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Measurement disturbance tradeoffs in three-qubit unsupervised quantum classification
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We consider measurement disturbance tradeoffs in quantum machine learning protocols which seek to learn
about quantum data. We study the simplest example of a binary classification task in the unsupervised regime.
Specifically, we investigate how a classification of two qubits, that can each be in one of two unknown states,
affects our ability to perform a subsequent classification on three qubits when a third is added. Surprisingly, we
find a range of strategies in which a nontrivial first classification does not affect the success rate of the second
classification. There is, however, a nontrivial measurement disturbance tradeoff between the success rate of the
first and second classifications, and we fully characterize this tradeoff analytically.
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I. INTRODUCTION

The proliferation of huge datasets in modern science, tech-
nology, and society in general has spurred rapid developments
in machine learning; a powerful set of techniques which seek
to automate the drawing of inferences from data. A recent
theoretical development has been to apply ideas from machine
learning to the processing of quantum data [1], both in a
supervised setting [2–4] and an unsupervised setting [5–7], for
example, at the output of a quantum communication, sensing,
or processing device. In the longer run, as quantum technolo-
gies develop further, such techniques may be expected to find
use in, e.g., characterizing quantum channels and devices,
including monitoring for malfunctions [6,7]. Indeed, in [6,7],
the problem of determining a quantum change point was ad-
dressed. Here, the change point could be the result of some
unknown error in a quantum device outputting quantum data.
We note that another prominent line of research in quantum
machine learning is that of using quantum processing tech-
niques to aid and speed up machine learning when applied
to classical data [1]. We, however, only consider the task of
learning about quantum data, which requires rather different
techniques.

Quantum data are fundamentally different to classical data,
and learning strategies are therefore subject to different, pecu-
liarly quantum limitations, which are not yet well explored. As
an example, quantum data famously cannot be cloned [8,9],
in stark contrast to the classical case. In addition, it is not
possible to extract information about a quantum system with-
out causing disturbance [10]. Measurement strategies must
therefore be carefully chosen and generically (but not always)
the globally optimal strategy for any learning task involves
waiting until all data have been received and then performing
a joint measurement over all systems [5,11–17].

*h.spencer-wood.1@research.gla.ac.uk

Such considerations thus pose a problem unique to the
quantum case: Can we learn about a subset of data with-
out compromising performance on the dataset as a whole?
We might expect a measurement-disturbance-type tradeoff
between performance on the subset and performance on the
whole dataset. In this paper we take the first steps towards
understanding this tradeoff, studying the simplest case of
unsupervised binary classification of qubit states, with three
samples. A binary classification task is one in which the aim is
to assign each sample provided to one of two possible classes,
as accurately as possible. Unsupervised means that there is
no labeled training data provided, and the user or algorithm
must do as well as possible by comparing the data samples to
each other. We give analytically the precise tradeoff between
learning about the first two samples provided and learning
about all three samples. This case is simple enough to allow
analytic results, while rich enough to demonstrate the tradeoff.
Surprisingly, for a range of strategies on the first two qubits, it
is possible to avoid any reduction in performance on all three.

Our work is related to the problem of sequential observers
extracting information about a system [18–21], however, so
far, the literature has mostly considered the case in which
sequential observers have access to the same system. Here, in
the learning scenario, we are interested in how measurements
on some part of a system (the first two subsystems in the
example considered here) affect measurement on the whole.
In addition, prior work considered the supervised learning
case, in which a labeled training set was provided and used
to induce a function to label test instances. Here it is known
that, in the limit of many test instances, global measurements
over training and test data are not required for optimal per-
formance, and the training data may be measured in advance
without access to the test data [11]. The unsupervised case is
more complicated, as the algorithm seeks to both learn from
and classify each instance provided.

In the remainder of this paper we will introduce the
unsupervised binary classification problem, illustrate the mea-
surement disturbance effect in the learning scenario, and
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quantify the tradeoff between learning about two samples and
learning about all three.

II. BACKGROUND THEORY

We begin by noting the background theory and notation
that will be used throughout this paper. First, as was alluded to
earlier, we will be classifying qubits. A qubit |ϕ〉 is an element
of the two-dimensional complex Hilbert space C2 such that
〈ϕ|ϕ〉 = 1. It will be notationally convenient to consider our
qubits as spin-1/2 particles. With this in mind, we can define
the computational basis states of our qubits as follows:

|0〉 := ∣∣s = 1
2 , ms = 1

2

〉
,

|1〉 := ∣∣s = 1
2 , ms = − 1

2

〉
, (1)

where s, ms denote the total spin and z-component of the
total spin of the system, respectively. Now, the classification
problem we will be considering is this: Given a number of
qubits that can be in one of two unknown states |ϕ0〉, |ϕ1〉,
how well can we assign a label, |ϕ0〉 or |ϕ1〉, to each of them?
Being qubits, |ϕk〉 can be visualized as points on the Bloch
sphere [22]. We can therefore explicitly write them as

|ϕk〉 = cos
θk

2
|0〉 + eiφk sin

θk

2
|1〉, (2)

where k ∈ {0, 1}, and θk ∈ [0, π ], φk ∈ [0, 2π ) are the polar
coordinates of a point on the Bloch sphere.

We will later see that a quantum classification can be for-
mulated as a quantum measurement. A quantum measurement
is mathematically equivalent to a positive operator-valued
measure (POVM) [22]. We therefore define a measurement
as a set of operators {π̂i}, called measurement operators, that
satisfy

π̂i � 0 ∀i, (3a)∑
i

π̂i = Î, (3b)

where Î denotes the identity operator. If a measurement {π̂i}
is performed on a state ρ̂ j and the measurement outcome is
k (considered a correct measurement outcome if k = j), then
the state ρ̂ j is updated as follows [22,23]:

ρ̂ j →
√

π̂k ρ̂ j
√

π̂k
†

Tr(π̂k ρ̂ j )
. (4)

Although this is not the unique form of the allowed update
rule for given π̂k , it is minimally disturbing and thus most
appropriate for our purposes [24]. When a measurement {π̂i}
on a set of states {ρ̂i} is performed, the probability of success
is

Psucc =
∑

i

piTr(π̂iρ̂i ), (5)

where pi is the probability the input state is prepared in the
state ρ̂i.

