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Quantum signal processing for simulating cold plasma waves
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Numerical modeling of radio-frequency waves in plasma with sufficiently high spatial and temporal resolution
remains challenging even with modern computers. However, such simulations can be sped up using quantum
computers in the future. Here, we propose how to do such modeling for cold plasma waves, in particular, for an X
wave propagating in an inhomogeneous one-dimensional plasma. The wave system is represented in the form of a
vector Schrödinger equation with a Hermitian Hamiltonian. Block encoding is used to represent the Hamiltonian
through unitary operations that can be implemented on a quantum computer. To perform the modeling, we apply
the so-called quantum signal processing algorithm and construct the corresponding circuit. Quantum simulations
with this circuit are emulated on a classical computer, and the results show agreement with traditional classical
calculations. We also discuss how our quantum circuit scales with the resolution.
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I. INTRODUCTION

In recent years, there has been a significant development
of quantum-computing (QC) applications to simulating clas-
sical physical systems. Various methods have been proposed
to solve the standard wave equation [1], Poisson’s equation
[2,3], Maxwell’s equations [4,5], first-order linear hyperbolic
systems [6], the Navier-Stokes equation [7,8], the Boltzmann
equation [9], and to simulate advection-diffusion processes
[10]. Recently, it has also been noted [11] that particularly
fitting the QC framework may be simulations of the highly
dispersive radio-frequency (rf) waves in inhomogeneous clas-
sical plasmas, which are of interest due to their rich physics
and importance for practical applications. This paper proposes
a quantum algorithm for modeling such waves.

A. Introduction to plasma waves

Classical plasmas support a broad variety of waves, which
are present there naturally and are also launched with ex-
ternal antennas for plasma diagnostics and control [12]. In
the simplest case of cold nonmagnetized plasma, these waves
consist of two types. One is the electrostatic Langmuir os-
cillations of the electron fluid relative to the ion fluid, which
occur at the frequency ω = ωp, where ωp is the so-called
plasma frequency determined by the local background density
(Sec. II A). The other type of wave is electromagnetic light
waves, which are similar to the light waves in vacuum but have
a different dispersion relation, ω = (ω2

p + k2c2)1/2, where k is
the wave vector and c is the speed of light. The Langmuir
waves have their electric field along k, and the light waves
have their electric field in the plane perpendicular to k; i.e.,
there are two electromagnetic modes with the same frequency
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but different polarization. When a background magnetic field
B0 is added, the Langmuir and electromagnetic modes hy-
bridize, and also additional branches appear due to the ion
motion relative to B0, for example, Alfvén waves at low
frequencies. All these branches are classified as O and X
waves depending on their polarization, which in the general
case is neither strictly parallel nor strictly perpendicular to k.
Once thermal and kinetic effects are taken into account, even
more modes appear (sound waves, electron and ion Bernstein
waves, etc.). Even in homogeneous plasma, the number of dis-
persion branches becomes infinite in this case, and additional
modes caused by plasma inhomogeneity are also possible.

In laboratory plasmas such as those in magnetic fusion
experiments, the typical frequencies of interest include the
ion cyclotron frequencies �i (tens of MHz), lower-hybrid
frequency ωLH ∼ |�i�e|1/2 (a few GHz), and the electron
cyclotron frequency �e (∼102 GHz). The latter is usually
comparable to ωp and to the so-called upper-hybrid (UH) fre-
quency ωUH = (�2

e + ω2
p)1/2, at which a collective resonance

occurs for k ⊥ B0. The corresponding waves are widely used
to control fusion plasmas through rf heating [13,14] and also
current drive [15], which is mainly done with lower-hybrid
[16] and electron-cyclotron waves [17] and can also help sup-
press plasma instabilities [18,19]. Many of these rf techniques
are practiced on existing fusion devices [20,21], and current
drive in particular is now envisioned to play a large role for
achieving steady-state operation and for suppressing instabil-
ities in future devices [22–25]. Hence, precise modeling of rf
waves in plasma is of significant practical interest.

Various approximations are used for such modeling, de-
pending on the physics of interest, but for many purposes,
the waves can be considered linear and collisions can
be neglected. (Quantum effects are entirely negligible for
most purposes as well.) Also, the propagation, albeit not
absorption, can often be described within the cold fluid ap-
proximation. Furthermore, in the “electron frequency range”
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(ω ∼ �e ∼ ωp), ions can be considered stationary; then left
of interest are only nondissipative linear oscillations of the
electron fluid. Although simplified, this model retains rich
wave physics that can be difficult to simulate on a classical
computer. The difficulty is due to the fact that the corre-
sponding wavelengths are in the mm range, while the device
size is in the meter range. This makes multidimensional
simulations computationally expensive [26,27] or even en-
tirely unrealistic. Modeling becomes even more difficult when
electromagnetic waves linearly transform into each other or
into electrostatic oscillations, which have even smaller wave-
lengths. (This process is called mode conversion [12,28].) For
example, the latter can happen at ω ∼ ωLH and ω ∼ ωUH. Var-
ious reduced schemes have been used to speed up simulations
of waves in the electron frequency range [29], but they are
fundamentally limited. First-principles simulations could be
beneficial, and this is where QC could help.

B. Quantum simulations

In this work, we report a quantum algorithm that simulates
the propagation of a linear X wave in the electron frequency
range in a plasma with an inhomogeneous static magnetic
field and inhomogeneous density. The considered problem is
one-dimensional, with k ⊥ B0, in which case the X wave is
the branch whose polarization lies in the plane perpendicular
to B0. (The remaining O wave has polarization parallel to
B0.) We also report test simulations using this algorithm on
a classical emulator of a quantum computer. To describe these
results, let us introduce the necessary vocabulary first.

We assume the circuit model of quantum computation,
where information is stored in a set of nq quantum bits called
qubits [30,31]. When entangled, the qubits create a configu-
ration space described by a 2nq -dimensional complex vector,
and such an exponential scaling with nq can be beneficial in
large-dimensional problems. A quantum circuit consists of
a sequence of so-called gates. Some of the gates operate in
parallel, and the longest path between the input and output
points of the circuit is called circuit depth, which is roughly
proportional to the runtime [32]. A gate that acts on mq qubits
can be represented by a 2mq × 2mq unitary matrix, while the
whole quantum circuit is described by a 2nq × 2nq unitary
matrix U . This matrix is applied to an initial state ψ (0), gen-
erating an output state ψ (t ) = Uψ (0), from which classical
information is then extracted via a classical measurement. In
particular, in this paper we focus on quantum Hamiltonian
simulations (QHS) of systems with Hermitian Hamiltonians
H that are independent of time t ; then, U = exp(−iH t ).

Here, we bring the X-wave equations to the form suitable
for QHS using the analytic model from Ref. [11]. Then, we
implement the QHS using the quantum signal processing
(QSP) paradigm, which was originally developed for effi-
cient QHS [33,34]. The essence of the QSP is in encoding
polynomials of given matrices into sequences of rotations.
In the QHS in particular, the QSP searches for a polyno-
mial to approximate the exponential function of H , which
is block encoded into an auxiliary unitary. This state-of-
the-art quantum method is now extensively studied in the
QC community [35–39] and holds promise as a universal
numerical framework applicable to any linear Hamiltonian

problem. For instance, it was recently applied to simula-
tions of one-dimensional kinetic plasma waves in the spectral
representation [40]. However, an application of the QSP to
modeling plasma waves in inhomogeneous plasma, which is a
more practical problem, is reported here.

