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We investigate the entanglement features in the interacting system of a quantized optical field and a two-level
system which is statically driven, known as the asymmetric quantum Rabi model (AsymQRM). Intriguing
entanglement resonance valleys with the increase of the photon-atom coupling strength and peaks with the
increase of the driving amplitude are found. It is revealed that both of these two kinds of entanglement resonance
are caused by the avoided level crossing of the associated eigenenergies. In sharp contrast to the quantum Rabi
model, the entanglement of the AsymQRM collapses to zero in the strong coupling regime except when the
driving amplitude is equal to mw/2, with m being an integer and @ being the photon frequency. Our analysis
demonstrates that such entanglement reappearance is induced by the hidden symmetry of the AsymQRM.
Supplying an insightful understanding of the AsymQRM, our results will be helpful in exploring the hidden
symmetry and in preparing photon-atom entanglement in light-matter coupled systems.
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I. INTRODUCTION

Light-matter interaction is described by coupling bosonic
and fermionic subsystems. Modeling the interaction between
bosonic modes and the electrons of atomic levels plays there-
fore a fundamental role in the physics of strongly interacting
quantum systems [1], especially, but not exclusively, in mod-
els related to quantum optics [2].

For instance, resonance phenomena of optical systems
where the frequency of a single-mode (bosonic) radiation field
is such that it couples approximately only to two relevant
atomic levels, i.e., a two-level system (TLS) or qubit (see
below for this latter designation), have attracted considerable
interest for many years [3] and continue to do so, as evidenced
in many recent publications, a pertinent selection of which we
are going to reference in this paper, especially its introduction.
The two-level system can be described also by spin degrees of
freedom.

While the semiclassical treatment of such systems [4] by
Rabi initiated the study of the eponymous model, the quan-
tum version, introduced by Jaynes and Cummings [5] (for
more details on the quantum Rabi model (QRM), see, e.g.,
Ref. [6]), has attracted considerable recent interest. A theo-
retical breakthrough was achieved by the exact solution of the
QRM [7,8] using two different methods, which, however, both
crucially used the Z, symmetry of the QRM and a Bargmann
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space analysis (for these and further recent theoretical de-
velopments, see Refs. [9-11], and for recent reviews, see
Refs. [12-16]).

The QRM has been realized experimentally in solid
state devices, in physical systems including cavity quantum
electrodynamic (cavity-QED) [1] and circuit quantum elec-
trodynamic (circuit-QED) [17] systems, and also in trapped
ion systems [18,19].

In recent years, it became possible, triggered by the tech-
nological possibilities these and further experimental systems
have opened up, to tune the parameters of the QRM, in par-
ticular, to reach new regimes where the interaction between
the bosonic modes and the TLS is strong, i.e., to reach the
so-called ultrastrong (where the ratio of the field-TLS cou-
pling strength g and the field frequency w is between 0.1
and 1) [20-23] and even the so-called deep strong (g/w > 1)
coupling regimes, predicted theoretically [24] and realized
experimentally in photonic systems [25]. Through these de-
velopments the necessity arose to consider fully the QRM
(for a recent review, see Ref. [26]) instead of the sim-
pler quantum Jaynes-Cummings model which is obtained
from the QRM by applying the rotating wave approximation
(RWA) [5].

Further intriguing developments include the theoretical
prediction of a few-body quantum phase transition in the
QRM [27,28], which has subsequently been observed exper-
imentally in a single trapped ion [19], excited-state quantum
phase transitions [29] and quantum phase transitions in ex-
tensions of the QRM that include symmetry breaking terms,
the focal point of the present study, and nonlinear interac-
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tion terms [30], and the application of the QRM in quantum
metrology [31].

Recently, systems related to the QRM have been studied
especially in connection with quantum computing [32-34],
where the fundamental building units (qubits) are two-level
systems. Moreover, many physically interesting generaliza-
tions of the QRM have been examined (for a recent review
of the theoretical developments in this area, see Ref. [13]).