Finally, when considering multiple qubits, a basis that will
turn out to be useful is the Schur basis [25]. The Schur basis
states are denoted |s, ms〉|ps〉 where ps is what we call the
“path” degree of freedom. This basis is a consequence of

Schur-Weyl duality which says [25]

(C2)⊗2 ∼= (Q1 ⊗ P1) ⊕ (Q0 ⊗ P0) (6)

for two qubits (i.e., two copies of the Hilbert space of a qubit)
and

(C2)⊗3 ∼= (
Q 3

2
⊗ P 3

2

) ⊕ (
Q 1

2
⊗ P 1

2

)
(7)

for three qubits. Here, Qs,Ps ⊂ (C2)⊗n are the subspaces
invariant under the action of the irreducible representa-
tions (irreps) of SU(2) and S3, respectively. These irreps of
SU(2), S3, and therefore subspaces Qs,Ps, respectively, can
be labeled by total spin s since we are taking our qubits to
be spin-1/2 particles. With all this in mind, {|s, ms〉} is a
basis for Qs and {|ps〉} is a basis for Ps. The reason we call
|ps〉 the path degree of freedom is that there exists a basis
of Ps, which corresponds to the different ways (or paths) by
which a composite quantum system’s state develops a spin-s
component via the spin addition of its constituent subsystems.
This is the natural basis to work in for our problem because the
states |ϕk〉 are completely unknown, so there is no preferred
direction. This means that the states are maximally mixed
within the subspaces Qs corresponding to the irreps of SU(2),
and all the information is contained within the path degree of
freedom: the Ps subspaces.

Explicitly, for two qubits, this basis relates to the computa-
tional basis as follows:

Q1 ⊗ P1 : |1, 1〉 = |00〉,

|1, 0〉 = 1√
2

(|01〉 + |10〉),

|1,−1〉 = |11〉,

Q0 ⊗ P0 : |0, 0〉 = 1√
2

(|01〉 − |10〉), (8)

and for three qubits

Q 3
2
⊗ P 3

2
:

∣∣∣∣3

2
,

3

2

〉
= |000〉,

∣∣∣∣3

2
,

1

2

〉
= 1√

3
(|100〉 + |010〉 + |001〉),

∣∣∣∣3

2
,−1

2

〉
= 1√

3
(|011〉 + |101〉 + |011〉),

∣∣∣∣3

2
,−3

2

〉
= |111〉,

Q 1
2
⊗ P 1

2
:

∣∣∣∣1

2
,

1

2

〉
|1〉 = 1√

6
(|100〉 + |010〉 − 2|001〉),

∣∣∣∣1

2
,−1

2

〉
|1〉 = 1√

6
(−|011〉 − |101〉 + 2|110〉),

∣∣∣∣1

2
,

1

2

〉
|0〉 = 1√

2
(|100〉 − |010〉),

∣∣∣∣1

2
,−1

2

〉
|0〉 = 1√

2
(|101〉 − |011〉). (9)
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Here, we are using the abbreviation

|i1i2 . . . in〉 := |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (10)

for ik ∈ {0, 1}. Note also that when dim(Ps) = 1 we do not
include |ps〉.

III. OPTIMAL CLASSIFICATION

We begin by considering the optimal classification of two
and three qubits separately. Part of the reason for doing this
explicitly is to introduce some of the ideas and notation re-
quired for when we perform two sequential classifications.
These results were derived previously in [5,26].

A. Optimal classification of two qubits

The aim of a classification of two unknown qubits is to
determine whether these two qubits are the same as or differ-
ent from one another [5,26]. That is, the aim is to distinguish
between |ϕ0〉|ϕ0〉, |ϕ0〉|ϕ1〉, |ϕ1〉|ϕ0〉, and |ϕ1〉|ϕ1〉 (actually,
we only distinguish between |ϕ0〉|ϕ0〉 and |ϕ0〉|ϕ1〉 as we will
see). Let us begin by considering, mathematically, the form
of the two-qubit states. Since |ϕk〉 are unknown qubits, to our
knowledge, they are equally likely to be located at any point
on the Bloch sphere. We therefore describe the two possible
two-qubit states as mixed states using density operators as
follows:

ρ̂i j =
∫

|ϕi〉|ϕ j〉〈ϕi|〈ϕ j | dϕ0dϕ1, (11)

where i = 0, j ∈ {0, 1}, and the integral is with respect to the
Haar measure and over the entire Bloch sphere. Note that we
can always take i = 0. This is because, when averaging over
the Bloch sphere, all information about whether each qubit is
|ϕ0〉 or |ϕ1〉 is lost and all that remains is information about
their relative positions on the Bloch sphere. This means that
ρ̂00 = ρ̂11 and ρ̂01 = ρ̂10.

The explicit form of these two states, in the Schur basis
[Eq. (8)], can be shown to be (see Appendix A 1 for more
detail)

ρ̂00 = 1
3 (|1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|), (12a)

ρ̂01 = 1
4 (|1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|
+ |0, 0〉〈0, 0|). (12b)

We can therefore observe that, here, a quantum classification
of two unknown qubits corresponds to a quantum measure-
ment (in general, a POVM) that distinguishes between the two
states ρ̂00, ρ̂01. The optimal measurement to do this is made up
of the projectors onto the totally symmetric and antisymmetric
subspaces invariant under SU(2), respectively,

P̂+ = |1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|, (13a)

P̂− = |0, 0〉〈0, 0|, (13b)

where P̂+ (P̂−) is the outcome associated with measuring the
state ρ̂00 (ρ̂01). Here we use the +/− subscripts rather than
00/01 with the hope that this makes the notation later in
this paper less confusing to read. This measurement can be
motivated by realizing that ρ̂00 and ρ̂01 commute with one
another, which means they have a common set of eigenstates.