We show that for the problem of our choice, a linear
cold-X-wave simulation, the QSP implementing QHS can be
constructed efficiently. Using the QuEST computing toolkit
[41], we also implement the corresponding circuit explicitly.
Then we run this algorithm on a classical emulator of a quan-
tum computer and show that our results agree with those of
conventional classical simulations. We also discuss how the
resulting QSP quantum circuit scales with the grid resolution,
the precision of the QSP approximation, and the simulated
time interval.

Our paper is organized as follows. In Sec. II, we outline
our analytical model of a linear cold X wave in inhomoge-
neous plasma and its Schrödinger representation. In Sec. III,
we construct the corresponding one-dimensional model and
derive the Hamiltonian that is used later in our QHS. It is
also shown in Sec. III how to encode the resulting plasma
system into a quantum circuit and how to initialize the circuit.
The QSP algorithm is explained in Sec. IV, and the block
encoding of the wave Hamiltonian is constructed in Sec. V.
The comparison of the QSP with classical simulations and the
scaling of the QSP circuit are presented in Sec. VI. Finally, the
advantages and challenges of applying the QSP to classical
plasma problems are discussed in Sec. VII.

II. COLD PLASMA WAVES

A. Basic equations

We assume a cold fluid electron plasma with density n(x)
immersed into a background magnetic field B0(x). Linear
waves in such plasma can be described by the following
equations:

∂t ṽ = −ṽ × B0 − Ẽ, (1a)

∂t Ẽ = nṽ + ∇ × B̃, (1b)

∂t B̃ = −∇ × Ẽ, (1c)

where ṽ is the electron fluid velocity, and Ẽ and B̃ are the wave
electric and magnetic fields, respectively. Time is measured
in units of the maximum plasma frequency ωp,0 = ωp(n0),
where ωp(n) = (4πne2/m)1/2 is the local plasma frequency
(in cgs units), e is the absolute value of the electron charge,
m is the electron mass, and n0 is the maximum value of n(x).
The velocity is normalized to c, while the fields are normal-
ized to c

√
4πn0m, and the space coordinate is normalized to

κx = c/ωp,0. Equations (1) satisfy Poynting’s theorem

∂t

∫
W dV +

∫
N · dS = 0, (2)

where W = n|ṽ|2 + |Ẽ|2 + |B̃|2 is the system energy den-
sity, and N = Ẽ × B̃ is the Poynting vector. With appropriate
boundary conditions (such as the Dirichlet boundary condi-
tions), the integral over the surface S disappears so the total
energy

∫
W dV is conserved.
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FIG. 1. (a) CMA diagram showing ωL(x) (blue bottom solid), ωUH(x) (red upper solid), and the X-wave frequency ωa (black dashed) in the
parameter space (�2

e/ω
2
a, ω

2
p/ω

2
a ). Here, HCR is the high-density cutoff–resonance pair; LCR is the low-density cutoff–resonance pair; IUHR

is an isolated UH resonance. The gray area corresponds to the forbidden zone between the low-density cutoff and the UH resonance. The black
arrows indicate the wave propagation from s = 0 to s < 0 (horizontal arrow) and from s = 0 to s > 0 (vertical arrow). (b) The corresponding
background density n(x) (solid left blue) and magnetic field B0(x) (red right dashed), Eqs. (44). The peaks in B0(x) and n(x) at s > 0 are added
ad hoc to reduce wave reflection from the right boundary. They guarantee the presence of the LCR and the IUHR in (a). The parameters of the
background profiles are specified in Sec. VI, Eqs. (44a)–(44b). (c) ωL (solid blue), ωUH (dashed red), and ωa (dashed black).

One can also rewrite Eqs. (1) as a vector Schrödinger
equation [11]

∂t |ψ〉 = −iH |ψ〉, (3)

where |ψ〉 = (
√

nṽ, Ẽ, B̃), and H serves as a time-
independent Hamiltonian, which is Hermitian if the system
has suitable boundary conditions (periodic or Dirichlet). The
corresponding dynamics is described by

|ψ (t )〉 = e−iH t |ψ (0)〉. (4)

Because exp(−iH t ) is unitary, 〈ψ |ψ〉 is conserved, which is
an alternative representation of Eq. (2) [11].

B. CMA diagram, resonances, and cutoffs

The parameter space of a linear wave with a fixed fre-
quency ω in cold stationary magnetized plasma is fully
determined by n and B0, or equivalently, by ω2

p/ω
2 and �2

e/ω
2,

where �e = eB0/(mc) in cgs units. Thus, it is convenient to
explore the wave propagation on the plane (ω2

p/ω
2,�2

e/ω
2).

The corresponding plot is called a Clemmow-Mullaly-Allis
(CMA) diagram [12,42]. Notable in this diagram are the
curves that correspond to resonances and cutoffs. Those are
defined in the geometrical-optics limit, when the inverse in-
homogeneity scale is much smaller than (loosely speaking)
the local wave number, which satisfies the local dispersion
relation [43]

ω(x, k) = const. (5)

A resonance is a point where k → ∞. (Collisionless dissi-
pation is never negligible at k → ∞, so in reality, a wave
always experiences damping near a resonance.) A cutoff is a
point where k turns to zero, meaning that a wave experiences
reflection. (Definitions of cutoffs can be subtle in multidimen-
sional systems, but that is unimportant for the purposes of this
paper.) The area beyond the cutoff, where Eq. (5) has no real
solutions for k, is called a forbidden zone. If the forbidden
zone is sufficiently narrow, a wave can tunnel through it much
like a quantum particle tunnels through a potential barrier.

For X waves, the CMA diagram for the regime that we
consider is shown in Fig. 1(a). (There, ωa is a proxy for ω; the
reason why a separate notation ωa is introduced is explained
in Sec. III.) It exhibits the “low-density” cutoff (blue curve)
where ωL(x) = ω [42],

ωL = 1

2

(|�e| +
√

�2
e + 4ω2

p

)
, (6)

and the UH resonance (red curve) where ωUH(x) = ω,

ωUH =
√

�2
e + ω2

p. (7)

The gray area between the cutoff and the resonance is a
forbidden zone. This zone narrows at ω2

p/ω
2 → 0 and at

ω2
p/ω

2 → 1. Thus, if the wave trajectory enters and exits the
forbidden zone in these regions, the entrance and the exit are
located close to each other (so a significant amount of the
wave energy can tunnel through this zone), forming a pair.
There are two such pairs in our case: the low-density cutoff–
resonance pair (LCR) and the high-density cutoff–resonance
pair (HCR). They will be further discussed in Sec. III, after we
explain our choice of the density and magnetic-field profiles,
which determine the wave trajectory on the CMA diagram.

