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Progress toward larger molecular simulation on a quantum computer: Simulating a system
with up to 28 qubits accelerated by point-group symmetry
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The exact evaluation of the molecular ground state in quantum chemistry requires an exponentially increasing
computational cost. Quantum computation is a promising way to overcome the exponential problem using
polynomial-time quantum algorithms. A quantum-classical hybrid optimization scheme known as the variational
quantum eigensolver is preferred for noisy intermediate-scale quantum devices. However, the circuit depth
becomes one of the bottlenecks of its application to large molecules of more than 20 qubits. In this work, we
employ point-group symmetry to reduce the number of operators in constructing ansatz so as to achieve a more
compact quantum circuit. We illustrate this methodology with a series of molecules ranging from LiH (12 qubits)
to C2H4 (28 qubits). A significant reduction of up to 82% of the operator numbers is reached on C2H4. This also
sheds light onto further work in this direction to construct even shallower ansatz with enough expressive power
and simulate even larger scale systems.
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I. INTRODUCTION

Quantum computing is proposed to be a promising way to
overcome the exponential issue in simulating the energies and
properties of the many-electron molecular system by classi-
cal computers, as speculated by Feynman in 1982 [1]. Since
then, various quantum algorithms have been developed [2–8],
among which, the variational quantum eigensolver (VQE)
[8–12] is believed to be friendly to near-term quantum devices
for its noise-resilient property and its small need for quantum
gates, which is a benefit of its hybrid quantum-classical frame-
work [13].

The VQE has been applied to simulate chemical systems
both experimentally and numerically. The first demonstration
of H2 (2 qubits) on quantum devices was presented in Ref. [8].
After that, a variety of quantum simulations were performed
for BeH2 (6 qubits) [11], H2O (8 qubits) [14], and H12 (12
qubits) [15].

To benchmark the performance or optimize the algorithm,
the numerical results are also presented using virtual quantum
simulators on different molecules [16–18]. To date, the largest
is 20 qubits for H2O [17] with 6-31G basis set.

The scale of the simulation is limited by two correlated fac-
tors, the number of controllable qubits and the circuit depth.
Although the top record of the controllable qubit number
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reached 66 [19], the depth of the quantum circuit is still a
problematic limitation on large-scale quantum chemical sim-
ulation. Therefore, to extend the scale of quantum chemical
simulation, a better ansatz initialization requires not only
smaller demand for qubit number but also using less parame-
ters for a more compact quantum circuit.

The unitary coupled-cluster (UCC) ansatz was used when
VQE was initially proposed, and has been one of the most
popular choices since then. In order to represent the molecule
with less parameters for a more compact quantum circuit, one
feasible method is to screen out the less important parameters
based on UCC ansatz by precalculations or using adap-
tive methods [20–23]. Different improved coupled-cluster
(CC) ansatzes are also proposed and reached hopeful results
[24–27].

Besides these methods, for the chemical system, using the
intrinsic information of it might be of more benefit to obtain.
the compact ansatz and introduce less approximations.

For example, the particle number conservation (U(1) sym-
metry) and the fermionic parity conservation (Z2 symmetry)
are used as restrictions in VQE [28–30]. The geometric prop-
erty of molecules described by the point-group symmetry will
also provide great convenience for quantum chemical simu-
lation, for which the power has already been demonstrated
in conventional ab initio chemical calculations in classical
computers [31–33]. However, the power of point-group sym-
metry is rarely explored in the quantum computing regime.
Currently, point-group symmetry has been used for two pur-
poses: removing qubits in simulation [34,35] and reducing
the depth of quantum circuits in quantum computing [36,37].
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Setia et al. reduced the qubits in simulation by using the point
group to find the permutation matrix to do qubit tapering off
[34]. Fischer and Gunlycke mapped the configuration states
based on point-group symmetry to qubits rather than the
molecular orbitals, which makes it possible to represent the
same molecule with less qubits [35]. By applying projectors of
symmetry operators to the prepared quantum state, the depth
of the quantum circuit can be reduced at the cost of more
measurements [36,37].

In this work, we use point-group symmetry to directly re-
duce the operator numbers in the UCC ansatz so that the depth
of the quantum circuit is significantly decreased without dam-
age to the accuracy or expensive auxiliary calculations. We
present a series of numerical cases with the symmetry-reduced
unitary coupled-cluster singles and doubles (SymUCCSD)
ansatz by the MindQuantum simulator, including LiH, HF,
H2O, BeH2, CH4, and NH3 with its flipping potential energy
surface. We have also successfully performed the simulation
of 28-qubit C2H4 on the virtual quantum simulator.

II. FRAMEWORK

The VQE method was originally designed to solve
the ground-state energies of a molecular Hamiltonian [9].
Typically, in these problems, the Hamiltonian under Born-
Oppenheimer approximation is usually written in a second-
quantized form [5] as

Ĥ =
∑
p,q

hpqâ†
pâq + 1

2

∑
p,q,r,s

gpqrsâ
†
pâ†

r âsâq, (1)

where â†
p and âp denote the fermionic creation operator and

annihilation operator associated with the pth fermionic mode
(or spin orbital). The sets of coefficients {hpq} and {gpqrs} are
called one- and two-electron integrals and can be evaluated
by classical computers. The main idea of VQE is that the
parametrized quantum state �(�θ ) is prepared and measured
on a quantum computer, while the parameters are updated in
a classical computer following the variational principle E0 �
min�θ 〈�(�θ )|Ĥ |�(�θ )〉, where E0 is the ground-state energy.