In this paper, we shall especially consider the asymmetric
extension of the QRM (AsymQRM) [7], where a Z, sym-
metry breaking term, a driving term, €oy, is added to the
Hamiltonian of the QRM. Other than in cavity-QED sys-
tems, such a term arises naturally in the solid state devices
mentioned earlier [20-23]. The AsymQRM has earlier been
proposed for experimental realization in a micromechanical
resonator coupled to a Cooper-pair box [35,36].

The AsymQRM is of great theoretical importance, es-
pecially because the broken Z, symmetry is restored for
particular values of the driving amplitude ¢ [7] and is cur-
rently positioned at the center of the fundamental quest for a
characterization of integrability in the quantum regime [37].

Before we return to the focus of this paper, the asym-
metric QRM, we mention in passing one of the numerous
other extensions of the QRM that are currently under in-
tense investigation and which originated in a suggestion for
an experimental arrangement creating a nonlinear interac-
tion between the bosonic modes and the TLS [38]. This
so-called Stark term, yo.a'a, preserves the Z, symmetry
of the QRM and has also been rigorously solved using a
Bargmann representation [39—41], and its physical properties
have been further investigated [42]. This model is also dis-
cussed as a promising candidate for another foray to shed
light on the fundamental notion of quantum integrability [43].
The reason for this expectation is that, within the rotating
wave approximation, the quantum Jaynes-Cummings model
admits an exact solution using the infinite Lie algebra ap-
proach of the Richardson-Gaudin-type Bethe ansatz [44—46]
while adding a nonlinear Stark term ya'ao, renders the quan-
tum Jaynes-Cummings-Stark model amenable to an algebraic
Bethe ansatz and the model is thus a Yang-Baxter integrable
model [46,47].

Another intriguing development, with promising appli-
cations to other physical systems, the anisotropic QRM,
interpolating between the quantum Jaynes-Cummings model
and the full QRM [48,49], can be extended to the quantum
Rabi-Stark model (QRSM) [50,51]. Furthermore, asymmet-
ric models have been discussed where the asymmetry term
does not break the Z, symmetry [52]. Lastly, we mention
the polaron picture [53,54], which has been successfully ap-
plied to investigate the two-photon [55] and two-qubit [56]
QRM.

Currently, the QRM and its many variants are also dis-
cussed in connection with the fundamental question of
quantum entanglement [57,58], which reflects the nonlocal
nature of quantum physics and is thus a basic resource of
quantum technology. Quantum entanglement, on the other
hand, is again at the root of such promising technological
developments as quantum computation, quantum informa-
tion [32-34], which we have already mentioned above, and
quantum communication [59].

The present study adds to these developments, espe-
cially their theoretical side, by studying numerically the
phenomenon of gquantum entanglement resonance in the
asymmetric quantum Rabi model (AsymQRM). We address,
in particular, how the physical quantity of entanglement
entropy can be used to distinguish level crossings from (nar-
rowly) avoided level crossings. This distinction is of central
importance in the study of the hidden symmetry of the asym-
metric QRM [7,60-67], where the Z, symmetry, and hence
level crossings, are restored for half-integer values of the
amplitude of the driving term € in units of the field strength
w. In order to address this distinction, the numerical accuracy
with which spectra can be calculated is often insufficient to de-
cide clearly between these two cases, true level crossings and
narrowly avoided level crossings. The entanglement entropy
offers a more sensitive way to distinguish level crossings from
avoided level crossings because it uses not only the eigenval-
ues but also the (low-lying) eigenstates of the Schrédinger
equation of the AsymQRM. Studying the von Neumann en-
tanglement entropy (for other entanglement entropy notions,
see, e.g., Ref. [68]) of the eigenstates of the asymmetric QRM
for different coupling strengths g and driving amplitudes e,
we find that the entropy is sensitive to the spectral structure,
exhibiting distinctive resonance valleys when the coupling
strength g is increased and resonance peaks when the driving
amplitude € is increased. These resonances occur in both cases
at the loci of the avoided level crossings of the energy spectra.

We note that entanglement entropy has already been used
in the study of level crossings in the anisotropic QRM [48] and
the spectral classification of coupling regimes [69], as well
as the QRM in the polaron picture [70]. Moreover, similar
entanglement resonance behavior has been discussed earlier in
quantum spin chains [71] and periodically driven multipartite
quantum systems [72].

