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Quantum cost of dense coding and teleportation
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Quantum cost is a key ingredient in evaluating the quality of quantum protocols from a practical viewpoint.
We show that the quantum cost of a d-dimensional dense coding protocol is equal to d + 3 when transmitting
the classical message (0,0) and d + 4 when transmitting another classical message. It appears as linear growth
with the dimension and thus makes sense for implementation. In contrast, the quantum cost of high-dimensional
teleportation protocols is equal to 13, which is the maximum value of the cost for the two-dimensional case.
As an application, we establish the relation between the quantum cost and fidelity of dense coding protocols in
terms of four typical noise scenarios.
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I. INTRODUCTION

In recent decades, quantum communication has been a
prominent application of quantum mechanics. Dense coding
was first proposed by Bennett et al. [1]. It is a fascinating
method to transmit two bits of classical information using
quantum resource like entanglement. One year later, quantum
teleportation [2] was proposed to realize reliable transmission
of an unknown state. Recently, several applications of quan-
tum communication such as secure quantum key distribution
[3,4] have been successfully deployed. Teleportation of pho-
tonic qubits over long distances of up to 1400 km through an
uplink channel has been reported [5]. A demonstration of tele-
portation from photons to the vibrations of nanomechanical
resonators has been proposed [6,7]. Superdense teleportation
has been implemented by photon pairs to communicate a
specific class of single-photon ququarts with an average fi-
delity of 87.0% [8]. The probabilistic implementation of a
nonlocal operation using a nonmaximally entangled state has
been developed [9]. In addition to the practical application,
quantum teleportation provides a new perspective to redesign
the classical communication system model [10]. Dense cod-
ing and teleportation are generalized with quantum states in
high-dimensional Hilbert space [11,12], as the qudit states
with higher robustness to noise improve the channel capacity
and the information security. The relation between quantum
error-correcting codes in heterogeneous systems and quantum
information masking is indicated [13]. A scheme for telepor-
tation of arbitrarily high-dimensional photonic quantum states
has been proposed, and the averaged fidelity is calculated to be
75% in current experiments [14]. Since the high-dimensional
unitary operations are more difficult to implement in physical
experiments, it is necessary to measure the implementation
cost of quantum protocols by calculating the quantum cost.
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The quantum cost of an arbitrary gate was first introduced by
Barenco et al. [15]. Generally, the quantum cost of a circuit
is the sum of the cost of each gate used in designing the
circuit. The higher the quantum cost, the more complex the
execution of the circuit. Quantum cost is a common figure of
merit to evaluate and compare different circuits. It is the key
to evaluating the quality of protocols both theoretically and
experimentally. Since the quantum cost was first proposed,
efforts have been made to calculate the cost of unitary gates
and quantum circuits. A procedure has been presented to
optimize distributed quantum circuits in terms of teleportation
cost for a predetermined partitioning [16]. An efficient method
has been proposed to reduce the number of teleportation re-
quirements based on the commuting of quantum gates [17].
In a recent work, the quantum cost of teleporting a single
qubit message among six different entangled channels was
calculated and compared [18]. However, the situation may
become more complex when we consider the quantum cost
of higher-dimensional teleportation protocols.

In this paper we analyze the quantum cost of d-dimensional
dense coding and teleportation protocols. We obtain that the
quantum cost of the d-dimensional dense coding protocol
is equal to d + 3 when transmitting the classical message
(0,0) and d + 4 when transmitting another classical message.
As for the teleportation protocol, we generalize the two-
dimensional Pauli X gate to d-dimensional gates, which are
implemented on the controlled qudits to recover the infor-
mation. By adding these appropriate gates on the circuits,
we obtain that the quantum cost of all high-dimensional
teleportation protocols is equal to 13, which is the max-
imum value of the quantum cost for the two-dimensional
case. The quantum protocol will finally need hardware to
realize. The implementation cost of a quantum circuit in-
creases with its quantum cost. Our results show that the
physical implementation cost of the high-dimensional dense
coding protocol grows linearly with the dimension. As
an application of the quantum cost, we show that the fi-
delities of dense coding decrease with the increase of its
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quantum cost. Since the quantum cost of d-dimensional
teleportation remains 13 for any d � 3, our results show
that the demand for a practical device to implement high-
dimensional teleportation remains the same, without regard
to the implementation cost for each gate influenced by the
dimension.

Dense coding and teleportation protocols have been ex-
tended via multipartite entangled states, such as Greenberger-
Horne-Zeilinger states [19,20], W states [21], cluster states
[22], and genuine multiparticle entangled states [23]. An
explicit scheme has been designed for the teleportation of
an n-qubit quantum state. Its experimental realization is
performed using a five-qubit superconductivity-based IBM
quantum computer with high fidelity [24]. A scheme of 1 → 2
optimal universal asymmetric quantum telecloning for pure
multiqubit states is proposed [25]. Since the multipartite en-
tangled states can be regarded as bipartite states, our study
of bipartite high-dimensional dense coding and teleportation
influences the multipartite case.

The rest of this paper is organized as follows. In Sec. II
we introduce some basic concepts and list the basic gates
used in this paper. Based on those, we decompose the
nonbasic gates into basic gates and calculate the quan-
tum cost of each gate. In Secs. III and IV we analyze
the quantum cost of high-dimensional dense coding and
teleportation protocols, respectively. We show the applica-
tion of quantum cost in Sec. V. We show the quantum
cost in experiment in Sec. VI. Finally, we summarize in
Sec. VII.

II. PRELIMINARIES

In this section we review some basic concepts, decom-
pose the nonbasic gates, and calculate their quantum cost.
In Sec. II A we introduce the concept of quantum cost and
its computation. In Sec. II B we show the basic gates used
in this paper. In Sec. II C we show the decomposition of
nonbasic gates, from which we obtain the quantum cost
of each gate used in the dense coding and teleportation
protocols.