The essential part for VQE is to construct the parametrized
quantum state �(�θ ) that is close enough to the unknown
ground state. The ansatz derived from the UCC method [5,38–
41] is one of the most popular choices. �(�θ ) can be con-
structed as

|�(�θ )〉 = eT̂ (�θ)−T̂ †(�θ)|�0〉, (2)

where T̂ are the coupled-cluster excitations, and |�0〉 is
the initial state (usually a Hartree-Fock state). The coupled-
cluster excitations are usually truncated to single and double
excitations, named UCCSD:

T̂1(θ) =
∑
i,a

t̂ a
i =

∑
i,a

θa
i â†

aâi, (3)

T̂2(θ) =
∑

i, j,a,b

t̂ ab
i j =

∑
i, j,a,b

θab
i j â†

aâ†
bâiâ j . (4)

To implement the VQE circuit of the UCC ansatz on a
quantum device, the Trotter-Suzuki expansion is needed.
Conventionally, the first-order Trotterization is enough to
reproduce UCCSD results, while more Trotter steps hardly

Algorithm 1 Scheme of SymUCCSD in VQE

1. Initialize the reference state |�0〉 (usually the Hartree-Fock
ground state).
2. For each possible excitation operator t̂ in T̂

If D(et̂−t̂† |�0〉) �= D(|�0〉)
Remove t̂ from T̂ .

End
End
3. Construct the ansatz operator eT̂ −T̂ †

by the reduced T̂ .
4. Convert the ansatz operator to the quantum circuit and prepare
the ansatz.
5. Perform VQE loop with the generated ansatz until the energy
converges or reaches the maximum number of iterations.

improve the accuracy but significantly elongate quantum
circuit depth [13,42]. The UCCSD ansatz with first-order
Trotterization is expressed as

|�(�θ )〉Trot =
∏
i,a

et̂a
i −t̂ a†

i

∏
i, j,a,b

et̂ab
i j −t̂ ab†

i j |�0〉. (5)

For this chemical-inspired ansatz, it is natural to utilize
the built-in information of the molecule to reduce the com-
putational cost. According to the point group, the symmetric
properties of the molecular wavefunction can be described
by the irreducible representation (irrep). The point-group
symmetry has been employed in classic quantum chemi-
cal calculations as a common practice. In CC theory, the
amplitude of the excitation operator will vanish unless the cor-
responding term preserves the totally symmetric irrep, which
has been shown by Čá et al. [31] and by Stanon et al. [32].
In UCC theory, however, the introduction of the deexcitation
operator t̂† prevents natural truncation and the operator terms
cannot be expressed with finite terms as it is in CC theory.
The previous conclusion in CC theory cannot directly apply
in UCC theory and it is not trivial whether the symmetry
constraint is still valid. We provide a detailed derivation in
Appendix B that the constraint still holds. In this sense, only
the excitation that belongs to the same irrep of the reference
state is valid in the UCC ansatz:

∀D(et̂−t̂† |�0〉) �= D(|�0〉) : et̂−t̂† = 1, (6)

where D is the irrep of the corresponding wavefunction.
The key step of our method is to compare the irrep of all the

possible excited states with the reference state. The wavefunc-
tion is expressed as the Slater determinant of a collection of
molecular orbitals, i.e., |�0〉 = |φ1φ1φ2φ2 · · · φnφn〉, where φ

is the occupied molecular spin orbital and the bar indicates the
different spin. The irrep of each molecular orbital can be de-
termined automatically after the Hartree-Fock calculation on
classic computers by most of quantum chemical packages like
PySCF [43,44]. Accordingly, the irrep of the excited state (and
operator) is determined from the direct product of the irrep of
the molecular spin orbitals by looking up the product table of
irreps, which needs no complex numerical computations.

The overallflow can be summarized in Algorithm 1 and
we term this the SymUCCSD method in the following of this
work.
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FIG. 1. Parameter reduction of BeH2 under various point groups.
The orientation of the symmetry elements changes the ratio of re-
duction slightly. The orange line is the hypothetical situation that the
number of configurations belonging to each irrep is equal.

III. NUMERICAL RESULTS

Using the symmetry-reduction method mentioned above,
we performed the symmetry-reduced UCCSD-VQE on sev-
eral testing systems, varying from 12 qubits for LiH to
28 qubits for C2H4. Specially, we simulated BeH2 under
various point-group symmetries to study the relationship be-
tween the order of the group and the reduction of parameters.
The flipping of ammonia, which involves the nonequilib-
rium geometry structures, was simulated as well. All the
VQE simulations are performed using the quantum simulator
MindQuantum [45]. The STO-3G basis set was employed
in all cases [46]. The fermion operators are transformed to
qubit-type operators by Jordan-Wigner transformation [47].
The gradient-based optimization method Broyden-Fletcher-
Goldfarb-Shanno (BFGS) is used to minimize the energy
expectation value generated by MindQuantum, of which the
convergence threshold is 10−6. All the geometric structures
are obtained from the computational chemistry comparison
and benchmark database (CCCBDB)-NIST Database [48].

A. BeH2: Under different point-group symmetries

A specific molecule belongs to different point groups, i.e.,
the point group with the highest symmetry and its subgroups.
Here we simulate BeH2 with various point groups assigned
to it to investigate the relationship between the order of the
group and the reduction of the ansatz. D2h is the highest-order
Abelian point group that BeH2 belongs to. Alternatively, the
subgroup of D2h, i.e., D2, C2h, C2v , C2, Cs, Ci, and C1, can also
been employed to reduce the ansatz in Sec. II. We display the
number of remaining parameters in Fig. 1, which is approxi-
mately proportional to the reciprocal of the order of the group,
1/h. The reference line of 1/h is also depicted.