In Sec. II of this paper, we give the Hamiltonian and
the entanglement characterization of the AsymQRM. The en-
tanglement resonance with the increase of the photon-atom
coupling strength is also revealed. In Sec. III, we study the
entanglement resonance with the increase of the driving am-
plitude. The entanglement preservation caused by the hidden
symmetry is also uncovered. Finally, we give a summary in
Sec. IV. In the Appendix, we provide some physical intuition
for the entanglement entropy of the simpler asymmetric quan-
tum Jaynes-Cummings model, where analytical calculations
are feasible to a much greater extent than in the asymmetric
quantum Rabi model.

II. ENTANGLEMENT RESONANCE

The AsymQRM describes the interaction between a quan-
tized bosonic field and a two-level system and is subject to a
static-field-driven two-level atom with Hamiltonian

A
~

H = wi6,6_ +wid'a+[g@a" +a)+ €6, +6-), (1)

acting in the tensor Hilbert space H, ® Hy, where & and a'
are the bosonic annihilation and creation operators acting in
the Hilbert space H ; with frequency w, 6, = 65 =le) (gl are
the transition operators between the ground state |g) and the
excited state |e) acting in the two-dimensional Hilbert space
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FIG. 1. Entanglement entropy of different eigenstates |\, ) of the
AsymQRM with € = 0.0lw denoted by thick lines when n =1, 2
in (a), 3,4 in (b), 5,6 in (c), and 7,8 in (d) as a function of atom-
field coupling strength g. The corresponding thin lines denote the
results of QRM with € = 0. Different background colors from left to
right denote the pUSC, the npUSC-npDSC, and the pDSC regimes,
respectively. We use wy = w. The truncation number in the numerical
calculation is 400.

‘H, of the two-level atom with frequency wy, g is the atom-
field coupling strength, and € is the amplitude of static driving.
The atom-field entanglement of any eigenstate |W,,) of the
AsymQRM can be quantified by the entanglement entropy,
which we choose here as the von Neumann entropy of the
reduced density matrix for any one of the subsystems [58],
e.g., the field (f) and atomic (a) subsystems considered here,

§ = —Tr(pslog,p.) = —Tr(prlog, pr), 2

where p, = Try(|W,)(W,[) and pr = Try(|W,)(W,]). The en-
tanglement entropy vanishes for a separable state and equals
1 for a maximally entangled state.

The Hamiltonian (1) has no obvious symmetry. Therefore
the eigenstates |\,) can only be labeled by the energy eigen-
values E, of the Schrédinger equation

H|W,) = E,[W,). 3)

We numerically evaluate the entropy expressions (2) by
expanding the Hamiltonian (1) in the complete basis |m, p) =
|m)|p),m =0,1,2,..., p= = of the combined system of the
atom and the field

(W) =) Im, p) )
m,p

to obtain the matrix representation of the Hamiltonian (1),
which we use to numerically obtain eigenvalues and eigen-
states in a truncated Hilbert space at a photon number n =
Nyune SUch that the obtained magnitudes of the eigenenergies
converge.

We present in Fig. 1 the entanglement entropy of dif-
ferent eigenstates |W,) of the AsymQRM and the QRM
Hamiltonian, respectively, as a function of the atom-field
coupling strength g. According to the classification rule pro-
posed in Ref. [69] for € = 0, the coupling regimes of both
the QRM and the AsymQRM can be divided into three re-
gions, the perturbative ultrastrong coupling (pUSC) regime,
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FIG. 2. (a)-(d) Eigenenergies corresponding to the AsymQRM
in Fig. 1 relative to the ground-state energy E;. The thin solid lines in
each inset which cross each other are the eigenenergies of the QRM
with € = 0. The coupling values of g of entanglement resonances
in the npUSC-npDSC regime in Fig. 1 exactly match the ones at
which the associated eigenenergies show avoided level crossings.
The truncation number in the numerical calculation is again 400.

the perturbative deep strong coupling (pDSC) regime, and
the intermediate region, designated as the nonperturbative
ultrastrong—deep strong coupling (npUSC-npDSC) regime.
The regimes pUSC and npUSC-npDSC are separated by the
first energy-level crossing point, and the npUSC-npDSC and
pDSC regimes are separated by the energy-level coalescence
point, where the adjacent eigenenergies become quasidegen-
erate.