III. ONE-DIMENSIONAL MODEL

A. Field configuration

We reduce Eqs. (1) to a one-dimensional system of size
2r0. The corresponding space grid x ∈ [−r0/κx, r0/κx] has Nx

points. For convenience, we define also a space grid s via

s = x/ max(x) (8)

to have s ∈ [−1, 1]. Because we focus on X-wave propaga-
tion, it is enough for us to keep only ṽx, ṽy, Ẽx, Ẽy, and B̃z,
and we impose the Dirichlet boundary conditions

Ẽy(−r0) = Ẽy(r0) = 0, (9)

B̃z(−r0) = B̃z(r0) = 0. (10)
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To mimic the effect of the antenna that launches the wave,
we introduce an auxiliary linear oscillator Q with frequency
ωa (the index a stands for “antenna”) and initial amplitude
Q0. Coupled to the magnetic field B̃z, the oscillator gradually
transfers its energy to the X wave, while the energy of the
whole system remains constant. Provided that this energy
transfer is slow, the wave being launched has an approxi-
mately constant frequency, ω ≈ ωa.

The source is placed at the center (x = 0), where the
background density (represented by ω2

p) and magnetic field
(represented by �2

e) are small. Thus, the wave trajectory starts
at the bottom left corner of the CMA diagram [Fig. 1(a)].
Then the wave propagates both to the left and to the right
in the x space. The horizontal black arrow corresponds to
the wave propagation toward the HCR. The X wave is partly
reflected at the cutoff. But it also partly tunnels through the
narrow forbidden zone (gray area) beyond the cutoff (blue
line) and accumulates at the UH resonance (red curve), where
the wavelength ends up decreasing indefinitely (strictly speak-
ing, until dissipation ceases to be negligible). This is the effect
of practical interest that we seek to model, and naturally, doing
so requires high resolution near the resonance. However, mod-
eling of this effect can be obscured by wave reflection from
the right boundary. To suppress this reflection, auxiliary back-
ground profiles are introduced at x > 0 [Fig. 1(b)] such that
they ensure X-wave trapping inside an additional resonance.
Specifically, variations of the density and magnetic field give
rise to a LCR and also an additional, isolated, UH resonance
(IUHR), as shown in Fig. 1(c). Because the LCR is located in
the region of extremely small density, the forbidden zone there
is practically transparent. Then the wave energy propagating
from the source to the right (x > 0) goes through the LCR
without noticeable reflection and accumulates at the IUHR,
so no reflection from the right boundary ever occurs. Classical
simulations of this system [Figs. 2(a) and 2(b)] show that the
wave behaves as described indeed.

B. Rescaled variables

In terms of the rescaled velocity ξ = ṽ
√

n, our one-
dimensional model can be written explicitly as

i∂tξx(x, t ) = −iB0(x)ξy(x, t ) − i
√

n(x)Ẽx(x, t ), (11a)

i∂tξy(x, t ) = iB0(x)ξx(x, t ) − i
√

n(x)Ẽy(x, t ), (11b)

i∂t Ẽx(x, t ) = i
√

n(x)ξx(x, t ), (11c)

i∂t Ẽy(x, t ) = i
√

n(x)ξy(x, t ) − i∂xB̃z(x, t ), (11d)

i∂t B̃z(x �= xq, t ) = −i∂xẼy(x �= xq, t ), (11e)

i∂t B̃z(xq, t ) = −i∂xẼy(xq, t ) − βQ(xq, t ), (11f)

i∂t Q(xq, t ) = −ωaQ(xq, t ) − βB̃z(xq, t ), (11g)

Q(xq1 , 0) = Q(xq2 , 0) = Q0, (11h)

where the source Q with a constant frequency ωa is coupled
to the magnetic field B̃z using an ad hoc coupling coefficient
β. The 1-D model can be rewritten in the Hamiltonian form
[Eq. (3)] with

ψ = (ξx, ξy, Ẽx, Ẽy, B̃z, Q)ᵀ, (12)

FIG. 2. Classical simulation: Dynamics of kinetic energy Wv (a)
and magnetic energy Wb (b) in space and time. The input parameters
are described in Sec. VI. The white line indicates the HCR; the red
line indicates the IUHR; the green line indicates the LCR [Fig. 1(a)].
The left-propagating wave reaches the HCR, partially reflects from
it, and partially tunnels to the UH resonance. The right-propagating
wave is trapped within the IUHR, and only a small part of its energy
reaches the right boundary.

where ᵀ denotes transposition. The energy density Wtot =
ψψ† is then represented as Wtot = Wv + Web + Wq, where

Wv = |ξx|2 + |ξy|2, (13a)

Web = |Ẽx|2 + |Ẽy|2 + |B̃z|2, (13b)

Wq = |Q|2. (13c)

C. Discretization

The x axis is represented by Nx = 2nx points with a step
h (Fig. 3). Equations (11) are discretized in space using the

FIG. 3. One-dimensional space grid x ∈ [−r0/κx, r0/κx] has Nx

points numerated by index j, starting with j = 0. The source Q is
placed at points xq1 and xq2 that correspond to the indices jq1 and jq2 .
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central differencing scheme. The boundary conditions for the
velocity are

i∂ξy,0 = iB0,0ξx,0, (14a)

i∂ξy,Nx−1 = iB0,Nx−1ξx,Nx−1, (14b)

for the wave electric field they are

i∂t Ẽy,0 = 0, (15a)

i∂t Ẽy,1 = i
√

n1ξy,1 − i

2h
B̃z,2, (15b)

i∂t Ẽy,Nx−2 = i
√

nNx−2ξy,Nx−2 + i

2h
B̃z,Nx−3, (15c)

i∂t Ẽy,Nx−1 = 0, (15d)

and for the magnetic field they are

i∂t B̃z,0 = 0, (16a)

i∂t B̃z,1 = − i

2h
Ẽy,2, (16b)

i∂t B̃z,Nx−2 = i

2h
Ẽy,Nx−3, (16c)

i∂t B̃z,Nx−1 = 0. (16d)

Since the source Q interacts with the wave magnetic field
only at the center of the system [Eqs. (11f)–(11g); Fig. 3],
it does not enter the boundary conditions. The corresponding
Hamiltonian can be expressed as

H =

⎛
⎜⎜⎜⎜⎜⎝

0 −iB0 −i
√

n 0 0 0
iB0 0 0 −i

√
nε 0 0

i
√

n 0 0 0 0 0
0 i

√
nε 0 0 Mh 0

0 0 0 Mh 0 Mβ

0 0 0 0 Mβ Mωa

⎞
⎟⎟⎟⎟⎟⎠.

(17)

Here, ε = diag(0, 1, . . . , 1, 0), and Mh is the matrix represen-
tation of the operator ∂x:

Mh =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 0 − i
2h 0 . . .

0 i
2h 0 − i

2h . . .

. . . . . . . . . . . . . . .

. . . i
2h 0 − i

2h 0
. . . 0 i

2h 0 0
. . . 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The matrix Mβ describes the source-wave coupling,

Mβ =

⎛
⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 0 0 0 0 . . .

. . . 0 −β 0 0 . . .

. . . 0 0 −β 0 . . .

. . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠, (19)

while Mωa encodes the source frequency,

Mωa =

⎛
⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 0 0 0 0 . . .

. . . 0 −ωa 0 0 . . .

. . . 0 0 −ωa 0 . . .

. . . 0 0 0 0 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠. (20)

Here, B0 is a diagonal Nx × Nx matrix with values of the
background magnetic field on the diagonal. The matrix that
encodes

√
n(x) has the same form. The coefficients β and ωa

are placed at the diagonal elements ( jq1 , jq1 ) and ( jq2 , jq2 ) of
the matrices Mβ and Mωa . Finally, the values i/2h are shifted
by +1 and −1 with respect to the diagonal of the matrix Mh.

D. Quantum encoding of plasma signals

To encode our discretized system into a quantum circuit,
we map ψ on two registers: |d〉 and | j〉. The register | j〉 has
nx = log2 Nx qubits and stores the space dependence of every
variable. That is, | j〉 contains the binary representation of the
spatial-point indices in the x grid. The register |d〉 encodes the
variable index:

d = 0 ←→ ξx, (21a)

d = 1 ←→ ξy, (21b)

d = 2 ←→ Ẽx, (21c)

etc. Since we have six independent fields in ψ , the register |d〉
must have at least three qubits. Then,

ψ = Ad, j |d〉| j〉 ≡ Ad, j |d2d1d0〉d | jnx−1 . . . j2 j1 j0〉 j, (22)

where dk and jk take values of 0 or 1; Ad, j stores the amplitude
of the variable with the index d at x j . For instance, the value
of B̃z(x = x5) is stored in Ad=4, j=5, which is the amplitude
of the quantum state |100〉d |0 . . . 0101〉 j . We assume that the
rightmost qubit is the least-significant one (i.e. the one that
determines parity), which is the bottom qubit in the quantum
circuit.

E. Initialization

The source Q is initialized at two spatial points with indices
jq and ( jq + 1) such that jq is even and close to Nx/2, i.e., at
the center of the system. There, the plasma density is low, so
the X-wave wave number is kx = ωa/c. To guarantee the state
normalization 〈ψ |ψ〉 = 1.0, we set Q0 = 1/

√
2 [Eq. (11h)].

To prepare this initial state, one sets |0〉 j and |5〉d . Then, a
Hadamard gate is placed at the least-significant qubit of the
register | j〉. Apart from that, every qubit that must have a
value 1 according to the bit representation of the integer jq
is inverted by a Pauli X gate. An example of the initialization
circuit for nx = 4 is shown in Fig. 4. The proper initialization
is confirmed by the comparison of the source time evolution
from classical and QC modeling shown in Figs. 17(a) and
17(c). If one wants to initialize a source with various ampli-
tudes at different spatial points, one can use one or several
rotation gates Ry [Eq. (36)] instead of the Hadamard gate. The

062444-5



NOVIKAU, STARTSEV, AND DODIN PHYSICAL REVIEW A 105, 062444 (2022)

FIG. 4. An example of the quantum-state initialization in a sys-
tem with nx = 4, where the source Q, which is stored in |5〉d ≡
|101〉d , is placed at x points with jq = 10 and 11.

number of gates in the initialization circuit is proportional to
nx.

IV. QUANTUM-SIGNAL-PROCESSING FRAMEWORK

A. QSP basics

Quantum signal processing (QSP) [33,34,44] is an algo-
rithm for constructing a polynomial f (A) of a given matrix
A. In the case of Hamiltonian simulations, QSP is used for
approximating the propagator with a given absolute error, as
f (H ) ≈ exp(−iH t ) + O (εqsp), and encodes the polynomial
into a quantum circuit as

Uqsp =
(

f (H ) .

. .

)
. (23)

Here, the unitary matrix Uqsp depends on (2Nφ + 1) real pa-
rameters φ j , henceforth called phases, and is represented by a
set of rotations [33,36] (Fig. 5):

Uqsp = Rz,b(φ2Nφ
) �Nφ−1(φ2Nφ−1, φ2Nφ−2) . . . �0(φ1, φ0).

(24)
Unlike in graphical representations of quantum circuits, the
rightmost operator �0 is applied first, and the leftmost oper-
ator Rz,b is applied last. The latter is the Pauli rotation gate:

Rz(φ) =
(

exp(−iφ/2) 0
0 exp(iφ/2)

)
, (25)

FIG. 5. General QSP circuit [Eq. (24)]. The subcircuit for each
� j (φ2 j+1, φ2 j ) is shown in Fig. 6. The rotation gate Rz is defined in
Eq. (25). The ancillae |a〉, |q〉, |b〉 are initialized in the zero state,
while the register |s〉 stores the initial conditions. The Hadamard
gates H prepare the necessary superposition state |+〉 for the ancillae
|q〉 and |b〉. If all ancillae are output in the zero state, then the register
|s〉 contains the QSP approximation of exp(−iH t )|ψ (0)〉s for the
given t and error εqsp.

which acts on the ancilla qubit |b〉. The operator
� j (φ2 j+1, φ2 j ) is described in Fig. 6. It consists of alternating
rotation gates Rz [Eq. (25)] and an operator W [Eq. (33)],
which encodes the Hamiltonian (Sec. IV C). The copies of
W create higher powers of H , which are used to construct
the polynomial f (H ), while the rotations Rz generate the
appropriate coefficients in f (H ) [33,34].

An initial state ψ (0) is stored in the input register |s〉 (in
our case, the combination of registers |d〉 and | j〉), and the
ancillae |b〉, |q〉, and |a〉 are initialized in the zero state. Then,
QHS is implemented via application of the unitary Uqsp to the
system state vector. Because the propagator is encoded as the
upper-left block of Uqsp, the desired state exp(−iH t )ψ (0) is
yielded as the output in the register |s〉 when all the ancillae are
measured in the zero state. In Hamiltonian simulations by the
QSP method, the probability of the postselected state is close
to unity, 1 − ε, with an arbitrary small ε, which is determined
by the QSP approximation error [45].

The phases are chosen depending on the simulation time
and error tolerance εqsp, and are calculated on a classical
computer using known algorithms. The corresponding details
can be found in Refs. [36–38]. The codes for the calculation
of the phases are presented in Refs. [46,47]. In our work, we
use the code described in Ref. [36] and presented in Ref. [46].

B. Block encoding

The operator W (Fig. 7) contains an oracle UH that is the
mapping of the Hamiltonian H on a unitary matrix. In this
work, circuit representation of any function or mapping is
called an oracle. Generally, a Hamiltonian is a nonunitary
matrix; it cannot be directly described by a quantum circuit,
which can contain only unitary gates. Therefore, to operate
with H in the QSP circuit, one has to encode H within
a unitary matrix. The corresponding mapping H → UH is
called block encoding. This transformation can be done by
extending Hilbert space such that the matrix H becomes a
subblock of the unitary UH :

UH =
(

H
ςM .

. .