A. Quantum cost

The quantum cost of a circuit is obtained by adding up
the cost of each gate in the circuit. An arbitrary gate can be
decomposed into several basic gates and the cost of basic
gates is considered to be a unit cost, regardless of their internal
structure. That is to say, we consider that the cost of a basic
gate is 1. If a gate can be decomposed into n basic gates, then
the quantum cost of the gate is equal to n. When we refer to
the quantum cost of a protocol, we mean the quantum cost
of the corresponding circuit. Mohammadi and Eshghi [26]
have proposed two prescriptions for the calculation of quan-
tum cost.

(i) Implement a circuit using only the quantum primitive
gates and count them.

(ii) Synthesize a circuit using the gates whose quantum
cost is specified. Add up the quantum cost of each gate in the
circuit to obtain the total quantum cost of the circuit.

In this paper we follow prescription (ii). We consider a
gate primitive if it maps decomposable states to decomposable
states. This means that the primitive gate cannot generate
entanglement. Obviously, some gates used in the dense coding
and teleportation protocols should have the ability to generate
entanglement and hence they are not primitive, for example,
the CNOT gate. In addition, some gates used in the two pro-
tocols can be prepared by the gates whose quantum cost is
specified.

B. Basic gate

Barenco et al. considered all single-qubit gates and the
CNOT gate as the basic gates in the two-dimensional case and
showed that we can realize the controlled operations by at
most six basic gates [15]. They showed that the CNOT gate
along with single-qubit gates may be assembled to do any
quantum computation. The basic qubit gate can be extended
to the basic qudit gate. Brylinski and Brylinski [27] proposed
that the collection of all one-qudit gates together with a two-
qudit imprimitive gate is universal, i.e., every n-qudit gate can
be approximated with arbitrary accuracy by this collection
of gates. Hence, all the single-qudit gates and the two-qudit
imprimitive gate are the basic gates in the d-dimensional
case.

In this paper we consider the single-qudit unitary gates, i.e.,
Hd , H†

d , Umn,d , and Pk,d , and the two-qudit imprimitive CNOT

gate as the basic gates. That is to say, the two-qudit gates
should be decomposed with the help of the CNOT gate. The
expressions of the two-dimensional basic gates are shown in
Sec. II B 1 and those of the d-dimensional basic gates are
given in Sec. II B 2.

1. Two-dimensional basic gates

We list some two-dimensional basic gates used in this
paper: the two-dimensional Hadamard gate

H2 = 1√
2

[
1 1
1 −1

]
, (1)

the CNOT gate.

UCNOT,2 = |0, 0〉〈0, 0| + |0, 1〉〈0, 1| + |1, 1〉〈1, 0|
+ |1, 0〉〈1, 1|, (2)

and the Pauli X , Y , and Z matrices

σX =
[

0 1
1 0

]
, σY =

[
0 −i
i 0

]
, σZ =

[
1 0
0 −1

]
. (3)

The quantum cost of these two-dimensional basic gates is
equal to 1.

2. The d-dimensional basic gates d > 2

We show the d-dimensional basic gates which can be con-
sidered as the generalization of two-dimensional basic gates.

We set ω = e2π i/d . The d-dimensional Hadamard gate is

Hd = 1√
d

d−1∑
x,y=0

ωxy|x〉〈y|. (4)
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When d = 2, we have Hd = H2. The quantum cost of the Hd

gate is equal to 1.
The H†

d gate is used to recover the message in a dense
coding protocol. The expression of this gate is

H†
d = 1√

d

d−1∑
x,y=0

ωx(d−y)|x〉〈y|. (5)

It is a single-qudit basic gate and its quantum cost is equal
to 1.

The Umn,d gates are used to implement the operation corre-
sponding to the classical message to be transmitted in a dense
coding protocol. This kind of gate is expressed as

Umn,d =
d−1∑
u=0

ωmu|u〉〈n ⊕ u|, (6)

where m, n = 0, 1, . . . , d − 1 and ⊕ denotes sum modulo d .
The following Pk,d gates play an important role in the

quantum teleportation protocol:

Pk,d =
d−1∑
s=0

|s〉〈k ⊕ (d − s)|. (7)

The quantum cost of Pk,d gates is equal to 1. Note that when
d = 2, we have P0,2 = I and P1,2 = σX . So they are the gener-
alization of two-dimensional basic gate.

The CNOT gate performs the transformation |a, b〉 →
|a, a ⊕ b〉. The expression of this gate is

UCNOT,d =
d−1∑

x,y=0

|x, y ⊕ x〉〈x, y|. (8)

When d = 2, we have UCNOT,d = UCNOT,2. The quantum cost of
the CNOT gate is equal to 1.

We show its function on the controlled qudit, which will
be used later. If the controlled qudit is |k〉, then the CNOT gate
performs the operation Xk,d on the controlled qudit

Xk,d | j〉 = | j ⊕ k〉, (9)

where

Xk,d =
d−1∑
s=0

|s ⊕ k〉〈s|. (10)

C. Some gates prepared by the basic gates

We prepare the controlled-Z and CNOT† gates by the basic
gates and show their quantum cost. They are used in the dense
coding and teleportation protocols later.

The controlled-Z gate is a two-qudit gate. It can be pre-
pared with the help of a CNOT gate and two Hadamard gates,
i.e.,

UCZ,d = (I ⊗ Hd )UCNOT,d (I ⊗ Hd ). (11)

The gate can be decomposed into three basic gates. The quan-
tum cost of it is equal to 3.

FIG. 1. Protocol for the d-dimensional dense coding. The two
left gates are used to prepare Bell states |φ1〉 with the qudit |0, 0〉.
The gates to the right of the dashed line are used by Bob to recover
the message.

If the controlled qudit is |k〉, then the controlled-Z gate
performs the operation Zk,d on the controlled qudit, where

Zk,d = Hd Xk,d Hd (k = 0, 1, . . . , d − 1). (12)

We can verify that

Zk,d =
d−1∑
j=0

ωk j | j〉〈d − j|.

When d = 2, we have Z0,2 = I2 and Z1,2 = σZ . The two-
qudit controlled-Z gate is the generalization of the two-qubit
controlled-Z gate.