The C1 group, which is composed of the identity operation
exclusively, has only the A irrep and means “no symme-
try.” Thus SymUCCSD here works exactly as the original
UCCSD-VQE calculation. The second-order groups Cs, Ci,
and C2 include an additional single reflection (mirror plane),

inversion (inversion center), or single rotation (rotation axis)
operation, respectively. Around half of the parameters are
filtered out when employing the second-order groups while
the orientation of symmetry elements will affect the efficiency
of the reduction. Similarly, the number of parameters is further
reduced when applying the fourth-order groups, C2v , C2h, and
D2, and the eighth-order group, D2h. The promotion in param-
eter reduction becomes small from the fourth-order groups to
the eighth-order group D2h.

In our method, only parameters belonging to the referenced
irrep would survive. The order of the group equals the number
of irreps, which explains the 1/h reduction ratio. The excited
terms may distribute unevenly in each irrep especially in small
systems. The uneven distribution problem will be improved
when it comes to larger systems as we will find below.

B. Simulations of small molecules

A variety of molecules, i.e., the hydrides containing the
second-row elements, are chosen as the testing cases for the
benchmark, including LiH, HF, H2O, BeH2, NH3, and CH4. In
SymUCCSD calculations, the highest possible Abelian point
group was chosen to simplify the ansatz. Among the test-
ing molecules, the ratio of the remaining parameters ranges
from 26% in BeH2 with D2h to 56% in NH3 with Cs. In
the worst case that we tested, around half of the parameters
are reduced as the lower bound for the symmetric molecular
systems, corresponding to half the size of the quantum circuit.
As shown in Table I, the energy calculated by SymUCCSD,
UCCSD, and coupled-cluster singles and doubles (CCSD)
results is compared to the reference energies computed by
the exact solution of full configuration interaction (FCI). The
errors are all less than 1.6 mhartree (chemical accuracy at
the level of STO-3G). Furthermore, the difference of com-
puted energy between UCCSD without parameter reduction
and SymUCCSD is even a few orders of magnitude smaller.
The worst case is no more than 0.005 mhartree, approach-
ing the threshold of computational convergence. The energy
difference between UCCSD and SymUCCSD are within the
convergence threshold, indicating that the method actually
filters out some redundant parameters without harm to the
accuracy.

Note that we also performed numerical simulations of
adaptive derivative-assembled pseudo-trotter ansatz varia-
tional quantum eigensolver (ADAPT-VQE) [20], as a com-
parison and combination with SymUCCSD on BeH2. The
results show that ADAPT-VQE can efficiently save measure-
ment cost by combining with SymUCCSD, and the operators
selected in ADAPT-VQE indeed satisfied the point-group-
symmetry constraint. For further details, we refer the reader
to Appendix D.

To evaluate the performance on real quantum computers,
we have compared SymUCCSD with conventional UCCSD
on H4 with depolarizing noise and limited measurement
shots. According to our numerical results in Appendix E,
SymUCCSD is more robust and accurate than UCCSD.

So removing the unfavored operators in the UCCSD ansatz
will not sacrifice the accuracy of the result, as supported
by Appendix B that the cluster operator should be totally
symmetric and not change the symmetry of the reference
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TABLE I. VQE simulations for small molecules. The simulation scale ranges from 12 to 18 qubits. The original parameters and the
parameters after reduction are shown in the fourth and fifth columns. The percentage of parameters used of the symmetry reduction ansatz
compared to the original UCCSD ansatz is shown in the sixth column. The energy differences compared with the FCI energy are shown from
seventh to ninth columns with units in hartree. The last column displays the energy difference between UCC and SymUCC. The equilibrium
geometric structures of these molecules are obtained from the CCCBDB-NIST Database [48].

Qubits Sym. Parameters before Parameters after % �ECCSD �EUCCSD �ESymUCCSD �EUCC−SymUCC

HF 12 C2v 20 11 55% 2.94 × 10−8 1.82 × 10−5 1.38 × 10−5 4.39 × 10−6

LiH 12 C2v 44 20 45% 1.05 × 10−5 1.10 × 10−5 1.09 × 10−5 1.08 × 10−7

H2O 14 C2v 65 26 40% 1.17 × 10−4 1.19 × 10−4 1.09 × 10−4 9.96 × 10−6

BeH2 14 D2h 90 23 26% 3.94 × 10−4 3.83 × 10−4 3.82 × 10−4 8.89 × 10−7

NH3 16 Cs 135 75 56% 2.14 × 10−4 1.94 × 10−4 1.86 × 10−4 8.44 × 10−6

CH4 18 D2 230 65 28% 2.30 × 10−4 2.06 × 10−4 1.96 × 10−4 9.94 × 10−6

wavefunction; otherwise the generated coupled-cluster wave-
function would not be the eigenvector of the Hamiltonian.

C. Ammonia flipping

The molecule in the nonequilibrium geometry is important
when studying the chemical reaction process which involves
bond breaking and conformations changes. To explore the
scenario of the nonequilibrium structures, we choose the am-
monia flipping process to demonstrate our algorithm. The
reaction coordination is computed using a Perdew-Burke-
Ernzerhof (PBE) density functional approximation [49] with
def2-TZVP [50] basis set in PySCF [43,44]. The energy pro-
files regarding FCI, CCSD, and SymUCCSD methods are
shown in Fig. 2. Concerning the flipping process, the Cs sym-
metry is kept so that the parameter reduction is the same as
that in Table I.