)
, (26)

where the original matrix H must be normalized to its norm

M ≡ ||H ||max = max
i

∑
j

√
|Hi j |2, (27)

and to its sparsity ς (the number of nonzero elements in a
row or a column maximized over all rows and columns). The
extension of the space is achieved by using the ancilla register
|a〉. The block encoding as shown in Eq. (26) indicates that
the normalized Hamiltonian can be extracted from UH when
the ancillae have zero input and output states:

〈k|s〈0|aUH |0〉a| j〉s = H jk

ςM
. (28)

Here, the row index j is encoded as an input in the register
|s〉, and the column index k is an output in the same register
after the block-encoding operation. This can be understood
as a decomposition of the Hamiltonian into a collection of
its nonzero elements, H = ∑

H jk|k〉〈 j|, which is optimal
for sparse H . Efficiency of the QSP technique is usually
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FIG. 6. Quantum circuit of each operator � j (φ2 j+1, φ2 j ) that enters Eq. (24).

estimated in a number of queries to the oracle UH . The block
encoding of our wave Hamiltonian [Eq. (17)] is discussed in
Sec. V.

C. Qubitization

The purpose of the QSP is to build the desired polynomial
f (H ). Because UH is linear in H , multiple applications of
UH are required, where the block-encoding matrix acts as

UH |0〉a|λ〉s = λ|0〉a|λ〉s +
√

1 − λ2| ⊥〉a,s. (29)

Here, λ, |λ〉 are the eigenvalue and eigenvector of H , re-
spectively; the state | ⊥〉a,s is created by the undefined part
of UH marked with dots in Eq. (26). To build higher pow-
ers of H , we need to stay within the space spanned by
(|0〉a|λ〉s,UH |0〉a|λ〉s). The problem is that in general, this
space is not invariant under the action of UH . Every next
application of UH adds additional perpendicular vectors that
are different from the original |⊥〉a,s. To overcome this issue,
one can decompose (“qubitize”) [34] the entire Hilbert space
into two-dimensional orthogonal subspaces,

⊕
λ Pλ, where

each subspace Pλ corresponds to a particular |λ〉 of H . After
that, one replaces UH by a new operator W that performs
rotation in each of these disjoint subspaces. As a result, the
operator W block-encodes H and, by acting in an invariant
space Pλ = (|0〉a|λ〉s,W |0〉a|λ〉s) for each |λ〉, can produce
the necessary moments of H to construct the polynomial
f (H ).

According to Lemma 10 from Ref. [34], W can always be
constructed using the following procedure. First of all, one
again extends the Hilbert space with an ancilla |q〉 initialized
in the superposition state |+〉 = (|0〉 + |1〉)/

√
2:

|0〉a → |+〉q|0〉a. (30)

Then, one applies an X gate to the ancilla |q〉,
S = Xq ⊗ Ia,s, (31)

and uses two copies of controlled UH ,

U ′
H = |0〉q〈0|q ⊗ UH + |1〉q〈1|q ⊗ U †

H . (32)

FIG. 7. Quantum circuit of the operator W [Eq. (33)]. The con-
trolled unitary UH [Eq. (26)] and its complex conjugate U †

H form the
extended operator U ′

H [Eq. (32)]. The left Pauli X gate implements
the operator S [Eq. (31)]. The subcircuit within the blue box imple-
ments the reflector UR [Eq. (34)].

Combining the above operators, one constructs

W = (UR ⊗ Is)SU ′
H , (33)

where the so-called reflector UR,

UR = 2|+〉q|0〉a〈0|a〈+|q − Iq,a, (34)

keeps unchanged the zero-ancilla state and inverts the sign of
the perpendicular state. Here, Iy is the unit operator that acts
on a given ancilla |y〉. The corresponding circuit is shown
in Fig. 7. As is proven in Lemma 8 and Lemma 10 from
Ref. [34], the above construction guarantees that the matrix
form of the operator W is represented by the following direct
sum,

W =
⊕

λ

(
λ −√

1 − λ2√
1 − λ2 λ

)
, (35)

which ensures the invariance of each subspace Pλ under the
action of W .

V. BLOCK ENCODING OF THE WAVE HAMILTONIAN

A. General algorithm

To encode the wave Hamiltonian [Eq. (17)], we apply the
state-preparation technique [34]. The standard procedure is
described in Appendix A. In this algorithm, one finds posi-
tions of all nonzero elements within H and then encodes
values of these elements into the amplitudes of quantum
states. First of all, for each row of H one stores the column
indices of nonzero matrix elements in an ancilla register.
Being an integer, each index is encoded as a quantum state
represented by a bit string of qubits. After that, knowing the
column and row indices, one finds the values of the corre-
sponding nonzero elements. The values are encoded in the
amplitudes of the quantum states. Since any element of the
rescaled Hamiltonian H /(ςM ) [Eq. (26)] is less than (or
equal to) unity by the absolute value, it can be represented
as cos(θ/2) of a certain angle θ . The cosine can be generated
by the rotation gate Ry(θ ),

Ry(θ ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (36)

acting on the zero state,

Ry(θ )|0〉 = cos(θ/2)|0〉 + sin(θ/2)|1〉. (37)

B. Normalization

To normalize the wave Hamiltonian [Eq. (17)], we adopt

Hqsp = βHH , tqsp = t/βH , βH = 1

d2
H M

, (38)
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FIG. 8. General circuit of the oracle OF . Its components are
shown in Fig. 9. According to Table I, the block Ẽx does not modify
ancillae |aj〉|ad〉.

or more explicitly,

βH = 1

d2
H

√
ω2

UH,max + 1
2h2 + β2 + ω2

a

. (39)

Here, Hqsp is the rescaled Hamiltonian, tqsp is the time
interval to be simulated by the QSP circuit, ωUH,max =√

B2
0,max + nmax, and nmax and B0,max are the maximum values

of the background density and magnetic field, respectively. In
our case, d2

H = 4, which is related to the sparsity ς in Eq. (28)
as is explained in Appendix B.

Note that larger tqsp requires calculation of a higher number
of QSP phases, which can be challenging. Instead of doing
that, we represent the QSP circuit with nt sequential copies
of a shorter circuit constructed for the time interval tqsp/nt . In
this case, performing simulations on a digital emulator, one
can also analyze intermediate quantum states.

C. Ancilla registers

To implement the state-preparation method (Appendix A),
we introduce several ancilla registers (Fig. 8) to store positions
of matrix nonzero elements. The register |ad〉 is responsible
for the location of subblocks such as Mh or Mβ in Eq. (17).
Given a variable index |d〉 [Eq. (22)], the register |ad〉 stores
the absolute column indices of all subblocks that contain
nonzero elements. The maximum number of subblocks in a
row (including zero subblocks) coincides with the number of
variables in our plasma system. Thus, the size of |ad〉 is the
same as that of the register |d〉.

