†
2a2

(ω) = κ2[I (ω)]22, Ia1a2 (ω) = √
κ1κ2[I (ω)]12, and

Ia2a1 (ω) = √
κ1κ2[I (ω)]34. The general expressions for

the spectra are rather lengthy, but for the symmetric case
κi = κ and 	i = 	, we obtain

Ia†
i ai

(ω) = 2ε2κ3(κ + iω)

(κ2 − δ2)(κ2 − δ2 + 4iκω − 4ω2)
(B11)

and

Ia1a2 (ω) = εκ2[δ2 + κ2 − 4i	(κ + iω) + 2iωκ]

(κ2 − δ2)(κ2 − δ2 + 4iκω − 4ω2)
, (B12)

where δ2 = ε2κ2 − 4	2. These results reduce to the expres-
sions in Eqs. (12) and (13) for 	 = 0. Note that for a
symmetric amplifier Im{Ia†

i ai
(0)} = 0 and there is no Lamb-

shift contribution. In general this is not the case.
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FIG. 7. Dependence of the numerically evaluated fidelity F on
the photon truncation number ntrunc for (a) β = 1 and (b) β = 103.
(c) Plot of the average number of photons in each of the parametric
amplifier modes as a function of the driving strength and for different
ntrunc. (d) Convergence of the fidelity F with increasing photon
truncation number for the case of β = 103 at ε = 0.8. For all plots,
	i = 0, η = 1, �φ = 0 and otherwise symmetric conditions have
been assumed.

APPENDIX C: HILBERT SPACE TRUNCATION

In our numerical simulations of the full cascaded mas-
ter equation we truncate the Hilbert space of each photon
mode and only include a finite set of number states |n〉 with
n < ntrunc. In Figs. 7(a) and 7(b) we plot the entanglement
fidelity for different truncation numbers ntrunc and two very
different values of β. Figure 7(c) shows the corresponding
average photon number in each of the amplifier modes. We see
that even though for driving strengths of ε � 0.8 the average
number of photons remains small, 〈a†

i ai〉 < 1, in the case of
large β a substantially larger ntrunc must be used in order
to capture the qubit-qubit entanglement accurately. For even
larger ε the average photon number grows considerably and
exact simulations of the full master equation become very
demanding. For this reason all our simulations are restricted to
the parameter regime ε � 0.8 and β � 103, where a conver-
gence to the required level of accuracy can be achieved with
ntrunc = 25 [see Fig. 7(d)].

APPENDIX D: QUANTUM LANGEVIN EQUATIONS FOR
CASCADED NETWORKS WITH PROPAGATION DELAYS

Instead of working with a master equation for the system
density operator ρ(t ), an equivalent description of open quan-
tum systems can be obtained from a set of quantum Langevin
equations for Heisenberg operators [66]. For the considered
setup, these quantum Langevin equations can be derived from
a unidirectional system-waveguide interaction of the form

Hint = i
∑
i=1,2

[
√

κiF
†

i (0)ai + √
γiF

†
i (di )σ

−
i − H.c.], (D1)

where

Fi(z) = 1√
2π

∫ ∞

0
dω eiωz/ci bi(ω) (D2)

is the field operator for the ith channel at position z and
[bi(ω), b†

j (ω
′)] = δi jδ(ω − ω′). The equation of motion for an

arbitrary system operator O(t ) then obeys

Ȯ = i[Hsys, O] −
∑
i=1,2

(
√

κi[O, a†
i ]Fi(0, t ) + H.c.)

−
∑
i=1,2

[
√

γi[O, σ+
i ]Fi(di, t ) + H.c.], (D3)

where Hsys is the bare system Hamiltonian. In turn, under the
validity of the usual Born-Markov approximation, the field
operator is given by [66]

Fi(z, t ) = Fin,i(z, t ) + √
κi�(z)ai(t − z/ci )

+√
γi�(z − di )σ

−
i (t − z/ci + τi ), (D4)

where we have omitted nonessential propagation phases and
�(x) denotes the unit step function. The field Fin,i(z, t ) is the
free-field operator in the ith channel and obeys

Fin,i(z, t + τ ) = Fin,i(z − ciτ, t ). (D5)

Since we neglect thermal excitations, we find that
Fin,i(z, t )ρ0

full = ρ0
fullF

†
in,i(z, t ) = 0, where ρ0

full is the initial
state of the full network. We identify fin,i(t ) = Fin,i(z = 0, t )
with the noise operators used in Appendix B.