When referring to the FCI results, the error increases
when the structure turns from equilibrium to nonequilibrium
geometries and reaches the maximum at the flat struc-
ture (∠z-N-H = 90◦), 0.35 mhartree for CCSD and 0.33
mhartree for SymUCCSD. It agrees with our intuition that
in the nonequilibrium structure, the multireference properties
are not negligible anymore. FCI describes the multireference
properties well, while the truncated CCSD and UCCSD are
generally believed to be single-reference methods. The ener-
gies calculated by SymUCCSD are slightly lower than those
by CCSD. It is probably attributed to the introducing of the
deexcitation operator in the UCC ansatz.

D. C2H4: Large molecule simulation

Simulations with more qubits (indicating more orbitals in
the molecule) usually require more parameters and deeper
quantum circuits. If we can construct a more compact ansatz,
larger molecular simulations will become tractable under the
current quantum resource. To explore the boundary of our
method in the current simulator, we present a simulation on
a 28-qubit C2H4 molecule. As shown in Fig. 3, the calcula-
tion converges after 25 iterations and reaches the chemical
accuracy at the level of STO-3G around the 12th iteration.
The geometric structure of C2H4 belongs to the D2h point
group. The symmetry of the total wavefunction is Ag irrep.
Table II shows that there are 48 single excitations and 1176
double excitations distributing in various irreps. Only 18%
of the parameters belonging to Ag remain after the symmetry

reduction, which significantly shortens the depth of the circuit.
The greatly reduced number of parameters is an important
reason that makes such a simulation tractable with the current
quantum simulator.

IV. CONCLUSION

In this work, we have presented an algorithm to reduce
the number of operators needed in the UCCSD ansatz by

FIG. 2. The potential energy curve of the ammonia flipping.
(a) Potential energy surface calculated by FCI, CCSD, and the
symmetry-reduced UCCSD during ammonia flipping. (b) Energy de-
viation compared with FCI energy. The flipping process is described
by the angle of the z axis, N atom, and H atom. The unit of the error
is millihartree.
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FIG. 3. The convergence process of SymUCCSD for C2H4. The
green line denotes the energy deviation of SymUCCSD compared to
FCI energy vs iteration numbers. The orange line denotes the energy
deviation derived from CCSD vs FCI and the green line indicates
chemical at the level of STO-3G with reference to FCI results (0.0016
hartree).

employing point-group symmetry. The detailed derivation of
this method is given in Appendix B. After testing various
molecules in different point groups using this method imple-
mented in the MindQuantum simulator [45], we observed that
the reduction rate is approximately proportional to 1/h, where
h is the rank of the group. Molecules with higher symmetry
such as D2h could lead to a larger reduction of the number
of operators, meaning more compact quantum circuits. With
the help of this scheme, we successfully simulated a 28-qubit
C2H4 molecule in a reasonable computing resource. We note
that with a supercomputer we can simulate an even larger
molecular system. The importance of this large-scale simula-
tion also lies in that, at this level, the UCCSD ansatz is a good
ansatz with enough expressive power [51,52]. This also sheds
light on the further work in this direction to construct an even
shallower ansatz and simulate an even larger scale system.

In principle, point-group symmetry is valid and nonexclu-
sive for arbitrary molecular systems using the UCC ansatz.
It is proposed to be compatible with other methods based on
excitation operators to compress further the quantum circuit
depth, such as low-rank decomposition and low depth circuits
[6,53–56], (fermion or qubit) ADAPT-VQE, or k-UpCCGSD

TABLE II. The number of the excited configurations belonging
to each irrep for C2H4.

Irrep No. of excitations, T1 No. of excitations, T2

Ag 9 210
B1g 8 176
B2g 2 104
B3g 5 110
Au 2 104
B1u 3 114
B2u 11 182
B3u 8 176
Total 48 1176

[22]. It is proposed to be compatible with other methods
based on excitation operators to compress further the quan-
tum circuit depth, such as the energy sorting scheme [22],
(fermion or qubit) adapt VQE proposed in Refs. [20,57,58],
or k products of the exponential of pair unitary coupled-
cluster double-excitation operators together with generalized
single-excitation operators (k-UpCCGSD) [27]. Besides such
algorithms inspired by the problems to reduce the quantum
circuit depth, the quantum circuit compilation [59,60] is also
very important and inevitable to implement simulations of the
molecule with chemical interests on real quantum hardware,
such as superconducting or trapped-ion systems.

To further enable even larger scale or more realistic chem-
istry simulations [61], the current scheme may be incorporated
by treating the current method as a module and incorporating
it into the deep VQE method [62,63], the virtual quantum
subspace expansion method [64], the quantum hybrid tensor
network [65], and the quantum embedding methods [66–73].

With the advancement of the aforementioned algorithms
and the progress in quantum hardware, we anticipate a solid
step towards the simulation of realistic molecular systems on
the quantum computer soon.
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APPENDIX A: POINT GROUP

In this section we briefly introduce the relevant knowledge
of point groups. For a more detailed and systematic intro-
duction of point groups please refer to Refs. [74–76]. The
point group is a set of symmetry operations under which the
object is indistinguishable from the original geometry. In this
paper, we mainly refer the object as a molecule. The so-called
point group comes from the origin point being unchanged with
arbitrary symmetry operation since all the symmetry elements
intersect at it. The symmetry operations include reflection,
inversion, rotation, and identity operation, which correspond
to symmetry elements of mirror planes σ , inversion center i,
rotation axes Cn, and identities E , respectively. A molecule
belongs to a symmetry point group if it is unchanged under all
the symmetry operations of this group.