So we take the optimal measurement operators P̂+, P̂− to be
the (sum of) projectors onto the eigenstates with the largest
eigenvalues of ρ̂00, ρ̂01, respectively. In other words, it is the
Holevo-Helstrom measurement for distinguishing between
two quantum states [27]. Using Eq. (5), the maximal proba-
bility of successfully classifying two equally likely, unknown
qubits is calculated as follows:

Psucc = 1
2 [Tr(P̂+ρ̂00) + Tr(P̂−ρ̂01)], (14)

where the 1/2 comes from the two states ρ̂00, ρ̂01 being
equiprobable. This results in a success rate of

Psucc = 5
8 = 62.5%. (15)

B. Optimal classification of three qubits

Similarly to the two-qubit case, we begin by writing down
the possible three-qubit states. In general, we once again ex-
press these states as

ρ̂i jk =
∫

|ϕi〉|ϕ j〉|ϕk〉〈ϕi|〈ϕ j |〈ϕk| dϕ0dϕ1, (16)

where i = 0, j, k ∈ {0, 1}. As shown in Appendix A 2, using
the Schur basis [Eq. (9)],

ρ̂000 = 1
4 Î 3

2
, (17a)

ρ̂001 = 1
6 Î 3

2
+ 1

6 Î 1
2
⊗ |1〉〈1|, (17b)

ρ̂010 = 1
6 Î 3

2
+ 1

24 Î 1
2
⊗ (|1〉 −

√
3|0〉)(〈1| −

√
3〈0|), (17c)

ρ̂011 = 1
6 Î 3

2
+ 1

24 Î 1
2
⊗ (|1〉 +

√
3|0〉)(〈1| +

√
3〈0|), (17d)

where Îs is the identity operator on the subspace Qs. Note that
Îs, Îs′ are orthogonal for s = s′. The optimal measurement that
distinguishes the four states in Eq. (17) is

π̂000 = Î 3
2
, (18a)

π̂001 = 2
3 Î 1

2
⊗ |1〉〈1|, (18b)

π̂010 = 1
6 Î 1

2
⊗ (|1〉 −

√
3|0〉)(〈1| −

√
3〈0|), (18c)

π̂011 = 1
6 Î 1

2
⊗ (|1〉 +

√
3|0〉)(〈1| +

√
3〈0|). (18d)

To motivate this, notice that ρ̂001, ρ̂010, ρ̂011 have S3 per-
mutation symmetry in their qubits. We can therefore require
the optimal measurement to distinguish these three states to
have this same symmetry. So, all we need to do is construct
π̂000, π̂001 to optimally distinguish between ρ̂000, ρ̂001. From
this, we can obtain π̂010, π̂011 via the S3 symmetry mentioned.
The construction of π̂000, π̂001 follows the same reasoning as
that of two-qubit measurement in Eq. (13) aside from the
factor of 2/3 in π̂001, which is required for completeness.
Therefore, using this measurement and Eq. (5), the maximal
probability of successfully distinguishing the (equally likely)
states in Eq. (17) is

Psucc = 5
12 ≈ 41.7%. (19)
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IV. MEASUREMENT DISTURBANCE

We thus consider what happens when we perform the opti-
mal measurement (13) to classify two qubits, then add a third
qubit and perform an optimal measurement on all three. In
particular, we consider the case in which the outcome of the
two-qubit measurement is known, and the measurement on all
three is updated accordingly. After the first measurement is
performed with outcome P̂j , as discussed earlier with Eq. (4),
the two qubit states update as follows:

ρ̂0i → ρ̂
j
0i =

√
P̂j ρ̂0i

√
P̂j

†

Tr(P̂j ρ̂0i )
. (20)

Following this, we add a third qubit, however, it is convenient
to instead think of the situation as beginning with three qubits,
and performing the measurement in Eq. (13) on the first two.
With this in mind, following a measurement outcome of P̂k ,
the three qubit states are found using

ρ̂k
0i j = (

√
P̂k ⊗ 1̂)ρ̂0i j (

√
P̂k ⊗ 1̂)†

Tr(P̂k ⊗ 1̂ρ̂0i j )
, (21)

where ρ̂0i j are the states in Eq. (17) and 1̂ denotes the identity
operator on a single qubit.

Explicitly, the states are as follows:

ρ̂+
000 = 1

4 Î 3
2
, (22a)

ρ̂+
001 = 1

6 Î 3
2
+ 1

6 Î 1
2
⊗ |1〉〈1|, (22b)

ρ̂+
01k = 2

9 Î 3
2
+ 1

18 Î 1
2
⊗ |1〉〈1|, (22c)

ρ̂−
000 = 0̂ = ρ̂−

001, (22d)

ρ̂−
01k = 1

2 Î 1
2
⊗ |0〉〈0| (22e)

for k = 0, 1. For each of the first measurement outcomes P̂±,
we can therefore find the optimal measurement to be made up
of the following projectors:

π̂+
000 = Î 3

2
, (23a)

π̂+
001 = Î 1

2 ⊗ 1
2
, (23b)

π̂+
01k = 0̂, (23c)

π̂−
000 = Î 3

2
, (23d)

π̂−
001 = 0̂, (23e)

π̂−
01k = 1

2 Î 1
2 ⊗ 1

2
, (23f)

where Î 1
2 ⊗ 1

2
denotes the identity on the subspace Q 1

2
⊗ P 1

2
.

These measurements can be motivated by the fact that π̂±
i

projects its corresponding state ρ̂±
i onto the components,

which are larger, or the same as, the same components in all
the other states.