The CNOT† gate is used to recover the message in dense
coding. It is used to implement the operation |a, b〉 → |a, b ⊕
(d − 1)a〉. For all the two-qudit gates, the only basic gate is
the CNOT gate. Hence, the CNOT† gate should be decomposed
with the help of the CNOT gate. We can obtain that it can be
prepared by d − 1 CNOT gates, i.e.,

U †
CNOT,d =

d−1∑
x,y=0

|x, y ⊕ (d − 1)x〉〈x, y| = (UCNOT,d )d−1. (13)

The quantum cost of the CNOT† gate is equal to d − 1.

III. QUANTUM COST OF DENSE CODING

In this section we show the quantum cost of the high-
dimensional dense coding protocol. Suppose Alice and Bob
share the d-dimensional Bell channel |φ1〉 = 1√

d

∑d−1
k=0 |k, k〉.

The first qudit belongs to Alice and the second one belongs
to Bob. Alice wants to send two dits of a classical message to
Bob. The protocol is shown in Fig. 1.

The two-dit classical message may be one of the elements
in the set {(0, 0), (0, 1), . . . , (d − 1, d − 1)}. If Alice wants to
send the classical message (m, n) to Bob, the Umn,d gate im-
plements appropriate operations on her qudit. The operation
of the gate on |φ1〉 is

(Umn,d ⊗ I )|φ1〉 =
(

d−1∑
u=0

ωmu|u〉〈n ⊕ u|
)

⊗ I )|φ1〉

= |φmd+n+1〉, (14)

where m, n = 0, 1, . . . , d − 1. The classical message and cor-
responding operation are shown in Table I in detail.
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TABLE I. Classical message and corresponding operation implemented by the Umn,d gate on the channel |φ1〉. The last column contains
the quantum cost of the d-dimensional dense coding protocol, d � 3.

Classical message (Umn,d ⊗ I )|φ1〉 Quantum cost

(0,0) |φ1〉 = 1√
d

(|0, 0〉 + |1, 1〉 + · · · + |d − 1, d − 1〉) d + 3
(0,1) |φ2〉 = 1√

d
(|0, 1〉 + |1, 2〉 + · · · + |d − 1, 0〉) d + 4

...
...

...

(0, d − 1) |φd 〉 = 1√
d

(|0, d − 1〉 + |1, 0〉 + · · · + |d − 1, d − 2〉) d + 4
...

...
...

(d − 1, 0) |φd2−d+1〉 = 1√
d

(|0, 0〉 + ωd−1|1, 1〉 + · · · + ω|d − 1, d − 1〉) d + 4
(d − 1, 1) |φd2−d+2〉 = 1√

d
(|0, 1〉 + ωd−1|1, 2〉 + · · · + ω|d − 1, 0〉) d + 4

...
...

...

(d − 1, d − 1) |φd2 〉 = 1√
d

(|0, d − 1〉 + ωd−1|1, 0〉 + · · · + ω|d − 1, d − 2〉) d + 4

Then Alice transmits her qudit to Bob. Bob tries to recover
the message by two gates H†

d and CNOT†. We can verify that

(H†
d ⊗ I )U †

CNOT,d |φmd+n+1〉 = |m, n〉. (15)

Finally, Bob performs the measurement on his qudits and
obtains the classical message. The quantum cost of the final
measurement is equal to 1.

Now we show the quantum cost of the protocol in Fig. 1.
The key is to analyze the quantum cost of the Umn,d gate.
When d = 2, we have H†

2 = H2 and CNOT
†
2 = CNOT2. Alice

sends one of the classical messages from (0,0),(0,1),(1,0),(1,1)
to Bob. When Alice sends the classical message (m, n) to Bob,
the quantum cost of the dense coding protocol (Dmn,2) is

Dmn,2 = D(H2) + D(Umn,2) + D(CNOT2) + D(M )

= 2 × 1 + DC(Umn,2) + 2 × 1 + 1

= D(Umn,2) + 5, (16)

where D(X ) is the total quantum cost of all the X gates used
in this dense coding protocol and D(M ) = 1 is the cost of
the final measurement. Based on the corresponding gate Umn,2

shown in Table II, we have

D(U00,2) = 0, D(U01,2) = 1, D(U10,2) = 1, D(U11,2) = 1.

(17)

We now obtain the quantum cost of the two-dimensional
protocol (shown in Table II). We consider the case d > 2 for
any d . In Fig. 1 we see that the Hd , CNOT, Umn,d , CNOT†,
and H†

d gates are used once in the protocol. In Sec. II B 2
we have shown that D(CNOT

†
d ) = d − 1. When Alice wants to

send classical message (m, n) to Bob, the quantum cost of the

d-dimensional protocol is

Dmn,d = D(Hd ) + D(CNOTd ) + D(Umn,d ) + D(CNOT
†
d )

+ D(H†
d ) + D(M )

= 1 + 1 + D(Umn,d ) + (d − 1) + 1 + 1

= D(Umn,d ) + d + 3, (18)

where m, n = 0, 1, . . . , d − 1. Note that U00,d = I and
Umn,d �= I for m �= 0 or n �= 0. We have

D(Umn,d ) =
{

0 if m, n = 0
1 otherwise. (19)

Hence, for any d � 2, we have

Dmn,d =
{

d + 3 if m, n = 0,

d + 4 otherwise. (20)

The quantum cost of dense coding appears to grow linearly
with the dimension d . Thus the physical implementation cost
of dense coding increases with the dimension. Further, the
fidelity of this protocol is related to its cost, which will be
analyzed in Sec. V.

The Hd , CNOT, Umn,d , and H†
d gates are the basic gates used

in this protocol. The nonbasic gate CNOT† is prepared by d − 1
CNOT gates. Hence, four kinds of basic gates are used in the
circuit for the dense coding protocol.

IV. QUANTUM COST OF TELEPORTATION

In this section we show the quantum cost of d-
dimensional teleportation protocol. The single-qudit quantum
message is written as |Md〉 = ∑d−1

j=0 α j | j〉, where α j ∈ C

and
∑d−1

j=0 |α j |2 = 1. Alice and Bob share the maximally

TABLE II. Classical message and corresponding operation implemented by the Umn,2 gate on the channel |ϕ1〉. The last two columns
contain the quantum cost and the number of sorts of gates used in the quantum circuit for the two-dimensional case.