Note that for every position z, the fields Fi(z, t ) represent
independent degrees of freedom and thus

[Fi(z, t ), O(t )] = 0, (D6)

[Fi(z, t ), Fj (z
′, t )] = ciδi jδ(z − z′). (D7)

Together with Eqs. (D4) and (D5), these relations can be used
to derive all the non-equal-time correlation functions used
below.

1. Weak-driving limit

From Eq. (D3) we can readily derive expectation values of
qubit observables in the weak excitation limit ε � 1. In this
limit we can approximate σ z

i (t ) � −1 and obtain

σ̇−
i (t ) � −γi

2
σ−

i (t )−√
γiη fout,i(t − τi ) −

√
γi(1 − η) f ′

in,i(t ).

(D8)
Here fout,i(t ) ≡ Fout,i(z = 0, t ), where Fout,i(z, t ) =
Fin,i(z, t ) + √

κiai(t − z/ci ), and f ′
in,i(t ) is an independent

noise operator, which we have included to account for
waveguide losses. In the limit t → ∞ we obtain

σ−
i (t ) = −√

γiη

∫ t

−∞
ds e−γi (t−s)/2 fout,i(s − τi ), (D9)

where contributions from f ′
in,i(t ), which always act on the

vacuum state, have already been omitted. For the evaluation
of the expectation value 〈σ+

i σ−
i 〉(t → ∞) = Ni we use

〈 f †
out,i(t ) fout,i(t

′)〉 = κi〈a†
i (t )ai(t

′)〉 (D10)

and after some manipulations we obtain the result for Ni

given in Eq. (29). For the evaluation of the correlations
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〈σ−
1 σ−

2 〉(t → ∞) = M, we must take into account that fin,1(t )
and a2(t ′) do not commute in general and [68]

〈 fout,1(t ) fout,2(t ′)〉 = √
κ1κ2〈T a1(t )a2(t ′)〉, (D11)

where T denotes the time-ordering operator. Again we find
that the resulting expression for M matches Eq. (30). There-
fore, this comparison shows that the results obtained within
the FMA for the steady state of the qubits become exact in the
weak-driving limit Ni, |M| � 1.

2. Propagation delays

To handle finite propagation delays in a more general man-
ner, we introduce a set of shifted Heisenberg operators

σ̃ k
i (t ) = σ k

i (t + τi ), ãi(t ) = ai(t + τε ). (D12)

Here, τε is a small time delay, which is negligible on the
timescale of the system dynamics, but must be kept finite
when evaluating commutation relations with the waveguide
fields.

The shifted Heisenberg operators obey (assuming η = 1
for simplicity)

˙̃ai(t ) = i[H̃p(t ), ãi(t )] − κi

2
ãi(t ) − √

κi fin,i(t + τε ),

(D13)

˙̃σ−
i (t ) = −γi

2
σ̃−

i (t ) + √
γiκiσ̃

z
i (t )ai(t ) + √

γiσ̃
z
i (t ) fin,i(t ),

(D14)

˙̃σ z
i (t ) = −2γiσ̃

+
i (t )σ̃−

i (t ) − 2
√

γiκi[σ̃
+
i (t )ai(t ) + a†

i (t )σ̃−
i (t )]

− 2
√

γi[σ̃
+
i (t ) fin,i(t ) + f †

in,i(t )σ̃−
i (t )]. (D15)

Since in these equations all fin,i(t ) operators appear to the
right and all f †

in,i(t ) operators to the left, we can perform
the expectation value with respect to the initial vacuum state
ρ0

full and take the limit τε → 0 afterwards. As a result, the
expectation values for 〈 ˙̃σ k

i (t )〉 and 〈 ˙̃ai(t )〉 do not explicitly
depend on the delay times τi anymore and their expressions
are identical to the ones obtained for 〈σ̇ k

i (t )〉 and 〈ȧi(t )〉 from
the cascaded master equation given in Eq. (6).