This spectral classification is based on the validity of per-
turbative criteria of the quantum Rabi model, which allows
the use of exactly solvable effective Hamiltonians. When the
counter-rotating terms can still be treated perturbatively, the
system is in the pUSC regime. The system is in the pDSC
regime when the interaction term cannot any more be treated
as a perturbation, but is the main driver of the dynamics.
However, in the pDSC regime, the qubit term @ can be treated
perturbatively. As emphasized in Ref. [69], this spectral clas-
sification is a qualitative classification and does not imply an
abrupt change, but rather a gradual change in the physical
properties of the QRM and the AsymQRM.

From Fig. 1 we infer that, in sharp contrast to the case
of the QRM with € = 0, the entanglement entropy in the
AsymQRM shows a number of resonance valleys in the
npUSC-npDSC regime. Furthermore, the number of reso-
nance valleys in this weak driving case is equal to |(n —
1)/2] (where |x| = {m € Z|m < x}) matching the number
of energy-level crossing points in the original QRM [7,40].
Another remarkable difference of the AsymQRM is that the
entanglement entropy in the pDSC regime decays to zero with
the increase of the coupling strength g, while it remains 1 in
the QRM.

The entanglement resonance signifies the efficient coupling
of the relevant quantum states, which is essentially determined
by the energy spectrum of the system. To understand the
physical reason for the presence of the entanglement reso-
nance in the npUSC-npDSC regime, we plot in Fig. 2 the
corresponding energy spectrum of the AsymQRM. We can
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FIG. 3. Entanglement resonance of the eigenstates |\W,) of the
AsymQRM in the parameter plane of wy and g when n = 1 in (a),
n=3in(b),n=5in(c),and n = 7 in (d). We use ¢ = 0.1w.

see that all the energy-level crossings in the original QRM are
opened by the static driving in the AsymQRM. It is interesting
to find that the places of the avoided level crossings in Fig. 2
exactly match the ones of the entanglement resonances in
Fig. 1. This can be physically understood as follows. The
application of the static driving breaks the Z, symmetry of
the original QRM, which results in the opening of the energy-
level crossings of the QRM. At the points of avoided level
crossings, the high mixing of the two associated levels with
different parities causes an abrupt change to the entanglement
of the two involved quantum states.

To give a global picture of the entanglement resonance
induced by the static driving, we plot in Fig. 3 the entangle-
ment entropy in the plane w, versus g for a chosen driving
amplitude €. It can be seen that the entanglement in the
weak coupling limit is almost zero except for the resonance
case wy = w. Then it changes to 1 with a tiny increase of g.
With the further increase of g to the npUSC-npDSC regime,
L(n — 1)/2] entanglement resonance valleys appear. The en-
tanglement in the small-w limit equals zero. It abruptly jumps
to 1 with the increase of wg except for the entanglement res-
onance position. Such resonance valleys become sharper and
sharper with the increase of wg. Confirming the entanglement
resonance induced by the avoided level crossing, this result
suggests a useful way to understand the features of the energy
spectra of the family of quantum Rabi models by monitoring
the entanglement between the atom and the quantized field.

III. ENTANGLEMENT PRESERVATION IN THE pDSC
REGIME

We have seen from Fig. 1 that the entanglement is not
preserved in the pDSC regime when a static field is applied.
Is this valid for arbitrary €? To answer this question, we
explore the entanglement property of the eigenstates |W,)
of the AsymQRM for varying €. In Fig. 4, we present
the entanglement entropy of |W,) as a function of driv-
ing amplitude € versus coupling strength g for n =2, 4, 6,
and 8 as examples (the results for other, even very large,
values of n show the same physics). It is revealed that, be-
sides the repeated resonance valleys in the npUSC-npDSC

FIG. 4. Entanglement preservation of the eigenstates |V, ) of the
AsymQRM when € = mw/2 withm € Z. Here, n =2 in (a), n = 4
in (b),n = 61in (c), and n = 8 in (d).

regime, which were analyzed in the last section, the entan-
glement in the pDSC regime also shows periodic resonance
with increasing €. Unlike the resonance valleys with in-
creasing g in the npUSC-npDSC regime, the entanglement
resonance with increasing € in the pDSC regime shows pe-
riodic peaks. A maximal entanglement is observed in the
pDSC regime at discrete values € = mw/2, with m being an
integer. As € further increases, the entanglement disappears
again.