Now, the probability of a successful second measurement
is given by

P2nd
succ =

∑
k∈{+,−}

∑
i, j∈{0,1}

P(ρ̂0i j )P
(
P̂k, π̂

k
0i j |ρ̂0i j

)
,

=
∑

k

∑
i, j

P
(
π̂ k

0i j

∣∣ρ̂k
0i j

)
P(P̂k|ρ̂0i j )P(ρ̂0i j )

= 1

4

∑
k

∑
i, j

Tr

[
π̂ k

0i j

(√
P̂k ⊗ 1̂

)
ρ̂0i j

(√
P̂k ⊗ 1̂

)]
,

(24)

where P(ρ̂0i j ) is the probability that the system is prepared in
the state ρ̂0i j (this is 1/4 for all i, j), P(P̂k, π̂

k
0i j |ρ̂0i j ) denotes

the probability that the first measurement outcome is k and the
second is 0i j given that the state was prepared in the state ρ̂0i j ,
and P(π̂ k

0i j |ρ̂k
0i j ) ≡ P(π̂ k

0i j |ρ̂0i j, P̂k ). We therefore find that the
probability of a successful second classification is affected by
an optimal first classification and is reduced to the following
value:

P2nd
succ = 19

48 ≈ 39.6%. (25)

Although this is a small reduction in the success rate of
the three-qubit measurement, it demonstrates the principle of
measurement disturbance caused by the intermediate classifi-
cation.

V. WEAKENING THE INTERMEDIATE MEASUREMENT

A. Weak two-qubit measurement

Our ultimate aim is to understand how a classification on
two qubits affects our ability to perform a subsequent classifi-
cation in general. So, instead of considering only the optimal
measurement on two qubits, we interpolate between this and
the weakest possible measurement: the identity measurement.
This weakened measurement can be written as

π̂− = αP̂− + β Î,

π̂+ = αP̂+ + (1 − α − β )Î,

such that α ∈ [0, 1 − β] and β ∈ [0, 1],

(26)

where the range of values α, β take come about due to the
positivity condition of POVMs, given in Eq. (3a), as well as
the convention we are adopting: we take the measurement
outcome π̂+ (π̂−) to correspond to the measurement of the
state ρ̂00 (ρ̂01). Note also that, by construction, this POVM is
complete, as required [Eq. (3b)]. To reduce future work, note
that we can change between the two situations corresponding
to different measurement outcomes by performing the swaps

α → −α,

β → 1 − β.
(27)

We conclude this subsection by noting that the probability
of a successful two-qubit classification using the POVM in
Eq. (26) is given by

P1st
succ = 1

2

(
1 + α

4

)
, (28)
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where the superscript is included in anticipation of the second
classification introduced in the next subsection.

B. Adding a third qubit

As before, after the first classification of two qubits is
performed, a third qubit, either |ϕ0〉 or |ϕ1〉, is added. To write
down the resulting three-qubit state, just as in the case of an
optimal intermediate measurement, it is convenient to think
instead of the situation as an undisturbed three-qubit state ρ̂0i j

that is updated by the intermediate measurement on the first
two qubits as

ρ̂±
0i j = (

√
π̂± ⊗ 1̂)ρ̂0i j (

√
π̂± ⊗ 1̂)

Tr(π̂± ⊗ 1̂ρ̂0i j )
. (29)

Explicitly, in the case when the measurement outcome on
the first two qubits is π̂−, using similar techniques as those
found in Eqs. (A13) and (A14) to find

√
π̂− ⊗ 1̂ in the Schur

basis, the states ρ̂−
0i j can be shown to be

ρ̂−
000 = 1

4 Î 3
2
, (30a)

ρ̂−
001 = 1

6 Î 3
2
+ 1

6 Î 1
2
⊗ |1〉〈1|, (30b)

ρ̂−
010 = 4β

6(α + 4β )
Î 3

2
+ 1

6(α + 4β )
Î 1

2
⊗ (√

β|1〉 −
√

3(α + β )|0〉)(√β〈1| −
√

3(α + β )〈0|), (30c)

ρ̂−
011 = 4β

6(α + 4β )
Î 3

2
+ 1

6(α + 4β )
Î 1

2
⊗ (√

β|1〉 +
√

3(α + β )|0〉)(√β〈1| +
√

3(α + β )〈0|), (30d)

with probabilities (derived in Appendix B 1)

p−
000 = p−

001 = 2β

α + 8β
, (31a)

p−
010 = p−

011 = α + 4β

2(α + 8β )
. (31b)

To find ρ̂+
0i j we can just perform the swaps in Eq. (27).

To achieve our aim of classifying the resulting three-qubit
system, we construct a measurement {π̂−

i } that distinguishes
between the states {ρ̂−

i } above (for additional detail, see
Appendix B 2). To do this, first, notice that the totally sym-
metric components (s = 3/2) of ρ̂−

001, ρ̂
−
01l are strictly less than

that of ρ̂−
000. Further, ρ̂−

000 has no s = 1
2 components. This

motivates the fact that the optimal way to distinguish ρ̂−
000

from the other states is to take

π̂−
000 = Î 3

2
, (32)

while keeping the remaining measurement operators in (Q 1
2
⊗

P 1
2
) ⊗ (Q 1

2
⊗ P 1

2
)∗, where V ∗ denotes the dual space of V .

Next, note that in the s = 1/2 subspaces, ρ̂001, ρ̂010, ρ̂011 have
a mirror symmetric form in their path degree of freedom
(spanned by |p 1

2
〉 = |0〉, |1〉) as p−

010 = p−
011 and the set is

invariant under reflection about |0〉. Including π̂−
000 for com-

pleteness, the optimal measurement to distinguish these three
states is known [28] and has the form

π̂−
000 = Î 3

2
, (33a)

π̂−
001 = (1 − a2

−)Î 1
2
⊗ |1〉〈1|, (33b)

π̂−
010 = 1

2 Î 1
2
⊗ (a−|1〉 − |0〉)(a−〈1| − 〈0|), (33c)

π̂−
011 = 1

2 Î 1
2
⊗ (a−|1〉 + |0〉)(a−〈1| + 〈0|), (33d)

where a− ∈ [0, 1] to preserve positivity. A closed form ana-
lytic expression for a− in terms of the prior probabilities and
overlaps of the states is given in [28], which we use below.
Once again, to obtain {π̂+

i }, we just perform the swaps in
Eq. (27).