Classical message Operation Umn,2 (Umn,2 ⊗ I )|ϕ1〉 Quantum cost Sorts of basic gates

(0,0) U00,2 = I |ϕ1〉 = 1√
2
(|0, 0〉 + |1, 1〉) 5 2

(0,1) U01,2 = σX |ϕ2〉 = 1√
2
(|0, 1〉 + |1, 0〉) 6 3

(1,0) U10,2 = σZ |ϕ3〉 = 1√
2
(|0, 0〉 − |1, 1〉) 6 3

(1,1) U11,2 = iσY |ϕ4〉 = 1√
2
(|0, 1〉 − |1, 0〉) 6 3
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FIG. 2. Teleportation protocol via the d-dimensional Bell state
|φ1〉 = 1√

d

∑d−1
k=1 |k, k〉. The unitary gates to recover the message are

shown to the right of the dashed line. Three kinds of basic gates are
used in the circuit: Hd , CNOT, and P0,d .

entangled state |φ1〉 = 1√
d

∑d−1
k=0 |k, k〉 as the channel. So they

are in the state

|ξd〉 = |Md〉 ⊗ |φ1〉 =
[

d−1∑
j=0

α j | j〉1

]
⊗

[
1√
d

d−1∑
k=0

|k, k〉2,3

]
.

(21)

Qudits 1 and 2 of the combined state belong to Alice and qudit
3 belongs to Bob. Alice and Bob implement the operations on
their qudits. The final state is shown as follows:

(Hd ⊗ I ⊗ I )(UCNOT,d ⊗ I )|ξd〉

=
d−1∑

m,n=0

|m, n〉1,2

d

[
d−1∑
j=0

α jω
m j |n ⊕ (d − j)〉3

]
. (22)

Based on the state given in (22), we obtain that when
Alice’s measurement is |m, n〉, Bob should apply the local
unitary operation U (0,0)

mn = Zd−mXd−n to his qudit, where

U (0,0)
m,n =

d−1∑
s=0

ωms|d − s〉〈s ⊕ n|. (23)

Finally, Bob performs the measurement and completes the
teleportation process. The quantum cost of the final measure-
ment is equal to 1.

We analyze the quantum cost of the teleportation protocol
via the channel |φ1〉. In Fig. 2 we show that two Hd gates,
three CNOT gates, four P0,d gates, and one controlled-Z gate
are used in this protocol. In Sec. II B we have shown that
the quantum cost of the Hd , CNOT, and P0,d gates is equal
to 1 and the cost of the controlled-Z gate is equal to 3. We
add up the quantum cost of each gate and the final mea-
surement and obtain the quantum cost of the d-dimensional
protocol

Td = T (Hd ) + T (CNOTd ) + T (P0,d ) + T (CNOTd ) + T (M )

= 2 × 1 + 3 × 1 + 4 × 1 + 1 × 3 + 1 = 13, (24)

where T (X ) is the total quantum cost of the X gate used in this
protocol and T (M ) = 1 is the cost of the final measurement.
Three sorts of basic gates (Hd , P0,d , and CNOT) are used in the
teleportation protocol.

Next we analyze the quantum cost of the teleportation pro-
tocol via other d-dimensional Bell channels. In the quantum

FIG. 3. Teleportation protocol via the d-dimensional Bell state
|φd 〉. The unitary gates to recover the message are shown to the right
of the dashed line. Four kinds of basic gates are used in the circuit:
Hd , CNOT, P0,d , and P1,d .

circuit shown in Fig. 2 we have |a〉, |b〉 ∈ {|0〉, |1〉, . . . , |d −
1〉}. Choosing all combinations of |a〉 and |b〉, we obtain d2

kinds of Bell channels,

|φad+b+1〉 = 1√
d

d−1∑
x=0

ωxa|x, b ⊕ x〉. (25)

Via the channel |φad+b+1〉, when Alice’s measurement result
is |m, n〉, the corresponding operations that Bob should apply
are

U (a,b)
m,n = Za⊕(d−m)X(d−b)⊕(d−n), (26)

which are shown in Table III in detail. Hence, the gates imple-
mented on the first and second qudits are Pa,d and Pd⊕(d−b),d .
They transform the controlled qudit of controlled-Z and CNOT

gates into appropriate values, respectively. The type of gates
Pk,d is the only difference between the teleportation protocols
via different channels. The numbers of gates Pk,d in quantum
circuits via different Bell channels are all equal to 4. For
example, comparing Figs. 2 and 3, we see that the difference
between the teleportation protocols via |φ1〉 and |φd〉 is the
type of gates the Pk,d gates implement on the controlled qudit
of the CNOT gate. The quantum cost of the teleportation proto-
col via all the Bell channels |φu〉 (u = 1, 2, . . . , d2) is equal to
13. This shows that the quantum cost of teleportation remains
13, which is the maximum value of the teleportation cost for
the two-dimensional case. The demand for a practical device
to implement teleportation in high-dimensional space remains
the same, without regard to the increase of implementation
cost for each gate. One or two kinds of Pk,d , Hd , and CNOT

gates are used in the circuit. Hence, three or four kinds of
basic gates are used in the teleportation protocol via all the
Bell channels.

When d = 2, the quantum cost is different from the case
d > 2, as we have P0,2 = I2, which is used four times in Fig. 2.
Hence, the quantum cost of the teleportation protocol via the
two-dimensional channel |ϕ1〉 = 1√

2
(|00〉 + |11〉) is

T2 = Td − T (P0,d ) = 13 − 4 = 9.

That is the reason why the quantum cost of teleportation
protocols via the two-dimensional channels varies from 9
to 13. The quantum cost of teleportation protocols via four
two-dimensional channels and Bob’s recovery operations are
given in Table IV. It is in agreement with previous result for
the case of dimension 2 in [18]. The quantum cost of dense
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TABLE III. Controlled operations that Bob should apply to recover the message |Md 〉 via the d-dimensional Bell channels. When the
controlled qubit is |k〉, the CNOT and controlled-Z gates perform the operations Xk,d and Zk,d on Bob’s qudit. Here Xk and Zk represent Xk,d and
Zk,d given in (10) and (13) (k = 0, 1, . . . , d − 1).