The appearance of the entanglement preservation in the
pDSC regime when € = mw/2 is also caused by the avoided
energy-level crossings. Taking n = 8 as an example, we plot
in Fig. 5 the eighth eigenenergy and its nearest-neighbor ener-
gies as a function of € when g = 3w. It is interesting to observe
that the eighth energy level has eight avoided level crossings
with its nearest-neighbor levels, which all occur at € = mw/2.
These avoided level crossings correspond exactly with the
entanglement preservation in Fig. 4(d). The result confirms
that the entanglement preservation in the pDSC regime when
€ =mw/2 is essentially determined by the avoided level
crossings.
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FIG. 5. Eigenenergies relative to the ground-state energy E; of
the AsymQRM as a function of the driving amplitude € in the pDSC
regime when g = 3w. We use wy = w.
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Governed by the Z, symmetry, there are avoided level
crossings, also called energy quasidegeneracies, in the QRM.
It has therefore been unexpected to observe a restoration
of the avoided level crossings also in the pDSC regime of
the AsymQRM where the Z, symmetry is broken. Actu-
ally, the reappearance of the energy quasidegeneracies in
the AsymQRM is caused by a hidden symmetry of the
AsymQRM [60-64] occurring when € = mw/2. Very re-
cently, its symmetry operators for m = 1 and m = 2 were
rigorously derived [63,65], and a general scheme to obtain
the symmetry operators has been proposed [73]. Thus, in
addition to the energy-spectrum features which have been
investigated in previous work (see, e.g., Ref. [62]), the en-
tanglement preservation in the pDSC regime revealed in this
paper may serve as another piece of evidence of the hidden
symmetry of the AsymQRM.

Another interesting behavior is that the entanglement
preservation occurring at € = mw/2 only happens for a fi-
nite number of integers m. In order to obtain a physical
understanding of this behavior, we apply the polaron pic-
ture [53-56]. This picture has been applied to a number of
variants of the QRM. Rotating the Hamiltonian of Eq. (1) by
the operator /4% to

A N wo PEA at A A ()
H=EUZ+7Ux+a)aa+g(a +a)0z+7 (®)]
and then expanding the Hamiltonian in the complete basis

> =t I:){sx| = 1 of 6, = 64 + 6_ and introducing the unit-

mass coordinate £ = (& + a')/+/2w and momentum operators
p = i/w/2(a" — &) of the quantized optical field [53,54], we
can rewrite Eq. (1) as H = Hy + H; with

Hy =" hyls:)(s:| + &0, 6)
sy=%
A w
Hi= 37 1) 6. (7)
sy==%

where 5, means the flipped sEin of sy, &0 = (wp — w)/2 —
& /w is a constant energy, and h;, = p*/2 + V;_with
2

A w

V=T X))+ se€ (8)
and x;, = ~/2ws,g/w’. Here, V;_ are harmonic potentials with
sy = = labeling the two &, eigenstates. In the pDSC regime,
taking H; as a perturbation, we obtain to leading order the
eigenenergies of H as

EP =nwte. 9)

As illustrated in Fig. 6, one can readily see how the driving
€ affects the entanglement between the atom and the field.
The dashed lines represent the case of € = 0, where V. are
degenerate. With increasing €, V. shifts upward and V_ shifts
downward with the difference of their valleys being 2¢. The
eigenenergies E,onE increase or decrease correspondingly. The
second energy level |2_) (take reference to the notation in
Ref. [52]) in V_ crosses with the second energy level |2, ) and
the first one |1;) in V. when € = 0 and w/2, respectively.
Except for these two values of €, |2_) has no chance to cross
with the energy levels in V_ anymore. Due to the perturbation
of H,, such energy-level crossings are reopened, which causes