To utilize [28] we first must define a prior probability for
the states ρ̂−

001, ρ̂
−
01i when projected into the s = 1/2 subspace,

and can then directly use the results of [28] to find the optimal
value of the parameter a−. Updating the prior probabilities
gives

p− = 3α + 4β

6(α + 2β )
, (34)

which is derived in Appendix B 2. Using the analytical ex-
pression in [28] then gives (again more detail is given in
Appendix B 2):

a− =
{√

α+β

3β
if α ∈ [0, min{1 − β, 2β}],

1 if α ∈ (2β, 1 − β] with 2β < 1 − β,

(35)

such that β ∈ [0, 1] as always. Note that the conditions 2β <

1 − β, β ∈ [0, 1] can be rewritten as β ∈ [0, 1
3 ). Similarly,

when the outcome of the first measurement is π̂+, we arrive
at

a+ =
√

1 − α − β

3(1 − β )
(36)

for all valid α, β. To achieve our aim and observe how the suc-
cess probability of the first and second measurements compare
to one another, we consider the two cases of Eq. (35).

1. Case 1: α ∈ [0, min{1 − β, 2β}], β ∈ [0, 1]

Consider the first case in Eq. (35), that is, when

a− =
√

α + β

3β
,

a+ =
√

1 − α − β

3(1 − β )
. (37)

Using Eq. (24) with P̂± → π̂±, in this region, it is straight-
forward, albeit requiring a little algebra, to show that the
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probability of a successful second classification stays con-
stant at the optimal value for distinguishing three undisturbed
qubits:

P2nd
succ = 5

12 (38)

for all α ∈ [0, min{1 − β, 2β}], β ∈ [0, 1].

2. Case 2: α ∈ (2β, 1 − β], β ∈ [0, 1
3 )

Considering now the second case in Eq. (35), let a− = 1
and a+ be as written in Eq. (36). Once again, using Eq. (24)
with P̂± → π̂±, after a little algebra, we find

P2nd
succ = 5

12
− β

12
− α

48
+ 1

24

√
3β(α + β ). (39)

Now, we want P2nd
succ to be its optimal value for each value of

P1st
succ. Since P1st

succ has the form given in Eq. (28) (linear in α

alone), to do this, we hold α constant, and maximise P2nd
succ with

respect to β. This occurs when

β = −3α

2
or β = α

2
. (40)

The first option only holds when α = 0 ∈ (2β, 1 − β]. The
second option corresponds to the boundary of the two sce-
narios in Eq. (35), that is, when α = 2β. This tells us that
for α > 2β, there are no stationary points with respect to β,
and we must therefore look to the boundaries of β: β = 0
or β = 1 − α. However, the optimal boundary can be shown
to be β = 1 − α when we notice that P2nd

succ is monotonically
increasing with respect to β in the region α ∈ (2β, 1 − β],
β ∈ [0, 1

3 ]. This can be shown using the fact that there are
no stationary points in this region, so it must therefore be
monotonically increasing or decreasing, along with the fact
there exists a point [e.g., (α, β ) = (5/6, 1/6)] in this region

such that ∂P2nd
succ

∂β
> 0. So, using β = 1 − α along with Eq. (28),

we find the optimal probability of success in this region to be

P2nd
succ = 1

12
+ P1st

succ

2
+ 1

24

√
3
(
5 − 8P1st

succ

)
. (41)

We can re-express the boundaries in P2nd
succ in terms of P1st

succ
by noting that we would like Eq. (38) to be the success rate
for as large a region as possible. This can be seen by noting
that Eq. (39) can be rewritten as

P2nd
succ = 5

12 − 1
48 (

√
α + β −

√
3β )2 (42)

and therefore is less than or equal to the optimal value of
5/12. So, to make the region in which Eq. (38) is true as
large as possible, we must maximize min{2β, 1 − β}. That is,
when β = 1/3 and so α ∈ [0, 1

3 ]. Therefore, using Eq. (28),
we take P2nd

succ to be given by Eq. (38) when P1st
succ ∈ [0, 7

12 ], and
by Eq. (41) when P1st

succ ∈ ( 7
12 , 5

8 ].
To gain some intuition as to how the three qubit states and

second measurement vary with the strength of the first mea-
surement, we can plot their s = 1/2 path components, that is,
their components when restricted to the subspace P 1

2
. Further,

since ρ̂±
000, π̂

±
000 are left invariant by the first measurement,

no information is gained by considering them, so we only
need look at the remaining states and measurement operators.
Figure 1 shows how the states ρ̂−

001, ρ̂
−
010, ρ̂

−
011 and measure-

ment operators π̂−
001, π̂

−
010, π̂

−
011 compare to one another for

various values of α, β. Note the mirror symmetry of the
states and measurement operators in their |0〉 components as
discussed earlier when constructing the optimal measurement
of the three-qubit states. Further, the adjustment of the sec-
ond measurement compensates for the disturbance caused by
the first measurement in the region α ∈ [0, min{1 − β, 2β}],
β ∈ [0, 1].

VI. RESULTS

Summarizing what we found, the tradeoff between the first
and second classification is given by

P2nd
succ =

{ 5
12 if P1st

succ ∈ [
0, 7

12

]
,

1
12 + P1st

succ
2 + 1

24

√
3
(
5 − 8P1st

succ

)
if P1st

succ ∈ (
7

12 , 5
8

]
.