Alice’s measurement |φ1〉 |φ2〉 · · · |φd 〉 · · · |φd2−d+1〉 |φd2−d+2〉 · · · |φd2 〉
|0, 0〉 Z0X0 Z0Xd−1 · · · Z0X1 · · · Zd−1X0 Zd−1Xd−1 · · · Zd−1X1

|0, 1〉 Z0Xd−1 Z0Xd−2 · · · Z0X0 · · · Zd−1Xd−1 Zd−1Xd−2 · · · Zd−1X0
...

...
...

...
...

...
...

|0, d − 1〉 Z0X1 Z0X0 · · · Z0X2 · · · Zd−1X1 Zd−1X0 · · · Zd−1X2
...

...
...

...
...

...
...

|d − 1, 0〉 Z1X0 Z1Xd−1 · · · Z1X1 · · · Z0X0 Z0Xd−1 · · · Z0X1

|d − 1, 1〉 Z1Xd−1 Z1Xd−2 · · · Z1X0 · · · Z0Xd−1 Z0Xd−2 · · · Z0X0
...

...
...

...
...

...
...

|d − 1, d − 1〉 Z1X1 Z1X0 · · · Z1X2 · · · Z0X1 Z0X0 · · · Z0X2

coding shows a linear growth with the dimension, while that
of teleportation is a constant. The reason is the difference
between the recovery of the message in the two protocols.
For the dense coding protocol, a CNOT† gate is required to
recover the message. The CNOT† gate is prepared by d − 1
CNOT gates, which is the only two-qudit basic gate and thus
its cost is equal to d − 1. Hence, the dense coding cost shows
the linear growth. For the teleportation cost, one or two kinds
of Pk,d gates are employed to transform the controlled qudits
of CNOT and controlled-Z gates to appropriate values, so the
recovery operations are implemented on Bob’s qudit correctly.
The six gates along with one measurement shown in Fig. 2 to
the right of the dashed line is sufficient to recover the message,
and thus the teleportation cost is a constant.

V. APPLICATIONS

In this section we introduce an application of the quantum
cost. As we all know, some unavoidable interaction of the
communication channel with the environment leads to the loss
of accuracy of the protocol. In order to assess the reliability of
a protocol, the fidelity of the protocol is proposed [28]. It gives
the closeness between the ideal state Alice wants to send and
the final state under a noisy channel. By considering the chan-
nel under four classes of noise, we find the relation between
the quantum cost and its fidelity. In Sec. IV we obtained that
the quantum cost of teleportation remains 13, regardless of
the dimension. The fidelity of the teleportation protocol has
nothing to do with its quantum cost, as the fidelity is related to
the dimension d and error probability p. On the other hand, we
will show that the fidelity of the dense coding protocol under

four classes of noise decreases with the increase of quantum
cost.

In order to calculate the fidelity of the dense coding
protocol, we briefly introduce four classes of noise for d-
dimensional case . Suppose d2 Weyl operators Umn are defined
as

Umn =
d−1∑
j=0

ω
jm
d | j ⊕ n〉〈 j|. (27)

In analogy to the two-dimensional noise, four classes
of noise and its corresponding Kraus operators are
shown as follows, where p is the probability that the
error occurs: (i) dit-flip noise, where E00 = √

1 − pU00

and E01 =
√

p
d−1U01, . . . , E0,d−1 =

√
p

d−1U0,d−1; (ii)

d-phase-flip noise, where E00 = √
1 − pU00 and E10 =√

p
d−1U10, . . . , Ed−1,0 =

√
p

d−1Ud−1,0; (iii) dit-phase-flip

noise, where E00 = √
1 − pU00 and Emn =

√
p

d−1Umn,
with 1 � m, n � d − 1; and (iv) depolarizing noise,

where E00 =
√

1 − d2−1
d2 pU00 and Emn =

√
p

d Umn, with
0 � m, n � d − 1 for (m, n) �= (0, 0). These four classes
of noise contain the information about the effects of the
system-environment interaction. Given an arbitrary system
initially prepared in a state ρ = ∑


k
l ρ
k
l |
k〉〈
l| for the number
of subsystems N , 
k = (k1, . . . , kN ), and 0 � k j � d − 1, the
action of a set of Kraus operators E
k
l = Ek1l1 ⊗ · · · ⊗ EkN lN
transforms ρ into ρ ′. The evolution can be modeled by the
trace-preserving map ρ → ρ ′ = ∑


k
l E
k
lρE†

k
l , where the E
k
l ’s

satisfy the completeness relation
∑


k
l E
k
lE
†

k
l = I .

TABLE IV. Here we set d = 2 to obtain the operations that Bob should apply for the two-dimensional case. The last column contains the
quantum cost of the two-dimensional teleportation protocol via different channels. Here Xk and Zk represent Xk,2 and Zk,2 (k = 0, 1).

Alice’s measurement

|a〉 |b〉 Two-dimensional Bell states |0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉 Quantum cost

|0〉 |0〉 |ϕ1〉 = 1√
2
(|0, 0〉 + |1, 1〉 Z0X0 = I2 Z0X1 = σX Z1X0 = σZ Z1X1 = σZσX 9

|0〉 |1〉 |ϕ2〉 = 1√
2
(|0, 1〉 + |1, 0〉 Z0X1 = σX Z0X0 = I2 Z1X1 = σZσX Z1X0 = σZ 11

|1〉 |0〉 |ϕ3〉 = 1√
2
(|0, 0〉 − |1, 1〉 Z1X0 = σZ Z1X1 = σZσX Z0X0 = I2 Z0X1 = σX 11

|1〉 |1〉 |ϕ4〉 = 1√
2
(|0, 1〉 − |1, 0〉 Z1X1 = σZσX Z1X0 = σZ Z0X1 = σX Z0X0 = I2 13
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FIG. 4. Fidelities of dense coding under a scenario in which the channel is affected by dit-flip FF , d-phase-flip FP, dit-phase-flip FFP,
and depolarizing noise FD, respectively. The axes represent the fidelity, error probability p, and the quantum cost D, for 0 � p � 1 and
6 � D � 20.