¢e=w/2
e=w/2$

FIG. 6. Schematic diagram of the two harmonic potentials Vi
associated with the two 6, eigenstates of Hy. The static driving €
leads to the upward and downward shifts of V., and V_, respectively.
Here, € = w/2 is shown as an example.

a sufficient coupling of |2_) with |2,) and |1,), respectively.
This generates a large entanglement between the atom and
the photon. It explains well the result in Fig. 4(a) that a finite
entanglement for the second energy level is preserved in the
pDSC regime only when € = 0 and w/2. In the same picture,
the results in Figs. 4(b)—-4(d) that the entanglement preserva-
tion occurs at € = mw/2 only for m =0,...,n— 1 can be
understood. Thus such a simple picture provides an intuitive
explanation of the avoided level crossing and entanglement
preservation in the pDSC regime.

IV. CONCLUSIONS

In summary, we have investigated the entanglement fea-
tures in the eigenstates |W,) of the coupled system of a
quantized optical field with a TLS subject to a statically
driven two-level atom, i.e., the AsymQRM. The entanglement
exhibits interesting features depending on the light-matter
coupling strength and the driving amplitude, which are intrin-
sically related to the structure of the energy spectrum of the
AsymQRM. We find that the entanglement shows | (n — 1)/2]
resonance valleys with the change of the light-matter coupling
strength in the npUSC-npDSC regime. Our results indicate
that this is caused by the avoided level crossings induced by
the static field. In the stronger pDSC regime, the entanglement
exhibits resonance peaks at € = mw/2, withm =0, ...,n —
1. Our analysis demonstrates that such entanglement preser-
vation is induced by the avoided level crossings due to the
hidden symmetry of the AsymQRM. Our result is expected to
be helpful to identify the features of the energy spectrum, such
as the avoided energy-level crossings, and to further explore
the related hidden symmetry properties of more theoretical
models for light-matter interaction [67,74,75]. In addition, our
method is promising to be applied to study quantum dot(s)
with broken inversion symmetry in a cavity [76,77].
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FIG. 7. (a) Avoided level crossing in the energy spectra of the
JC model with external perturbation €. (b) Entanglement entropy
obtained by numerical (solid red line and dotted blue line) and degen-
erate perturbative (yellow star) methods. The entropy of the JC model
(dashed green line) is also provided as a benchmark. g/w = 0.2749
is the point where the energies of the states |1, +) and |2, —) for the
JC model become degenerate. wy; = 1.5w and € = 0.05w.

the School of Physical Science and Technology of Lanzhou
University for their friendly and supportive hospitality. This
work is supported by the International Postdoctoral Exchange
Fellowship Program (Grant No. ZD202116) and the National
Natural Science Foundation of Gansu Province, China (Grant
No. 20JR5RAS509).

APPENDIX: ENTANGLEMENT ENTROPY FOR THE
ASYMMETRIC JAYNES-CUMMINGS MODEL

In order to provide a physical intuition for the appearance
of the entanglement features in the AsymQRM, we apply
a perturbation method to analytically study the entangle-
ment entropy in the asymmetric quantum Jaynes-Cummings
(AsymQJC) model, which is a model obtained from the
AsymQRM after application of the rotating wave approxima-
tion [5] with the Hamiltonian

A W, .
Axgmoic = 6: + wi'a +g(@'6_ +46.) + €6y (AD)

The AsymQJC model shows entanglement resonance be-
havior similar to that of the AsymQRM. For instance,
the energy-level crossings in the original quantum Jaynes-
Cummings (JC) model are opened by the static driving in the
AsymQJC model. The quantum JC model is exactly solvable,
on the basis of which, by applying the degenerate perturbation
method, we obtain the accurate value of the entropy for the
peak of the entanglement resonance.

The opened energy gap is presented in Fig. 7(a), and the
numerical and analytical results of the entropy are presented in
Fig. 7(b). In Fig. 7(b), one can see that the analytical solution
obtained by the degenerate perturbation method matches the
numerical result perfectly. The fact that the entanglement is
reduced (or increased) when there is a perturbation that re-
moves a level crossing can be explained as a consequence of
such a simple observation, i.e., if the unperturbed eigenstates
are close to being maximally entangled, it is likely that their
sum and difference are less entangled. In the same way, if the
unperturbed eigenstates are close to being separable, their sum
and difference are likely to be highly entangled. The detailed
derivation is presented in the following section.