(43)

A plot of this tradeoff can be seen in Fig. 2. Let us note
some points of interest. First, when we require the second
measurement to be optimal, the best first measurement occurs
when α = 2/3 and β = 1 − α = 1/3. Here,

P1st
succ = 7

12 ≈ 58.3%, (44a)

P2nd
succ = 5

12 ≈ 41.7%. (44b)

So the success rate of the first measurement, under the re-
quirement that P2nd

succ is optimal, ranges from 1/2 to 7/12. It is
worth reiterating that the transition from optimal to subopti-
mal second-measurement success rate occurs at the boundary
of the two cases in Eqs. (43) or (35). That is, given a first
outcome of π̂−, when the second measurement stops varying
with respect to α, β as can be seen in Fig. 1.

The next point to consider is when we optimize P1st
succ. Here

α = 1 and β = 1 − α = 0, which means that

P1st
succ = 5

8 = 62.5%, (45a)

P2nd
succ = 19

48 ≈ 39.6%, (45b)

as was found in Secs. III A and IV. This limited success rate
of the second measurement can perhaps be expected due to
the fact the ρ−

01k are parallel to one another as can be seen in
Fig. 1(d).

VII. CONCLUSION

To summarize, we considered a base case in the tradeoff
between two sequential unsupervised quantum learning tasks.
In particular, we looked at the situation in which there were
initially two qubits that could each be in one of two un-
known quantum states. Once a binary classification of varying
success rate, corresponding to a quantum measurement of
varying strength, was performed, a third qubit was added
and the optimal classification on all three qubits was then
performed. We found that, although a binary classification of
two unknown qubits causes measurement disturbance, which
can degrade the performance of an optimal classifier on all
three qubits, there is a large regime in which the performance
remains unaffected. In this regime, the final measurement may
be adjusted to fully mitigate the disturbance caused by the first
measurement. That is, the success rate of the first classification
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FIG. 1. Plots showing the effect that a measurement on the first two qubits of a system, with outcome π̂− (for various values of α, β), has
on the three-qubit states and measurement operators {ρ̂−

001, ρ̂
−
010, ρ̂

−
011} and {π̂−

001, π̂
−
010, π̂

−
011}, respectively. Note that the states and measurement

operators vary with the strength of the two-qubit measurement until (c) α = 2
3 , β = 1

3 after which, while the states continue to change,
the measurement operators stay constant. (c) corresponds to the boundary between the constant and nonconstant regions in Fig. 2. Further,
(a) corresponds to the case in which no measurement is performed on the first two qubits and (d) to when the optimal measurement is performed
on the first two qubits.

can range from that of a guess, P1st
succ = 1/2, to P1st

succ = 7/12
without causing the success rate of the second classification
to deviate from its optimal value of P2nd

succ = 5/12. When P1st
succ

is further improved, however, P2nd
succ decreases nonlinearly to a

FIG. 2. Plot of the tradeoff between the success rates of the first
binary classification of two qubits and the second binary classifica-
tion when a third qubit is added. The probability of success of the
first (second) measurement is denoted P1st

succ (P2nd
succ ).

success rate of 19/48 as P1st
succ increases to its optimal value of

5/8.
This work provides an indication that sequential unsu-

pervised classifications of quantum data can be performed.
Further, depending on the strength of an earlier classification,
a later classification’s ability need not be compromised. Hav-
ing said this, this work also highlights that there are nontrivial
tradeoffs between sequential unsupervised quantum learning
tasks, which, although small in this base case, may be more
considerable in more complicated scenarios. Here we consid-
ered the simplest possible example of a quantum learning task
in which a measurement disturbance tradeoff exists between
performance on a subset of the data provided and performance
on the entire dataset. We fully characterized this tradeoff. This
is a peculiarly quantum effect due to fundamental features of
quantum mechanics, which is not present in classical machine
learning.

This is just the first step in exploring this tradeoff in
learning tasks, and more work is required to fully understand
the limitations imposed by quantum mechanics on sequen-
tial learning. For example, the next natural step would be to
consider starting with n unknown qubits of two types and,
following a classification of them, adding one or more extra
qubits to be subsequently classified. Further, one could look
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at the case in which there are a larger number of options of
qubit (or d-dimensional qudit) to choose between. Another
path to take could be the supervised analog of the content of
this paper, with labeled qubits being given as a training set
used to classify future ones. In addition, there are a range
of learning scenarios, including partially or fully supervised
learning, and reinforcement learning, in which similar effects
may be explored. We leave these considerations for future
work.
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APPENDIX A: DERIVATION OF UNDISTURBED STATES

Let us first derive the two-qubit states in Eq. (12). To do
this, we use some representation theory. For our purposes, we
define the representation (Qn,Q) of SU(2) such that for any
U ∈ SU(2),

Qn(U )|i1〉 · · · |in〉 := U ⊗n|i1〉 · · · |in〉. (A1)

We also require the following representation of the symmetric
group Sn:

P(σ )|i1〉 · · · |in〉 := |iσ−1(1)〉 · · · |iσ−1(n)〉, (A2)

such that σ ∈ Sn. For instance, for n = 3, σ = (123),

P((123))|i1i2i3〉 = |i3i1i2〉. (A3)

1. Two-qubit states

Beginning with ρ̂00, using the SU(2) invariance of the Haar
measure, notice that

Q2(U )ρ̂00Q†
2(U ) = Q2(U )

(∫
|ϕ0ϕ0〉〈ϕ0ϕ0|dϕ0

)
Q†

2(U )

=
∫

|ϕ0ϕ0〉〈ϕ0ϕ0|dϕ0 = ρ̂00. (A4)

So, by Schur’s lemma, there exist bases, for example the Schur
basis given in Eq. (8), such that

ρ̂00 = α1Î1 ⊕ α0Î0. (A5)

Recalling Eq. (6), note that the subscripts reference the total
spin of the subspaces.