In application, the character table and the product table
are the essential and frequently used devices for the point
group. Figure 4 is a typical character table of the D2h group, in
which the rows are the irreducible group representations and
the columns are the conjugacy class of the symmetric opera-
tions. The table entries are the characters (trace of the matrix)
of the symmetric operations under the different irreducible
representations. Figure 5(a) is the product table of the D2h

group, which exhibits how the character changes under the
direct product of the representations. Since the characters of
the representation of a direct product are equal to the products
of the characters of the representations based on the individual
sets of functions, the product table of the point group can be
generated by the products of the characters.
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FIG. 4. The character table of the D2h group for BeH2.

Taking the direct product of B1g and B2g as an example,
the characters of B1g are 1, −1, −1, 1, 1, 1, −1, -1 and
those of B2g are 1, −1, 1, −1, 1, −1, 1, −1. The products
of the characters under each conjugacy class of the group
element are 1, 1, −1, −1, 1, −1, −1, 1, respectively, which
correspond to the characters of B3g irreducible representation.
So the direct product of B1g and B2g leads to B3g. Similarly, a
product table of the D2h group is constructed according to the
result of the direct product between two arbitrary irreps.

FIG. 5. The irrep of the D2h point group for a BeH2 molecule.
(a) The product table for the irreducible representations of the D2h

group. (b) The electron configuration diagram of BeH2 of the refer-
ence state, i.e., the Hartree-Fock state with irrep Ag. (c) An example
of coupled-cluster terms that correspond to a configuration with
different irrep B3g compares to the reference state. This term is a
single excitation concerning the reference term. (d) An example of
coupled-cluster terms that correspond to a configuration with the
same irrep Ag as the reference state. Note that it is conventional to
label the irrep of the molecular orbital in lower case like ag and the
irrep of the molecular state in upper case like Ag.

FIG. 6. The symmetry elements of BeH2 in the D2h point group.
Rotation axes C2, reflection mirrors σ , and inversion center i are
depicted in the figure.

Here we take BeH2 as an example to illustrate detailed
steps for our algorithm. The BeH2 structure belongs to the
D∞h group, which is non-Abelian. In this paper, we only
discuss the Abelian situation which is easy to handle. Here,
we take the D2h group, an Abelian subgroup of D∞h with the
highest rank, to reduce the parameters of BeH2. The Cartesian
coordinate system is set up with the origin at the Be atom and
the z axis along Be-H as shown in Fig. 6.

There are eight symmetry operations corresponding to the
same number of symmetry elements for BeH2 under the D2h

group. Three C2 rotation axes are along the x, y, and z axes,
and three mirrors are in the xy, yz, and zx planes which are
perpendicular with each other and intersect in a C2 rotation
axis. The rest of the symmetry elements are the inversion cen-
ter at the location of the Be atom and the identity. We display
molecular orbitals of BeH2 to illustrate how to understand
the spatial symmetry in it combining with the character table.
The isosurfaces of molecular orbitals are depicted in Fig. 7, in
which the blue surface represents the positive value, and the
red surface represents the negative one. The character in Fig. 4
indicates how the sign of the certain irreducible representation
changes under the particular symmetry operation. For the Ag

orbitals, the sign of the wavefunction is maintained under
arbitrary symmetry operation. Thus, all the characters are 1.
For the B1u orbitals like orbital 3 and orbital 7, the sign of the
wavefunction is kept after rotating along the z axis or reflected
by the xz and yz planes. But the sign changes after rotation by
x axis and y axis or reflection by xy plane. Thus, the characters

FIG. 7. The isosurface of the wavefunction of the molecular or-
bital. (Isovalue is 0.03 arbitrary units.)
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are −1 for i, C2(x), C2(y), and σ (xy) and +1 for the other
operations. The product table is then generated according to
the character table as shown in Fig. 5(a). Then it is possible to
get the irrep of the excited term. The key step is to determine
the irrep of the excited terms (or the excitation operators) and
retain only the appropriate items by referring to the product
table. The wavefunction of the reference state is expressed as
the Slater determinant of a collection of molecular orbitals,
i.e., |�0〉 = |φ1φ1φ2φ2 · · · φnφn〉, where φ is the occupied
molecular spin orbital and the bar indicates the different spin.
The irrep of the molecular state is determined from the direct
product of the molecular spin orbitals.

Again we go back to BeH2 in the D2h point group. In
Fig. 5(a) we provide a product table for the D2h group,
where the product relationship between two irreps in D2h

is given. Figures 5(b)–5(d) present three different electronic
configuration diagrams of BeH2. In Fig. 5(b) we present
the Hartree-Fock ground state, i.e., the reference state, in
which the three lowest orbitals with the irreps of ag, b1u,
and ag are doubly occupied. By referring to the product table
in Fig. 5(a), the irrep of the reference state is easily ob-
tained as (ag⊗ag)⊗(b1u⊗b1u)⊗(ag⊗ag) = ag⊗ag⊗ag = Ag.
Usually, the irrep of the molecular wavefunction is written
in uppercase to distinguish from the irrep of the molecular
orbitals. In our method, after determining the irrep of the
reference state, then all the possible single Slater-determinant
excited terms t̂ |�0〉 are traversed to check whether they
share the same irrep as the reference term. We present two
specific examples in Figs. 5(c) and 5(d). For the single exci-
tation term t̂4

3 |�0〉 in Fig. 5(c), one electron is excited from
the third orbital to the fourth orbital. Its corresponding ir-
rep is (ag⊗ag)⊗(ag⊗ag)⊗(b1u)⊗(b2u) = ag⊗ag⊗b1u⊗b2u =
B3g �= Ag, which is not expected, and the exciting operator
t̂4
3 should be excluded from constructing the cluster operator.