We calculate the fidelity of dense coding for the cases in
which each qudit of the channel is affected by the noise. The
calculation is shown in Appendix A in detail. In Sec. III we
obtained the fidelity when Alice wants to send (m, n) to Bob,
the quantum cost of the d-dimensional dense coding in (20).
For simplicity, we consider that Alice sends a classic message
other than (0,0). The quantum cost is D = Dmn,d = d + 4. We
establish the relation between the fidelity of the dense coding
protocol under dit-flip noise FF , d-phase-flip noise FP, dit-
phase-flip noise FFP, and depolarizing noise FD,

FF = FP = (1 − p)2 + p2

d − 1
= (1 − p)2 + p2

D − 5
,

(28)

FFP = (1 − p)2 + p2

(d − 1)2
= (1 − p)2 + p2

(D − 5)2
,

(29)

FD =
(

1 − d2 − 1

d2
p

)2

+ (d − 1)2 p2

d4

=
(

1 − (D − 4)2 − 1

(D − 4)2
p

)2

+ (D − 5)2 p2

(D − 4)4
. (30)

We compare the fidelities under four kinds of noise so
as to obtain their influence on dense coding. The details are
shown in Appendix B. Generally, the higher the fidelity is, the
less the noise affects the protocol. Comparing the expressions
(28)–(30), we find that with the same error probability p,
we have FF = FP > FFP for any D > 6. Next we compare
FD with FF (=FP) and FFP. The influence of depolarizing
noise tends to be in the middle of dit-flip (phase-flip) noise
and dit-phase-flip noise with the increase of quantum cost D
for arbitrary 0 < p < 1. On the other hand, the influence of
depolarizing noise tends to be larger with the increase of p,
and the growth rate of it is greater than that of other three
kinds of noise. The reason is that the expressions of four kinds
of noise are different, which is determined by the properties
of noise. The Weyl operators Umn in the expressions represent
dit-flip and phase-flip operations and the coefficients of them
represent the probability with which the operator acts on the
channel. The fidelities of dense coding for the noise scenario
are plotted in Fig. 4. The figures show that the increase of
quantum cost of the dense coding protocol will result in the
loss of its fidelity for the noise scenario. With the increase

of D, the reduction rate of fidelity with respect to p becomes
larger. Hence, the quantum cost of a protocol is one of the
indicators of its fidelity. The more gates or complicated gates
we employ in a protocol, the higher the quantum cost will
be and thus the lower the fidelity will be. This inspires us
that decreasing the quantum cost would be one of the use-
ful strategies to improve the fidelity of the high-dimensional
dense coding protocol.

VI. QUANTUM COST IN EXPERIMENT

In this section we consider the experimental setup that real-
izes the protocols so as to show the relation between the exact
implementation cost and the quantum cost practically. Based
on the correspondence between the gates and the optical de-
vices that realize them, we show that the quantum cost can be
obtained by the character of the specific experimental system.
The higher the quantum cost is, the higher the implementation
cost will be in the practical experiment. Hence, the quantum
cost is a meaningful figure of merit to evaluate the cost of a
protocol both theoretically and practically. Next we take the
experimental realization of dense coding as an example to
explain in more detail.

We show the experiment setup of dense coding and its
corresponding gates in the protocol. Dense coding was first
realized in the optical system using pairs of photons entan-
gled in polarization [29]. Three parts are included in their
experimental setup: the source that generates the entangled
Bell state, Bob’s encoding station, and Alice’s Bell-state an-
alyzer. For the source part, a UV pump and a nonlinear β

barium borate crystal is employed to generate the entangled
state, which corresponds to the Hadamard and CNOT gates
used to prepare the entangled state in Fig. 1. Bob’s encoding
station includes a half waveplate (HWP) retardation and a
quarter waveplate (QWP). This part corresponds to the U gate
in Fig. 1. Alice’s Bell-state analyzer consists of one beam
splitter, two two-channel polarizers, and four detectors. This
part corresponds to the gates to the right of the dashed line in
Fig. 1. The correspondence between the gates and experiment
setup shows that the realization of gates requires correspond-
ing optical experimental devices and operations. The higher
the quantum cost is, the higher the implementation cost will
be in the practical experiment.

We have proposed a framework to calculate the quan-
tum cost of a protocol in Secs. III and IV. For a specific
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experimental system, the calculation may change according
to its character. In reality, limited sorts of operations are con-
sidered to be implemented by the optical devices and such
operations correspond to the basic gates for this experiment.
Thus, the universal set including all the basic gates is deter-
mined by the specific experiment setup and the quantum cost
changes with it. For example, only two elements are employed
for the encoding station in this experiment: the QWP and
HWP, which correspond to the σZ and σX gates, respectively.
So the σZ and σX gates are basic gates for encoding. If Bob
wants to send classical message (0,1), (1,1), (0,0), or (1,0),
his setting is nothing (I), 90◦ QWP (σZ ), 45◦ HWP (σX ),
and 90◦ QWP and 45◦ HWP (σZσX ), respectively. Hence,
the quantum costs for the encoding part are in turn 0, 1, 1,
and 2. On the other hand, the quantum cost of each gate can
be determined by its realization requirement in experiment,
such as the number of devices and operations requirement.
If it requires more optical devices to realize a two-qubit gate
than a single-qubit gate in a specific experiment, then the
quantum cost of the two-qubit gate will be larger than that
of the single-qubit gate. Now we calculate the quantum cost
in this experiment by considering a number of optical devices:
The quantum cost of the source part is 2 (that of the encoding
part analyzed above) and that of the analyzer part is 7. Thus,
if Bob wants to send a classical message (0,1), (1,1), (0,0), or
(1,0), the quantum cost is in turn equal to 9, 10, 10, and 11.