However, notice that for any qubit |ϕ0〉 = a|0〉 + b|1〉,
|ϕ0ϕ0〉 = a2|00〉 + ab(|01〉 + |10〉) + b2|11〉. (A6)

So, comparing with Eq. (8), |ϕ0ϕ0〉 lives entirely in Q1 ⊗ P1.
This implies that α0 = 0 and therefore, by the normalization
of ρ̂00,

ρ̂00 = 1
3 Î1

= 1
3 (|1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|). (A7)

Next, for ρ̂01, notice that with a slight abuse of notation,

ρ̂01 =
∫

|ϕ0ϕ1〉〈ϕ0ϕ1|dϕ0dϕ1

=
∫

|ϕ0〉〈ϕ0| ⊗ |ϕ1〉〈ϕ1|dϕ0dϕ1

=
∫

|ϕ0〉〈ϕ0|dϕ0 ⊗
∫

|ϕ1〉〈ϕ1|dϕ1

= 1

4
1̂ ⊗ 1̂, (A8)

where the last equality is obtained by the invariance of∫ |ϕi〉〈ϕi|dϕi under Q1(SU(2)) (or, more physically, due to
each of the integrals describing a maximally mixed qubit)
and the 1/4 is required for normalization. Therefore, ρ̂01 is
proportional to the identity on (C2)⊗2 and hence, we can
rewrite it as the identity in the Schur basis

ρ̂01 = 1
4 Î1 ⊕ Î0

= 1
4 (|1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|
+ |0, 0〉〈0, 0|).

2. Three-qubit states

Similar arguments to the two-qubit case tell us that we can
write the following:

ρ̂000 = α 3
2
Î 3

2
⊕ α 1

2
Î 1

2
⊕ α′

1
2
Î 1

2
(A9)

due to its commutivity with all the elements of Q3(SU(2)). To
motivate the presence of two copies of the Q 1

2
space implied

here, recall that the addition of three spin-half particles results
in a system with two orthogonal spin-half components. To find
α 1

2
, α′

1
2
, notice that for all σ ∈ S3,

P(σ )ρ̂000P†(σ ) = ρ̂000. (A10)

This implies ρ̂000 lives entirely within (Q 3
2
⊗ P 3

2
) ⊗ (Q 3

2
⊗

P 3
2
)∗, for if it did not, it would have a component within

(Q 1
2
⊗ P 1

2
) ⊗ (Q 1

2
⊗ P 1

2
)∗ and would therefore not be acted

on trivially by P(S3) since the irrep that P 1
2

is invariant under
is not trivial. It therefore follows that α 1

2
, α′

1
2

= 0 and

ρ̂000 = 1
4 Î 3

2
, (A11)

where, again, 1/4 is the normalization constant.
Now, for ρ̂001, using a similar technique to ρ̂01,

ρ̂001 =
∫

|ϕ0ϕ0ϕ1〉〈ϕ0ϕ0ϕ1|dϕ0dϕ1

=
∫

|ϕ0ϕ0〉〈ϕ0ϕ0|dϕ0 ⊗
∫

|ϕ1〉〈ϕ1|dϕ1

= 1

2
ρ̂00 ⊗ 1̂

= 1

6
(|1, 1〉〈1, 1| + |1, 0〉〈1, 0| + |1,−1〉〈1,−1|)

⊗
(∣∣∣∣1

2
,

1

2

〉〈
1

2
,

1

2

∣∣∣∣ +
∣∣∣∣1

2
,−1

2

〉〈
1

2
,−1

2

∣∣∣∣
)

, (A12)
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where the prefactors are determined using similar ideas to
before. To rewrite this in the Schur basis of (Q 3

2
⊗ P 3

2
) ⊗

(Q 1
2
⊗ P 1

2
), we use the following [25]:

|s, m〉|p〉 ⊗
∣∣∣∣1

2
,±1

2

〉

→
√

s ± m + 1

2s + 1

∣∣∣∣s + 1

2
, m ± 1

2

〉
|p, 0〉

∓
√

s ∓ m

2s + 1

∣∣∣∣s − 1

2
, m ± 1

2

〉
|p, 1〉. (A13)

For our case, s = 1, m ∈ {1, 0,−1} and p is omitted since
dim P1 = 1 = dim P0. Applying Eq. (A13) to Eq. (A12), we
obtain

ρ̂001 = 1
6

(
Î 3

2
+ Î 1

2
⊗ |1〉〈1|), (A14)

where α = 1/6 is found by again requiring Tr(ρ̂001) = 1.
Finally, we can find ρ̂010, ρ̂011. Noting that

ρ̂011 =
∫

|ϕ0ϕ1ϕ1〉〈ϕ0ϕ1ϕ1|dϕ0dϕ1

=
∫

|ϕ1ϕ0ϕ0〉〈ϕ1ϕ0ϕ0|dϕ0dϕ1 = ρ̂100, (A15)

to obtain ρ̂010, ρ̂011, notice that we just have to permute the
qubits in ρ̂001. To do this, first notice that Î 3

2
is invariant

under permutations of qubits since P(S3) acts trivially on P 3
2
.

Therefore, the only part of ρ̂001 affected by permutations is
Î 1

2
⊗ |1〉〈1|.
Intuitively, we can guess the form of ρ̂010, ρ̂011 by the fact

that,

· · · ρ̂001
(123)−−→ ρ̂010

(123)−−→ ρ̂011
(123)−−→ ρ̂001 · · · , (A16)

where (123) ∈ S3 is a three-cycle. Since permutations only
have an affect on the path components of the states, it
seems that ρ̂001, ρ̂010, ρ̂011 should be evenly distributed in the
two-dimensional space P 1

2
. That is, since each state can be

accessed by repeated application of the permutation (123),
we would expect each state be accessible by the repeated
application of some two-dimensional transformation (on P 1

2
).

In particular, since ρ̂001 is known, we might guess that the
remaining states could be found by rotating its P 1

2
component

by 2π/3. This indeed results in the states given in Eq. (17).
More explicitly, we can derive ρ̂010, ρ̂011 using the follow-

ing three steps.
(1) Rewrite ρ̂001 in the computational basis [using Eq. (9)].
(2) Permute the qubits |i1i2i3〉 → |i2i3i1〉 to obtain ρ̂010 in

the computational basis.
(3) Rewrite the state in the Schur basis given in Eq. (9).