As shown in Fig. 5(d), both electrons at the third orbital are
excited to the fourth orbital. The irrep is similarly evaluated as
(ag⊗ag)⊗(b1u⊗b1u)⊗(b2u⊗b2u) = ag⊗ag⊗ag = Ag, which is
the same as the reference term. So the exciting operator t̂44

33
remains in constructing the cluster operator.

In total, there are 12 (3 × 4) single excited states and 78
double excited states for BeH2. Only 23 excitations share
the same irreducible representation Ag as the reference state.
Thus, only the certain 23 excitation operators are included
when constructing the ansatz in the following VQE steps.

APPENDIX B: VALIDATION OF THE POINT-GROUP
SYMMETRY REDUCTION IN UCC

Here we give a short derivation to validate the algorithm. In
the UCC theory, the wavefunction of a chemical system, |�〉,
is constructed from the reference wavefunction |�0〉, which is
usually a Hartree-Fock Slater determinant, by applying eT̂ −T̂ †

as

|�〉 = eT̂ −T̂ † |�0〉, (B1)

and the Schrödinger equation can be written as

Ĥ |�〉 = Eucc|�〉. (B2)

For ensuring |�〉 to be a solution of the Schrödinger equa-
tion, the cluster operator eT̂ −T̂ †

here is not arbitrary but has to

satisfy some conditions. In the following we will present how
to reduce the number of operators and terms in the unitary
coupled-cluster wavefunction |�〉. Note that the wavefunction
here refers to a solution of the Schrödinger equation instead of
a quantum state prepared on a quantum computer.

Here we have assumed that both |�0〉 and |�〉 are nonde-
generate states. For a symmetry operation R̂i belongs to an
Abelian point group G, and the Hamiltonian commutes with
it, Ĥ R̂i = R̂iĤ . Thus we have

Ĥ R̂i|�〉 = R̂iĤ |�〉 = EuccR̂i|�〉 = Eucc(R̂i|�〉). (B3)

It indicates that R̂i|�〉 is also the eigenstate of the Hamilto-
nian. So we come to

∃γ : R̂i|�〉 = γ |�〉, (B4)

where the value of γ is the irreducible character that can be
looked up from the character table of the corresponding point
group. The irreducible characters in the Abelian point group
are always 1 or −1.

In the following, we will show that |�0〉 and |�〉 belong to
the same irrep:

D(|�0〉) = D(|�〉), (B5)

where D is the irrep of the corresponding wavefunction.
By applying the symmetry operator to |�0〉 and |�〉, re-

spectively, we have

〈�0 | �〉 = 〈�0|R†R|�〉 = c0c1〈�0 | �〉. (B6)

We note that a reasonable solution |�〉 perturbed from |�0〉
should be overlapping with the Hartree-Fock determinant
|�0〉 [77]:

〈�0 | �〉 �= 0. (B7)

It indicates that

c0c = 1. (B8)

In an Abelian point group, the characters are either 1 or −1.
So we know

c0 = c. (B9)

It means that

∀R̂i ∈ G : R̂i|�0〉 = ci|�0〉, R̂i|�〉 = ci|�〉. (B10)

This concludes that each symmetry operation R̂i ∈ G act-
ing on |�〉 and |�0〉 will lead to the same character, and thus
they belong to the same irrep.

The cluster operator eT̂ −T̂ †
might be expanded by Taylor

expansion,

eT̂ −T̂ † = 1 + (T̂ − T̂ †) + 1

2!
(T̂ − T̂ †) + · · · . (B11)

Thus |�〉 can be written as the linear combination of Slater
determinants:

|�〉 = k(|�0〉 +
∑
i,a

ca
i |�a

i 〉 +
∑

i, j,a,b

cab
i j

∣∣�ab
i j

〉 + · · · ), (B12)

where k is the normalized coefficient and c is the summarized
coefficient of each excited term including connected and dis-
connected terms.
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As we have presented that the |�〉 and |�0〉 are of the same
irrep, so all the terms in the expansion are required to have
the same irrep as the reference wavefunction. If D(ca

i |�a
i 〉) �=

D(|�0〉), ca
i |�a

i 〉 must be zero.
It indicates that only the excitation and deexcitation opera-

tors, t̂ and t̂†, belonging to the corresponding irrep can survive.
Otherwise, the excited term |�k〉 belonging to another irrep
would appear in the expansion of |�〉. So in our algorithm,
we filter out the excitation (and the deexcitation) operators
belong to the different irreps:

∀D(t̂ |�0〉) �= D(|�0〉) : t̂ = 0. (B13)

Considering the ansatz after Trotterization, it can alternatively
be stated as

∀D(et̂−t̂† |�0〉) �= D(|�0〉) : et̂−t̂† = 1. (B14)

When applying this method, it is implicitly assumed that the
irrep of the Hartree-Fock reference state is of the correct irrep
of the true ground state. We will discuss how this assumption
might affect the application of the proposed algorithm. For
the simple closed-shell molecules like BeH2 (meaning there
is no unpaired electron), the ground state is necessarily of the
totally symmetric irrep, such as Ag in the D2h group, A1 in the
C2v group, and A′ in the Cs group. This conclusion applies to
most of the organic compounds and simple ionic compounds

including all the cases listed in this work [74]. However, when
it comes to molecules with unpaired electrons, the irrep of
the ground state cannot get determined directly. In such situ-
ations, the ground state evaluated by Hartree-Fock is a good
starting point and usually predicts the correct irrep of the true
ground state. For more complex cases where a single Slater
determinant is not a good approximation, multiple attempts
of the Hartree-Fock ground state and low-lying excited states
may be needed for reaching the true ground state, as what has
been done in conventional quantum chemical calculations.