VII. CONCLUSION

We have analyzed the quantum cost of high-dimensional
dense coding and teleportation protocols. Our results of the
teleportation protocol have generalized the results recently
shown for the two-dimensional case [18]. We have obtained
that the quantum cost of the d-dimensional dense coding
protocol is equal to d + 3 when transmitting the classical
message (0,0) and d + 4 when transmitting another classical
message, showing a linear increase with the dimension. Four
kinds of basic gates are used in the dense coding protocol.
The quantum cost of high-dimensional teleportation remains
13, which is the maximum value of the quantum cost of
two-dimensional case. Three or four kinds of basic gates
are used in the teleportation protocol. As an application of
our main result, we have been able to establish a relation
between the fidelity of the dense coding protocol and its
quantum cost. The higher the quantum cost is, the lower the
fidelity of the protocol will be for the four kinds of noise
scenario.

Many problems arising from this paper can be further ex-
plored. The quantum cost of other high-dimensional protocols
may be obtained and the relation between the fidelity and
quantum cost can be established, for example, the two-step
quantum direct communication protocol [30] and the protocol
for quantum secure direct communication with superdense
coding [31]. This work offers a strategy to improve the fidelity
of protocols. In addition, we have studied the quantum cost of
protocols by bipartite entangled states, which can be extended
to multipartite states. Whether there is a relation between the
quantum cost and entanglement cost in protocols is left as an
open question.
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APPENDIX A: CALCULATION OF DENSE
CODING FIDELITY

We present the calculation of fidelity of dense coding for
four kinds of noise scenario: dit-flip, d-phase-flip, dit-phase-
flip, and depolarizing noise.

Suppose Alice wants to send a classical message (m, n)
to Bob. They share the channel ρ = |φ1〉〈φ1|, where |φ1〉 =

1√
d

∑d−1
k=0 |k, k〉. The Umn,d gate shown in (6) implements the

operation that Alice performs on her qudit. In the noise-free
environment, i.e., when the channel ρ is not affected by any
kind of noise, the final state of Bob’s two qudits is

ρmn = (H†
d ⊗ I )U †

CNOT(Umn ⊗ I )ρ(U †
mn ⊗ I )UCNOT(Hd ⊗ I ).

(A1)

We obtain the operations in the dense coding protocol

UDC = (H†
d ⊗ I )U †

CNOT(Umn ⊗ I )

= 1√
d

d−1∑
s,u,x=0

ω(m−x)s|x, u ⊕ (d − s)〉〈n ⊕ s, u|. (A2)

Next we show the calculation of dense coding fidelities under
four kinds of noise.

1. Fidelity under dit-flip and phase-flip noise

The action of dit-flip noise transforms the channel ρ into
ρ ′

F :

ρ ′
F =

d−1∑
j,q=0

(E0 j ⊗ E0q)ρ(E0 j ⊗ E0q )†

=
d−1∑
j,q=0

(E0 j ⊗ E0q)|φ1〉〈φ1|(E0 j ⊗ E0q)†. (A3)

Hence, Bob’s two qudits are transformed into the states

ρ ′
mn,F = UDCρ ′

FU †
DC

=
d−1∑
j,q=0

UDC(E0 j ⊗ E0q)|φ1〉〈φ1|(E0 j ⊗ E0q)†U †
DC.

For any j, q = 1, 2, . . . , d − 1 we have

|ξ00,F 〉 = UDC(E00 ⊗ E00)|φ1〉 = 1 − p

d

d−1∑
s,x=0

ω(m−x)s|x, n〉,

(A4)

|ξ0q,F 〉 = UDC(E00 ⊗ E0q)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s|x, n ⊕ q〉, (A5)
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|ξ j0,F 〉 = UDC(E0 j ⊗ E00)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s|x, n ⊕ (d − j)〉,

(A6)

|ξ jq,F 〉 = UDC(E0 j ⊗ E0q)|φ1〉

= p

d (d − 1)

d−1∑
s,x=0

ω(m−x)s|x, n ⊕ q ⊕ (d − j)〉,

(A7)

where we do not normalize |ξ jq,F 〉 for convenience. Hence,

ρ ′
mn,F =

d−1∑
j,q=0

|ξ jq,F 〉〈ξ jq,F |. (A8)

By considering an arbitrary classical message (m, n) that Al-
ice wants to send, the fidelity of dense coding under dit-flip
noise is

FF = Tr{|m, n〉〈m, n|ρ ′
mn,F } = (1 − p)2 + p2

d − 1
. (A9)

Next we calculate the dense coding fidelity under phase-
flip noise. Based on the definition of phase-flip noise shown
in Sec. V, we have

|ξ00,P〉 = UDC(E00 ⊗ E00)|φ1〉 = 1 − p

d

d−1∑
s,x=0

ω(m−x)s|x, n〉,

(A10)

|ξ0q,P〉 = UDC(E00 ⊗ E0q)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s+q(n+s)|x, n〉, (A11)

|ξ j0,P〉 = UDC(E0 j ⊗ E00)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s+ j(n+s)|x, n〉, (A12)

|ξ jq,P〉 = UDC(E0 j ⊗ E0q)|φ1〉

= p

d (d − 1)

d−1∑
s,x=0

ω(m−x)s+( j+q)(n+s)|x, n〉,

(A13)

where j, q = 1, 2, . . . , d − 1. Note that

ρ ′
mn,P =

d−1∑
j,q=0

|ξ jq,P〉〈ξ jq,P|, (A14)

FP = Tr{|m, n〉〈m, n|ρ ′
mn,P}. (A15)

By analogous calculation, we obtain that FP = FF = (1 −
p)2 + p2

d−1 .

2. Fidelity under dit-phase-flip and depolarizing noise

The action of dit-phase-flip noise transforms the channel ρ

into ρ ′
FP:

ρ ′
FP =

d−1∑
t, j,v,q=0

(Et j ⊗ Evq)ρ(Et j ⊗ Evq)†

=
d−1∑

t, j,v,q=0

(Et j ⊗ Evq)|φ1〉〈φ1|(Et j ⊗ Evq)†.

(A16)

Hence, Bob’s two qudits are transformed into the new state

ρ ′
mn,FP = UDCρ ′

FPU †
DC

=
d−1∑

t, j,v,q=0

UDC(Et j ⊗ Evq )|φ1〉〈φ1|(Et j ⊗ Evq)†U †
DC.