Then, we describe the location of nonzero elements within
each subblock. The ancilla register |aj〉 is introduced for this
purpose. To decrease the total number of ancillae, this register
stores not an absolute column index but the relative position
of a nonzero element with respect to the subblock diagonal,

|00〉a j → ic = ir, (40)

|01〉a j → ic = ir − 1, (41)

|10〉a j → ic = ir + 1, (42)

where ir is the row index, which is the index of a given point
on the x grid of a variable. The row index is stored in the
register | j〉 [Eq. (22)]. The integer ic is the column index of the
nonzero value within the subblock |ad〉. For instance, |00〉a j

means that a nonzero element lies on the local diagonal of the
subblock. One should note that the size of the register |aj〉
does not depend on Nx, which is not the case in the standard

technique (Appendix A). This feature allows us to increase
Nx without increasing the number of ancillae. The size of |aj〉
increases, however, with the discretization order and it may
also depend on the boundary conditions.

Finally, two more single-qubit ancilla registers |a1〉 and
|a2〉 are introduced. The rotation gates Ry(θ ) act on these
qubits to store the nonzero elements of the Hamiltonian
[Eq. (37)]. A thinner space grid has a smaller difference
between neighboring Hamiltonian elements, and as a result,
requires that the rotation angle θ be calculated with a higher
precision.

D. Block-encoding operator

Now, when we have introduced all necessary ancillae and
know how they store the structure of H , we can represent the
block encoding as a product of several operators,

UH = O†
F O†√

H ,a2
OMOS,a1 O√

H,a1
OF , (43)

where every operator is responsible for a particular part of the
block-encoding procedure. The oracle OF (Table I; Figs. 8–9
and Fig. 10) defines the location of nonzero elements for a
given variable index stored in |d〉 and for a local row in-
dex saved in | j〉. This oracle writes the column indices of
subblocks with nonzero elements into the register |ad〉 and
local relative positions of these nonzero elements into the
register |aj〉. To construct the quantum circuit of the oracle
OF , we consider it as a sequence of subcircuits for different
variables (Fig. 8). Every subcircuit corresponds to one block
from Table I. If one assumes that multicontrolled gates are
physically realizable, then the depth of the OF circuit does
not change with the system size Nx. However, whether it
will be possible to efficiently connect non-neighboring qubits
in future quantum computers is yet to be seen. Transpiling
the multicontrolled gates into one-qubit and two-qubit gates
using a nonoptimized algorithm makes the circuit depth grow
exponentially with the number of qubits. However, as shown
in Ref. [48], by using a sufficient number of ancillae one
can decompose an arbitrary nq-controlled unitary matrix into
O (n2

q) elementary gates. For instance, an nq-controlled Pauli
X gate can be transpiled into 4(nq − 2) 2-controlled X gates
(so-called Toffoli gates) by adding nq − 2 ancilla qubits.

The oracle O√
H (Table II; Fig. 11) reads the row and

column indices and provides the square root of the absolute
value of the corresponding nonzero element. It acts on the
ancilla |a1〉 or ancilla |a2〉. The oracle OS,a1 (Table III; Fig. 12)
describes whether an element is imaginary or real, as well as
whether it is positive or negative.

In the standard state-preparation algorithm, ancilla regis-
ters store the absolute column indices [Eqs. (A4) and (A5)].
As a result, the index exchange between the ancilla and input
registers can be implemented by a simple swap operator. In
our case, the register |a j〉 works with relative indices. Because
of that, we need to implement the mapping between the abso-
lute and relative indices during the index exchange. This is
provided by the oracle OM (Fig. 13) by using a subtractor and
an adder by 1, which are depicted in Fig. 14. After the appli-
cation of the oracle OM , the register | j〉 encodes the absolute
column indices of nonzero elements within a subblock, and
the register |d〉 contains subblock column indices. The depth
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FIG. 9. Subblocks of the OF quantum circuit shown in Fig. 8.
The circuits are constructed following Table I. The control block jQ is
illustrated in Fig. 10. The control nodes in the register |d〉 encode the
variable label, while the register | j〉 encodes the spatial coordinate.

FIG. 10. Circuit of the control block jQ in a system with nx = 4,
where the source Q is placed at spatial points with indices jq,1 = 8
and jq,2 = 9.

of the circuit OM is proportional to log2(Nx ) because of the
adder and subtractor.

To sum up, taking the row index as an input in |d〉| j〉
and the ancillae initialized in the zero state, the resulting
oracle UH outputs column indices encoded in |d〉| j〉 as states
with amplitudes equal to the corresponding Hamiltonian ele-
ments when all ancillae registers are returned in the zero state
[Eq. (28)].

VI. SIMULATION RESULTS

A. Comparison of classical and quantum simulations

We implement QHS using the circuit described above on
a classical emulator of a quantum computer using the QuEST
toolkit [41]. The code and the corresponding input data for
the simulations can be found in Ref. [49]. Unlike in an actual
quantum simulation, this gives us access to the whole output
space at all moments of time. The results presented below
are directly extracted from ψ [Eq. (22)] without performing,
or emulating, quantum measurements. Then, we compare our
results with those of classical simulations, which have been
obtained by directly solving Eqs. (11) using the central finite
difference scheme for both space and time. As a reminder,
the normalized background profiles are shown in Fig. 1(b).
The size of the system is r0 = 20 cm with Nx = 1024 spatial
points, which corresponds to nx = 10. The simulation time is
t f = 300.5ω−1

p , which is split into nt = 1200 time steps with
duration τ = 0.2504ω−1

p . The corresponding Courant number
is 0.76.

The background density and magnetic field profiles are
calculated by the following equations (here r = xκx):

n(r) = n0e
− (r−rn )2

2�2
n + n0,auxe

− (r−rn,aux )2

2�2
n,aux , (44a)

B0(r) =
{

BcR0
R0+r , r < raux,

Bc,auxR0,aux

R0,aux+(r−raux ) , r � raux.
(44b)

The maximum background density is n0 = 2 × 1013 cm−3 at
rn = −0.99r0, while the peak of the auxiliary density profile is
n0,aux = 1012 cm−3 at rn,aux = 0.90r0. The widths of the den-
sity peaks are �n = 0.2r0 and �n,aux = 0.18r0, correspond-
ingly. The background magnetic field at the center (r = 0) is
Bc = 1 kG, and the auxiliary magnetic peak at s = 0.4 (raux =
0.4r0) has Bc,aux = 7 kG. The shape of the field is defined by
two parameters: the major radius R0 = 167 cm and the aux-
iliary radius R0,aux = 10 cm. The profiles of the background
magnetic field are combined by the cubic interpolation in a
narrow domain near r = raux. The source-field coupling coef-
ficient is β = 0.1, and Q oscillates with the frequency ωa =
0.38ωp,0. The corresponding wave number is kx = 64.56r−1

0 .
With these parameters, the normalization of the Hamiltonian
[Eq. (39)] becomes βH = 0.102. Therefore, the QSP time step
is τqsp = τ/βH = 2.455 with the resulting time interval tqsp =
ntτqsp = 2946 to simulate. The QSP error is εqsp = 10−6. As
seen from Fig. 15(a), such εqsp corresponds to ∼10−4 error
in the energy conservation. For this QSP error, the number of
QSP angles is equal to 25 for the time interval τqsp.