APPENDIX C: PARAMETERS COUNTING
AND REDUCTION

The wavefunction |�〉 constructed from the UCCSD ansatz
|�〉 = eT̂ −T̂ † |�0〉 is actually implemented by fermion-spin
transformations (such as Jordan-Wigner transformation and
Bravyi-Kitaev transformation) and first-order Trotterization.
After that, the quantum circuit can be treated as the product
of a series of time evolution of Pauli strings like U (�θ ) =
eiθ1P̂1 eiθ2P̂2 eiθ3P̂3 · · · , where P̂i are Pauli strings.

For example, if the variational parameter θ is real, after
Jordan-Wigner transformation, the single excitation operators
become

t̂ a
i − t̂ a†

i = θa
i (a†

aai − a†
i aa)

= θa
i

4

[(
σ x

a − iσ y
a

)( − σ x
i + iσ y

i

) − (
σ x

i − iσ y
i

)( − σ x
a + iσ y

a

)]( a−1⊗
k=i+1

σ z
k

)

= i
θa

i

2

(
σ y

a σ x
i − σ x

a σ
y
i

)( a−1⊗
k=i+1

σ z
k

)
, (C1)

[σ y
a σ x

i , σ x
mσ

y
n ] = 0 if m �= a, n �= i. After first-order Trotterization, the unitary operators may looks like ei

θa
i
2 σ

y
a σ z

k ··· σ x
i , ei

θa
i
2 σ x

a σ z
k ··· σ

y
i ,

etc. Similarly, the double excitation operators will become

t̂ ab
i j − t̂ ab†

i j = θab
i j (a†

aa†
baia j − a†

j a
†
i abaa)

= θab
i j

16

[(
σ x

a − iσ y
a

)(
σ x

b + iσ y
b

)(
σ x

i + iσ y
i

)( − σ x
j + iσ y

j

) − (
σ x

a + iσ y
a

)( − σ x
b + iσ y

b

)(
σ x

i − iσ y
i

)(
σ x

j + iσ y
j

)]

×
(

i−1⊗
k=m+1

σ z
k

)(
j−1⊗

p=n+1

σ z
p

)

= θab
i j

8

(
iσ y

a σ x
b σ x

i σ x
j − iσ x

a σ
y
b σ x

i σ x
j − iσ x

a σ x
b σ

y
i σ x

j + iσ x
a σ x

b σ x
i σ

y
j − iσ y

a σ
y
b σ

y
i σ x

j + iσ y
a σ

y
b σ x

i σ
y
j

+ iσ y
a σ x

b σ
y
i σ

y
j − iσ x

a σ
y
b σ

y
i σ

y
j

)( i−1⊗
k=m+1

σ z
k

)(
j−1⊗

p=n+1

σ z
p

)
, (C2)

and there will be a similar time evolution of Pauli strings after Trotterization.
To realize the time evolution of Pauli strings, for instance, the operator eiθσ z

1 σ z
2 σ z

3 σ z
4 may be decomposed into single-qubit

rotation gates and a two-qubit controlled-NOT (CNOT) gate [78] as

(C3)
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FIG. 8. The number of parameters for a series of molecules be-
fore and after the reduction by point-group symmetry. We observed
that the ratio of the necessary parameters decreases slightly as the
size of the system increases, ranging from 25.6% of BeH2, to 20.3%
of C2H2, and to 17.9% of C2H4, all of which are of the same D2h

symmetry, indicating better efficiency for larger molecules.

Other operators may be decomposed to similar circuits other
than some single rotations. According to the point-group con-
straint, the symmetry-forbidden et̂−t̂†

will be eliminated and
the corresponding Pauli strings in the quantum circuit will
disappear, leading to significant reduction in the circuit depth.

In this work, we use the number of parameters (equal
to the number of excitation operators) to measure the com-
pactness of the ansatz. Considering a restricted closed-shell
molecule with n occupied spatial orbitals and m virtual spatial
orbitals, the number of parameters is counted in the following
principles:

(1) For the single excitation, the number of possible exci-
tation operators is m × n.

(2) For the double excitation, the number of possible ex-
citation operators is computed by the pair excitation t̂ aa

ii with
m × n terms plus the direct product of the two different single
excitations with C2

mn = m × n(m × n − 1)/2 terms.
We apply this method to a series of molecules (without fur-

ther VQE steps) and compare parameter numbers in the ansatz
before and after symmetry reduction in Fig. 8. The number
of the parameters grows much slower after filtering out the

symmetry-forbidden terms, indicating a shallower quantum
circuit and a smaller need for computational resources.

APPENDIX D: SYMUCCSD COMPARED AND COMBINED
WITH ADAPT-VQE

The point group employed in SymUCCSD can compare
and combine with an adaptive-type ansatz. One of the famous
adaptive variational quantum eigensolvers is ADAPT-VQE
proposed in Ref. [20]. ADAPT-VQE screens operators from
a predefined pool to construct the circuit of ansatz, and the
operator that will result in a larger gradient to the energy
would be chosen. In ADAPT-VQE, the operator pool is com-
posed of a set of spin-adapted single and double excitation
operators. The screening step is terminated when the aver-
age gradient of the operators is smaller than the predefined
threshold ε.