(A17)

For any t, j, v, q = 1, 2, . . . , d − 1 we have

|ξ0000,FP〉=UDC(E00 ⊗ E00)|φ1〉= 1 − p

d

d−1∑
s,x=0

ω(m−x)s|x, n〉,

(A18)

|ξ00vq,FP〉 = UDC(E00 ⊗ Evq)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s+v(n+s)|x, n ⊕ q〉,

(A19)

|ξt j00,FP〉 = UDC(E0 j ⊗ E00)|φ1〉

=
√

p(1 − p)

d
√

d − 1

d−1∑
s,x=0

ω(m−x)s+t (n+s− j)

× |x, n ⊕ (d − j)〉, (A20)

|ξt jvq,FP〉 = UDC(Et j ⊗ Evq)|φ1〉

= p

d (d − 1)2

d−1∑
s,x=0

ω(m−x)s+(t+v)(n+s− j)

× |x, n ⊕ q ⊕ (d − j)〉, (A21)

where we do not normalize |ξt jvq,F 〉 for convenience. Hence,

ρ ′
mn,FP =

d−1∑
t, j,v,q=0

|ξt jvq,FP〉〈ξt jvq,FP|. (A22)

By considering an arbitrary classical message (m, n) that
Alice wants to send, the fidelity of dense coding under dit-
phase-flip noise is

FFP = Tr{|m, n〉〈m, n|ρ ′
mn,FP} = (1 − p)2 + p2

(d − 1)2
.

(A23)
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Next we show the calculation of fidelity corresponding to the
depolarizing noise. Based on the definition of the noise shown
in Sec. V, we have

|ξ0000,D〉 = UDC(E00 ⊗ E00)|φ1〉

= 1

d

(
1 − d2 − 1

d2
p

) d−1∑
s,x=0

ω(m−x)s|x, n〉,

(A24)

|ξ00vq,D〉 = UDC(E00 ⊗ Evq )|φ1〉 =
√

p

d2

√
1 − d2 − 1

d2
p

d−1∑
s,x=0

×ω(m−x)s+v(n+s)|x, n ⊕ q〉, (A25)

|ξt j00,D〉 = UDC(E0 j ⊗ E00)|φ1〉

=
√

p

d2

√
1 − d2 − 1

d2
p

d−1∑
s,x=0

ω(m−x)s+t (n+s− j)

× |x, n ⊕ (d − j)〉, (A26)

|ξt jvq,D〉 = UDC(Et j ⊗ Evq)|φ1〉

= p

d3

d−1∑
s,x=0

ω(m−x)s+(t+v)(n+s− j)|x, n ⊕ q ⊕ (d − j)〉,

(A27)

where t, j, v, q = 1, 2, . . . , d − 1. Note that

ρ ′
mn,D =

d−1∑
t, j,v,q=0

|ξt jvq,D〉〈ξt jvq,D|, (A28)

FD = Tr{|m, n〉〈m, n|ρ ′
mn,D}. (A29)

After analogous calculation, we obtain that

FD =
(

1 − d2 − 1

d2
p

)2

+ (d − 1)2 p2

d4
. (A30)

APPENDIX B: COMPARISON OF DENSE CODING
FIDELITIES UNDER DIFFERENT NOISE

We compare the fidelity of the dense coding protocol under
dit-flip noise FF , d-phase-flip noise FP, dit-phase-flip noise
FFP, and depolarizing noise FD so as to show the influence of
these four kinds of noise on dense coding.

Comparing the expressions (28)–(30), we find that with
the same error probability p, we have FF = FP > FFP for
any D > 6. We compare FD with FF (=FP) and FFP, by
calculating FF − FD and FFP − FD. We set

ai = 1

(D − 5)i
+ D2 − 6D + 6

(D − 4)4
(i = 1, 2), b = −2

(D − 4)2
.

(B1)

The value of − b
ai

with respect to the quantum cost D is shown
in Fig. 5. After some calculations, we obtain that

FF − FD = a1 p2 + bp, (B2)

FFP − FD = a2 p2 + bp. (B3)
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-b/a
1

-b/a
2

FIG. 5. Value of − b
ai

(i = 1, 2) with respect to the quantum cost
D. The blue dashed line and red line with squares represent the values
of − b

a1
and − b

a2
, respectively.

Hence,

FFP < FF = FP < FD for 0 < p < − b

a1
,

FFP < FD < FF = FP for − b

a1
< p < − b

a2
,

FD < FFP < FF = FP for − b

a2
< p < 1.

(B4)

The influence of noise can be evaluated with the fidelity.
Generally, the higher the fidelity is, the less influence the
noise has. First, we compare FD with the three other kinds
of fidelities with the constant p and variable quantum cost
D. Fidelity FD is between FFP and FP when the error
probability p is in the interval (− b

a1
,− b

a2
) in Eq. (B4).

This shows that − b
a1

< − b
a2

. With the increase of D, − b
a1

decreases and − b
a2

increases in Fig. 5. We obtain that when

D is large enough, − b
a1

approaches 0 and − a2
b approaches

1 by calculation. Hence, the increase of quantum cost can
widen the interval. That is to say, when D is large enough,
FFP < FD < FF = FP holds with arbitrary 0 < p < 1 in
Eq. (B4). The influence of depolarizing noise tends to be in the
middle of dit-flip (phase-flip) noise and dit-phase-flip noise
with the increase of quantum cost for arbitrary 0 < p < 1.

On the other hand, we compare FD with the three other
kinds of fidelities with the constant D and variable p. From
Eq. (B4) we obtain that FD is the largest of all kinds of
fidelities for 0 < p < − b

a1
and it becomes the smallest one

for − b
a2

< p < 1. Hence, the influence of depolarizing noise

is less than other noise for 0 < p < − b
a1

, it is in the middle of

other noise for − b
a1

< p < − b
a2

, and it is larger than the three

other kinds of noise for p > b
a2

. The influence of depolarizing
noise tends to be larger with the increase of p and its growth
rate is greater than that of the three other kinds of noise.
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