According to Ref. [34], the query complexity (the number
of copies of the oracle UH ) of the QSP circuit is O (tqsp +
log2(1/εqsp)). The asymptotic dependence is confirmed by
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FIG. 11. Quantum circuit of the oracle O√
H ,a1

. Every box j indicates the conditional dependence on the register | j〉. Here, the conditional-

rotation gate R(B) is used to obtain the profile
√

βH B0, j ; R(n) encodes the profile
√

βH n1/2
j ; R(g) encodes a constant

√
βH/(2h) with different

superpositions for bulk and boundary x points. In our model, the conditional-rotation gates are represented by multiqubit matrices. The circuit
is built according to Table II.

our direct computation [Figs. 16(a) and 16(b)]. There, the
total number of queries is calculated as twice the number
of the QSP phases, because each phase corresponds to two
calls to the block-encoding oracle UH (Figs. 6 and 7). The
number of the phases is found using the code from Ref.
[46]. In our particular case, where the whole QSP circuit
is split into nt subcircuits, the query complexity scales as
O (ntτqsp + nt log2(1/εqsp)).

We compare the time evolution of the energy compo-
nents [Eqs. (13a)–(13c)] integrated in space. Figure 15(b)
shows that both the classical and quantum simulations pro-
duce the same time histories of various energy components
[Eqs. (13a)–(13c)]. When the wave reaches the HCR [at t ≈
100, according to Fig. 2(b)], the field energy converts partly
into the kinetic plasma energy. Figures 17(b), 17(d) show
that the kinetic (field) energy has a similar spatial distribution
in both the simulations, and the X wave accumulates in the
UH resonance of the HCR. The wave also passes the LCR
practically without interaction and deposits its energy at the
IUHR, as anticipated.

B. Oracle scaling

Assuming that multiqubit controlled gates are realizable,
the depths of the oracles OF (Fig. 8) and OS (Fig. 12) are in-
dependent of nx = log2 Nx. However, these depths can change

if the discretization order is increased or if the source Q is
distributed over multiple grid points. The depth of the oracle
OM increases linearly with nx due to the adder and subtractor
(Fig. 14).

The oracle O√
H (Fig. 11) depends on nx due to the

conditional-rotation gates, as is discussed in Appendix B.
Similar gates are considered in Ref. [39] (see supplemental
materials there), where they are called multiplexed unitaries.
These gates can be implemented via arithmetic functions that
usually scale as O (poly(nx )). For instance, as shown in Ref.
[1], the depth of a general adder with one of the summands
predefined scales as O (nx ), and the subtractor depth scales as
O (nx ) + 2nx. In general, there is a trade between the number
of ancillae used to store intermediate data and the depth of
the resulting circuit. In our case, a conditional-rotation gate
must implement a smooth function that depends on the space
variable x encoded inside the register | j〉. As explained in Ref.
[50], a polynomial of order D can be evaluated by using the
Horner scheme. A given polynomial yD with coefficients ai

can be obtained by D subsequent iterations:

y1 = aDx + aD−1,

y2 = y1x + aD−2,

. . .

yD = yD−1x + a0.

FIG. 12. Quantum circuit of the oracle OS,a1 . The circuit is constructed according to Table III. Each colored box multiplies the amplitude
stored in |a1〉 by the factor specified in the figure (i, −i, −1). The rotation gate Rz acts as shown in Eq. (25).
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FIG. 13. Quantum circuit of the oracle OM . The subtractor S and
the adder A are shown in Fig. 14. The oracle converts the relative
positions stored in the register |aj〉 into the corresponding absolute
positions and stores them in the register | j〉. Then, the circuit swaps
the registers |d〉 and |ad 〉.

The total number of gates necessary to implement the whole
polynomial scales as O (Dn2

x ).

C. Quantum measurements

In an actual quantum simulation, the output vector cannot
be accessed directly. One can measure only the expectation
value of a given operator on the output state. How to do this
for potentially practical rf simulations is a problem separate
from QSP that we discuss here, so it is left to future work.
However, here is how at least one of the quantities of interest
can be measured, namely, the wave energy within a given
spatial volume.

The field components are encoded into the quantum state
ψ as shown in Eq. (22). To compute the electric energy, one
needs to sum the squares of the electric components in a
desired spatial interval. As an example, a case with nx = 4 is
considered in Fig. 18. The QSP algorithm outputs ψout that
encodes plasma variables if the QSP ancillae |aqsp〉 are all
in the zero state. In this example, we sum up We = Ẽ2

x + Ẽ2
y

over the spatial points with indices j = [2, . . . , 5]. The first
controlled Pauli X gate entangles the superposition of the
amplitudes of both Ẽx( j ∈ [2, 3]) and Ẽy( j ∈ [2, 3]) with the
state |1〉c0 . The second X gate entangles Ẽx( j ∈ [4, 5]) and
Ẽy( j ∈ [4, 5]) with the state |1〉c1 . The last controlled X gate
finds the conjunction (logical AND) of the above states, and
as a result, stores

∑5
j=2 We(x j ) as the probability of the state

|1〉m.
If the qubit m has the state |1〉 with amplitude a, then it

takes at least O (|a|−2) repetitions of the whole QSP operator
before the direct measurement returns |m〉 = |1〉. However,

FIG. 14. Quantum circuits of the adder and of the subtractor by
1 for the case with four qubits.

there is a quantum amplitude-amplification (AA) algorithm
[51–53] that requires only O (|a|−1) iterations of the oper-
ator to measure the desired state with probability at least
max(1 − |a|2, |a|2). This method is the basis of so-called
amplitude-estimation (AE) techniques [53–56] that allow us
to find the state probability with a predefined absolute er-
ror δ. The AA is based on the Grover-like [51,52] rotation
RAA in the quantum space spanned by a state of interest |G〉
(∼|1〉m in our case) and a “garbage” state |B〉 (∼|0〉m) in such
a way that the amplitude of the rotated state |G〉 becomes
a sinusoidal function of the number of applications nAA of
RAA: sin[(2nAA + 1)θ ], where sin2 θ = |a|2 and θ ∈ [0, π/2].
In our case, every rotation includes the whole QSP operator
and its inverse.

As shown in Ref. [53], the operator RAA has eigenvalues
exp(±i2θ ). Therefore, one can calculate the probability |a|2
from the estimation of the angle θ by constructing a super-
position of states rotated with several nAA, and by applying
a subsequent quantum Fourier transform (QFT). That is the
essence of the conventional AE algorithm described in Ref.
[53]. This method estimates the probability |a|2 with an ab-
solute error δ by applying M = O (1/δ) queries (in our case,
calls to the QSP) and by using log2(M ) ancilla qubits, while
classically one would need O (1/δ2) queries due to the central
limit theorem. In our case, the error δ corresponds to the
absolute error of the measured space-integrated energy. More
details are given in Appendix C.

There are also state-of-the-art AE techniques [54–56] with
a similar asymptotic scaling but smaller number of ancillae
and controlled gates. For instance, the algorithm proposed
in Ref. [54] also uses a set of AA operators with a various
number of rotations RAA. However, instead of the QFT, it
performs statistical postprocessing of measurement results by
implementing the maximum likelihood estimation of |a|2.

The numerical implementation of the quantum measure-
ments for classical rf systems is left to future work.