In this section, we present the results of ADAPT-VQE [20]
as both comparison of and in combination with SymUCCSD.
The calculations are performed using the MindQuantum sim-
ulator [45] with STO-3G basis set [46], and the ε is set
to 10−2.

As shown in Table III, we have performed a series
of ADAPT-VQE calculations with different initial operator
pools. First, as a comparison in the second and seventh rows
of Table III, we observe that SymUCCSD reaches similar
accuracy with slightly more parameters (23 parameters com-
pared to 18 parameters), when compared with ADAPT-VQE.
However, SymUCCSD does not need to evaluate the gradient
of each operator on quantum computers, the evaluation of
which will be extra measurement overhead on real quantum
devices.

Besides, we also try to combine SymUCCSD with the
ADAPT-VQE method. As shown in the second row of Ta-
ble III, we initialize the operator pool of ADAPT-VQE based
on the point-group symmetry. The number of operators is
reduced from 90 to 23 as what has been done in SymUCCSD.
By taking this reduced initial operator pool, the number of
final operators and energy are the same as those using the
default full operator pool.

To get more insights from ADAPT-VQE and point-group
symmetry, we further carried out two ADAPT-VQE calcu-
lations as shown in Table III, rows 4 and 7. Both of the
calculations fail with the these initial operator pools. For

TABLE III. Numerical simulations of ADAPT-VQE (ε = 0.01) and SymUCCSD methods. The size of the initial and final operator pool
is listed in the first and second columns. The energy with respect to FCI energy is given in the fourth column. The Hartree-Fock, CCSD, and
FCI energies calculated using the PySCF [43,44] package and SymUCCSD energy are calculated using the method as mentioned in the paper.

Method Initial operators Final operators Energy/hartree �E/mhartree

ADAPT-VQE 90 (Origin) 18 −15.5948 0.4
ADAPT-VQE 23 (Same irrep) 18 −15.5948 0.4
ADAPT-VQE 23 (Random) 5 −15.5608 34.4
ADAPT-VQE 67 (Different irrep) 0 −15.5603 34.9

UCCSD 90 90 −15.5948 0.4
SymUCCSD 23 23 −15.5948 0.4
Hartree-Fock −15.5603 34.9
CCSD −15.5948 0.4
FCI −15.5952 0
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FIG. 9. The numerical simulation of an H4 molecule with uncer-
tainties. (a) The energy vs the number of shots without introducing
noise model. (b) The difference between energies calculated by
SymUCCSD and UCCSD ansatzes. (c) The energy vs the depolar-
ization probability. The depolarizing noise model provided by QISKIT

[79] is used. The quantum error mitigation (QEM) is performed
using zero-noise extrapolation based on a linear fit implemented with
the MITIQ [80] package. The magnitude of the standard deviation is
tens of millihartree, which makes the error bar look narrow due to
the large scaling of the y axis. (d) The difference between energies
calculated by SymUCCSD and UCCSD ansatzes.

the initial operator pools with 23 randomly selected operators,
the algorithm only chooses 5 operators in the final, and the
final energy is far from the energy calculated from FCI or
CCSD. While for the initial operator pool with 67 operators,
none of the operators survives in the ADAPT-VQE process
and the Hartree-Fock level energy is obtained. These results
indicate that the valid operators in ADAPT-VQE indeed con-
serve the point-group symmetry.

In summary, the point-group symmetry reduction in
SymUCCSD not only efficiently saves computational

resources on its own, but it is also compatible with other
methods such as ADAPT-VQE to further reduce quantum
resource requirements (here meaning extra quantum measure-
ment overhead).

APPENDIX E: NUMERICAL SIMULATIONS WITH NOISE
AND MEASUREMENT SHOTS

To assess the performance of the SymUCCSD on a real
quantum device, we evaluate the influence introduced by im-
perfect device noise and number of measurement shots. We
compare SymUCCSD and UCCSD ansatzes for an eight-qubit
system of an H4 chain with equal space (r = 1 Å) using the
STO-3G basis set [46] and carry out the numerical simulation
using the Qiskit toolkit with QASM simulator with and with-
out noise models [79].

In Fig. 9(a), we show the VQE energy without any noise.
The energy decreases as the number of shots increases. We
observed that the energy of SymUCCSD converges faster and
has smaller fluctuation than that of UCCSD with the increas-
ing of measurement shots. This relative fluctuation in UCCSD
is mainly because of the very small part of the computational-
basis state out of the desired irrep. The energy differences
between SymUCCSD and UCCSD reach ∼1 millihartree at
the large number of shots 220, as shown in Fig. 9(b).

In Figs. 9(c) and 9(d), we consider the effect of noise by
introducing the depolarizing noise model. The quantum error
mitigation (QEM) is performed using zero-noise extrapolation
based on a linear fit implemented by the MITIQ package [80].
We observed the SymUCCSD ansatz is more robust to noise
(particularly in the range of 10−2 to 10−3, which is the current
state of the art for real quantum devices) in situations both
with and without error mitigation, respectively, which is un-
derstandable since SymUCCSD has much shallower circuits.

In a word, with the help of the point-group symmetry re-
duction, we can construct a more compact ansatz SymUCCSD
with less parameters. It may not only reduce the computa-
tional cost but also provide better accuracy on real quantum
devices.
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