As a next step we show that the same is true for arbitrary
operator products S̃1(t )S̃2(t )Ã(t ), where S̃i(t ) are Pauli opera-
tors and Ã(t ) is an arbitrary product of operators ã1,2(t ) and
ã†

1,2(t ). To evaluate the time derivative of this product, we
apply the product rule and use the time derivatives for the
individual operators given in Eqs. (D13)–(D15). This results
in terms of the form

d

dt
S̃1(t )S̃2(t )Ã(t ) = · · · − √

γ1[S̃1(t ), σ̃+
1 (t )]F1(d1, t + τ1)

× S̃2(t )Ã(t ) + · · · − √
γ2S̃1(t )F †

2 (d2, t + τ2)[σ̃−
2 (t ), S̃2(t )]

× Ã(t ) + · · · − √
κ1S̃1(t )S̃2(t )F †

1 (0, t + τε )[ã1(t ), Ã(t )]

+ · · · . (D16)

Before we can take the expectation value with respect to ρ0
full,

all fin,i(t ) operators must be commuted to the right and all
f †
in,i(t ) operators to the left. To do so we write, for example,

F1(d1, t + τ1) =
√

γ1

2
σ̃−

1 (t ) + Fout,1(0, t ), (D17)

and use Fout,1(0, t ) = F1(cτε, t + τε ) to show that
[Fout,1(0, t ), Ã(t )] = 0. Further, we write S̃2(t ) = S2(t ) +
	S2(t ), where 	S2(t ) depends on the field Fout,2(d2, t ′) for
times t ′ ∈ [t, t + τ2] only. Equivalently, it depends on the
field F2(z, t ) located in the region z ∈ (0, d2] and the operator

Fout,2(0, t ) = F2(0, t ) +
√

κ2

2
a2(t ). (D18)

This implies that also [S̃2(t ), Fout,1(0, t )] = 0 and
Fout,1(0, t ) = fin,1(t ) + √

κ1a1(t ) in the second line of
Eq. (D16) can be commuted all the way to the right. Similar
arguments can also be made for all the other terms to achieve
the desired operator ordering.

In summary, from this derivation we obtain a set of coupled
equations of motion for the expectation values of arbitrary op-
erator products 〈S̃1(t )S̃2(t )Ã(t )〉, which are independent of the
delay times τi and have the same structure as the correspond-
ing equations of motion derived from the time-local cascaded
master equation. After taking again the limit τε → 0, this
result implies that

〈S1(t + τ1)S2(t + τ2)A(t )〉 = 〈S1S2A〉(t )|loc, (D19)

assuming appropriately matched initial conditions.
In the main text we are interested in equal-time expectation

values limt→∞〈S1(t )S2(t )〉, for which Eq. (D19) can not be
directly applied. Instead, we repeat the whole derivation for
the operators S̃1(t + t0) and take the average with respect
to the state S2(t0 + τ2)ρfull (t0). Since S2(t0 + τ2) depends on
fin,i(t ) for t � t0 only, it commutes with the relevant noise
terms ∼ fin,i(t + t0) and we can still make use of fin,i(t +
t0)S2(t0 + τ2)ρfull (t0) = 0. Therefore, this approach provides
us with the relation

〈S1(t + τ1 + t0)S2(t0 + τ2)〉 = 〈S1(t + t0)S2(t0)〉|loc, (D20)

which extends the result from above to more general correla-
tions. By assuming that t0 is long enough such that the system
has reached a steady state, we can redefine t0 → t0 − τ2

and set t = τ2 − τ1. This leaves us with the result stated in
Eq. (38).
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