APPENDIX B: DERIVATION OF UPDATED STATES
AND MEASUREMENTS

1. Updated prior probabilities

Assuming the outcome of the measurement on the
first two qubits is −, the probabilities of the dis-
turbed states ρ̂−

000, ρ̂
−
001, ρ̂

−
010, ρ̂

−
011 occurring are given by

p−
000, p−

001, p−
010, p−

011, respectively, such that

p−
0i j := P(ρ̂0i j |π̂− ⊗ 1). (B1)

Using Bayes’ theorem, this can be written as

p−
0i j = P(π̂− ⊗ 1|ρ̂0i j )P(ρ̂0i j )

P(π̂− ⊗ 1)

= P(π̂−|ρ̂0i )

4P(π̂−)
, (B2)

where the second equality is obtained using the fact that
P(ρ̂0i j ) = 1/4, and that the third qubit is acted on only by the
identity and therefore does not change any of the probabilities.

So, by noting that

P(π̂−|ρ̂00) = Tr(π̂−ρ̂00) = β,

P(π̂−|ρ̂01) = Tr(π̂−ρ̂01) = 1
4 (α + 4β ), (B3)

and therefore

P(π̂−) = P(π̂−|ρ̂00)P(ρ̂00) + P(π̂−|ρ̂01)P(ρ̂01)

= 1
8 (α + 8β ), (B4)

we find that

p−
000 = p−

001 = 2β

α + 8β
, (B5a)

p−
010 = p−

011 = α + 4β

2(α + 8β )
. (B5b)

2. Second measurement

Again, assuming the outcome of the first classification was
−, recall that distinguishing ρ̂−

000 from the other states is done
optimally by letting π̂−

000 be the projector onto the s = 3/2
space. This leads to the measurement that best distinguishes
ρ̂−

001, ρ̂
−
010, ρ̂

−
011 being entirely contained in the s = 1/2 space

(Q 1
2
⊗ P 1

2
) ⊗ (Q 1

2
⊗ P 1

2
)∗. Further, since the Q 1

2
⊗ Q∗

1
2

com-

ponent of each of ρ̂−
001, ρ̂

−
010, ρ̂

−
011 is the identity, all the

information about how they differ is contained in P 1
2
⊗ P∗

1
2
.

So we can rephrase this as a state discrimination problem of
the following states:

|ψ−
001〉 = N−

001√
6

|1〉, (B6a)

|ψ−
010〉 = N−

010√
6(α + 4β )

(√
β|1〉 −

√
3(α + β )|0〉), (B6b)

|ψ−
011〉 = N−

011√
6(α + 4β )

(√
β|1〉 +

√
3(α + β )|0〉), (B6c)

where N−
0i j are normalization constants required so that we

can think of this as a mirror-symmetric-state discrimination
problem. Explicitly,

N−
001 =

√
6,

N−
010 =

√
6(α + 4β )

4β + 3α
= N−

011. (B7)
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Now, in [28], the states to be discriminated were written as

|ψ1〉 = |1〉, (B8a)

|ψ2〉 = cos θ |1〉 − sin θ |0〉, (B8b)

|ψ3〉 = cos θ |1〉 + sin θ |0〉, (B8c)

such that |ψ2,3〉 happen with probability p2,3 = p and |ψ1〉
with probability p1 = 1 − 2p. So, we can let

cos θ =
√

β

4β + 3α
,

sin θ =
√

3(α + β )

4β + 3α
, (B9)

and q−
010, q−

011 = p−, q−
001 = 1 − 2p− where

q−
0i j = P(ρ̂0i j |π̂−, s = 1/2) (B10)

is the probability of being in the state |ψ−
0i j〉, and we add

(with respect to [28]) a superscript to p to distinguish the two
outcomes of the intermediate measurements.

So, using Eq. (B10), we can find p− = q−
0i j . Using Bayes’

theorem, we find that

p− = P
(
π̂− ⊗ 1, s = 1

2

∣∣ρ̂0i j
)
P(ρ̂0i j )

P
(
π̂− ⊗ 1, s = 1

2

) . (B11)

Note that requiring s = 1/2 is equivalent to projecting the
state ρ̂0i j onto the s = 1/2 space (Q 1

2
⊗ P 1

2
) ⊗ (Q 1

2
⊗ P 1

2
)∗.

Denoting this projector by P̂1
2
,

P

(
π̂− ⊗ 1, s = 1

2

∣∣∣∣ρ̂0i j

)
= P(π̂− ⊗ 1, P̂1

2
|ρ̂0i j )

= Tr[P̂1
2
(
√

π̂− ⊗ 1)ρ̂0i j (
√

π̂− ⊗ 1)P̂1
2
]. (B12)

The denominator can be found using

P

(
π̂− ⊗ 1, s = 1

2

)
=

∑
i j

P(π̂− ⊗ 1, P̂1
2
|ρ̂0i j )P(ρ̂0i j ),

(B13)
from which it follows that

p− = 3α + 4β

6(α + 2β )
. (B14)

Now, according to [28], if

p � 1

2 + cos θ (cos θ + sin θ )
, (B15)

a = 1. Otherwise,

a = p cos θ sin θ

1 − p(2 + cos2 θ )
. (B16)

Substituting p− for p, a− for a and our expressions for
sin θ, cos θ given in Eq. (B9), this can be restated in the
following way: if

α � 2β, (B17)
a− = 1. Otherwise,

a− =
√

α + β

3β
. (B18)

When coupled with the constraints on α, β given in Eq. (26),
we obtain

a− =
{√

α+β

3β
if α ∈ [0, min{1 − β, 2β}],

1 if α ∈ (2β, 1 − β] with 2β < 1 − β,

(B19)

such that β ∈ [0, 1].
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