1. Analytical solution of the quantum Jaynes-Cummings model

In this section we summarize the analytical results for the
quantum Jaynes-Cummings model [6]. The quantum Jaynes-
Cummings model with Hamiltonian

b= 25 AT a sia L aa
ic = 701 +wa'a+ga'é- +aéy) (A2)
is known to be exactly solvable by elementary means. It con-
serves the total number operator N = a'a + %(1 + &;).

For N = 0, the ground-state energy is Eo, = —%, and the
eigenstate is denoted by |g, 0). The excitation energies and the
excited states are given by

1 Q
E.x=(n+-|ot—, n=0,12,..., (A3)
2 2
where Q = /A2 +4g*(n+ 1) and A = wy — w, and
|n, +) =Cyln,e) + Dyln+ 1, g),
In, =) = Dyln, e) — CGyln+ 1, g), (A4)
where G, =cos(%) and D,=sin(%) with «,=
tan’l(—zg‘/A"Tl).

2. Degenerate perturbation for the asymmetric quantum
Jaynes-Cummings model

Turning on the static driving €, the doubly degenerate
energy-level crossing points of the original quantum JC model
become avoided level crossings in the AsymQJC model. This
is the reason we need to apply the degenerate perturbation
method.

For the Hamiltonian of the quantum JC model at the degen-
erate point, i.e., for a particular value of g to be determined,
the eigenvalue satisfies

5,50) = En,+ = En-&-l,—’ (AS)

corresponding to two independent and orthogonal eigenfunc-
tions ¢nl = |i’l, +> and ¢n2 = |n + 17 _)’

HJC¢m’ = 5,50)¢ni7 i = 1, 2.

This eigenvalue, £, which is exact for the quantum JC
model, now plays the role of the zeroth-order approximation
eigenvalue for the asymmetric quantum JC model.

The corresponding zero-order wave function

(A6)

2

0 0
r(l ) = ch( )‘Pnia

i=1

(AT)

where ¢!” and the first-order energy eigenvalue £V can be
obtained by solving the eigenvalue equation

2
> 0= EV8,)e” =0, i=1.2,

Jj=1

(A8)

where Hi’j = (¢l H'|pn ;) represents the coupling between
eigenstates ¢,; and ¢,; due to the operation of H' =eo,. We
obtain the first-order modifications of the degenerate eigenen-
ergy

&N = +eD,Dysy

n

(A9)
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as well as cio) = :l:cgo) = -L for the zeroth-order coefficients

: V2
of the eigenstates.
Thus the total energy at the degenerate point is

Ena =80 +&N. (A10)
The modified wave functions 905;(1)) and gor(lg) are
o_ 1 o _ 1
Y, = ﬁ(%l + o), @, = E(‘bnl — o). (All)

Note that the degeneracy of the quantum JC model is now
lifted due to the asymmetry term €0y, and the level crossing at
the degenerate point of the quantum JC model is now avoided
for the asymmetric model.

Finally, we take the wave function <p,(l?) as an example to
calculate its corresponding entanglement entro?y. It is known
that the total density matrix is psp = |<p(0)> ((p(o |. One can get

nl nl

its reduced density matrix ps = Trz(pap)

D>  +C?> D,D )

n+1 n ntn+1

4 = (A12)
4 < DD, D*+C2,,

Now the von Neumann entropy S, of the zero-level modified
wave functions can be obtained:

Spn = —Tlpalog,(pa)]- (A13)

As an example, we calculate the avoided level crossing
corresponding to the intersection of states |1, +) and |2, —)
in the JC model. The result is shown in Fig. 7. In the case
of A = wy — w=0.50 and € = 0.05w, the crossing point is
at g = 0.2749w. Then, with the definition of «,, C,, and D,
[given below Eq. (A4)], one can calculate the reduced density
matrix p4 and then the entropy S,,. Note that here the condi-
tion for which the perturbative method works, € < w, wy, g,
and the condition that the second-order terms are negligible
should both be satisfied.
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