VII. DISCUSSION AND CONCLUSIONS

We have proposed how to apply the quantum signal pro-
cessing (QSP) technique to simulating cold plasma waves
and explicitly developed a quantum algorithm for modeling
one-dimensional X-wave propagation in cold electron plasma.
We have demonstrated how to construct an oracle to encode
the wave Hamiltonian into a quantum circuit. The number
of the ancillae in this oracle does not depend on the spatial
resolution, so one can use a resolution higher than in the case
with the standard state-preparation method. Since the oracle
complexity scales as O (poly(log2 Nx )), QSP simulations can
provide a near-exponential speedup in comparison to classical
simulations, which scale as O (Nx ). This approach can be
particularly helpful in simulations with high spatial resolution,
which is advantageous, for example, for modeling the wave
dynamics near resonances.

Our quantum simulations have been performed on a digital
emulator of the quantum circuit and have shown agreement
with the corresponding classical modeling. For emulation, we
used the QuEST numerical toolkit [41] that operates with a
whole 2nq state vector in a circuit with nq qubits. For our
one-dimensional QSP simulations, the emulator has shown

062444-11



NOVIKAU, STARTSEV, AND DODIN PHYSICAL REVIEW A 105, 062444 (2022)

FIG. 15. (a) Space-integrated total system energy for different values of the QSP error εqsp. (b) Comparison of the corresponding energy
components [Eqs. (13a)–(13c)] in classical and quantum (with εqsp = 10−6) simulations. Here, CL stands for classical simulations and QC
stands for emulated quantum simulations.

efficient parallelization on GPUs. However, one might need a
more advanced emulator for higher-dimensional simulations.
One of the promising approaches is the model proposed in
Ref. [57]. It uses the fact that a quantum state is mostly
sparse; i.e., many elements of the state vector are zero. If
only its nonzero elements were stored (e.g., in the form of a
hash table), one could significantly reduce memory usage and
the simulation runtime. Moreover, one could model oracles
with conditional rotations implemented via actual arithmetic
functions with a big number of ancillae, since the ancillae
act only locally and are zeroed otherwise thus being removed
from the memory. Yet, this model needs to be extended with a
GPU parallelization and the corresponding implementation of
dynamic hash tables [58].

Based on our results, we can also assess the overall util-
ity of the QSP technique in application to linear problems.

Being a universal algorithm with a clear hierarchical struc-
ture, the QSP can be easily coded as a set of subsequent
subroutines where only the block-encoding module needs to
be modified for different plasma problems. The QSP pro-
vides an optimal dependence of the query complexity (the
number of calls to the oracle) on the simulation time and
on the error tolerance (as was pointed out in Ref. [34]).
Also, the QSP requires only two ancillae in addition to the
qubits used by the oracle. This reduces the circuit width. That
said, the QSP circuits and our oracle in particular have many
multicontrolled operators, where one gate is controlled by
several nodes. Such a configuration is not directly realizable
on existing quantum computers. The decomposition of these
operators strongly depends on what gates are available on a
chosen quantum computer, and on how the circuit is mapped
on a specific quantum processor. Both of these aspects will

FIG. 16. Dependence of the query complexity on the QSP error εqsp ∈ [10−3, 10−4, . . . , 10−10] (a) and on the simulation time tqsp (b).
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FIG. 17. Comparison of classical (solid blue curves) and emulated quantum (red dashed curves) simulations. Real (a) and imaginary (c)
components of the source Q. (b) Kinetic energy Wν [Eq. (13a)] at time t f as a function of s. (d) Field energy Web [Eq. (13b)] at time t f as a
function of s. The vertical lines show the HCR (blue), the LCR (green), the IUHR (red).

be hardware-dependent, so the limitations of the QSP will
become clearer when practical error-corrected quantum com-
puters with sufficiently many qubits become available. In

FIG. 18. Schematic circuit of the measurement of the electric
energy density We summed over the spatial points with indices
j = [2, . . . , 5], for nx = 4. The register |aqsp〉 represents all ancillae
necessary for the QSP technique. The electric energy components
are addressed using the control nodes on |d〉 = |2〉 (for Ẽx) and
|d〉 = |3〉 (for Ẽy) [Eqs. (12) and (21)]. The resulting state is ψmeas =∑5

k=2[Ẽx (xk )|2〉d + Ẽy(xk )|3〉d ]|k〉 j |1〉m + . . . |0〉m (the other regis-
ters are omitted), where the desired information is stored in the
probability amplitude of the state |1〉m. Information about the state
of the register m is then written to the register y by the AE
(Appendix C).

general, an arbitrary single-target nq-controlled gate can be
decomposed into O (n2

q) elementary gates by adding O (nq)
ancillae [48]. Another possibility is the hardware implemen-
tation of these gates. For example, a possible realization of
an n-controlled iSWAP gate is proposed in Ref. [59]. Also,
application of the so-called diamond gates, which are native
in superconducting circuits, to reach higher connectivity in
quantum circuits is discussed in Refs. [60,61].

Taking into account the block-encoding scaling with Nx,
the dependence of the QSP circuit on the length of the sim-
ulated time interval t , and the number of the QSP queries
needed for measurements, the final scaling of our circuit depth
is

O

(
poly(log2 Nx )

δ
[tqsp + log2(1/δ)]

)
, (45)

where we take the absolute error δ, which appears from
measurements, equal to the QSP approximation error εqsp.
The numerical coefficient in the scaling is determined by the
specific implementation of the conditional rotations and of
the measurement algorithm. Studying these subjects is left to
future work.

Also note that the plasma model assumed in our paper is
limited. One obvious limitation is that the waves are con-
sidered linear; but this is also true for most rf codes. A
bigger limitation is that thermal effects and dissipation are
neglected, including collisional and collisionless damping and
also the possible wave-energy leaking through the boundaries
of the simulation domain. (Remember that reflective boundary
conditions are assumed in our algorithm.) Reinstating these
effects makes the Hamiltonian in Eq. (3) non-Hermitian [11],
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and then Hamiltonian simulations cannot be done using the
QSP. A possible solution to this is to consider stationary waves
(∂t = −iω) and solve the corresponding boundary-value prob-
lem, as commonly done in classical rf modeling. Instead of
Hamiltonian simulations, solving a boundary-value problem
requires only inverting a non-Hermitian matrix [11]. A possi-
ble way to do it is by using the known algorithm based on the
quantum singular value transformation (QSVT) [35,38,62].
Because such simulations would be very different from those
considered in this paper, we leave them to future work as well.
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APPENDIX A: BLOCK ENCODING
BY STATE-PREPARATION METHOD

The block encoding UH of a Hermitian operator H can be
constructed by applying the state-preparation algorithm [34]
as a product of two unitary matrices,

UH = T †
2 T1, (A1)

where

T1 =
∑

j

|ψ j〉〈0|a〈 j|s, (A2)

T2 =
∑

k

|χk〉〈0|a〈k|s. (A3)

Each Ti involves the sum of states |ψ〉 and |χ〉 defined as

|ψ j〉 =
∑
p∈Fj

|p〉a3√
ς

|H j p〉a1 |0〉a2 | j〉s, (A4)

|χk〉 =
∑
p∈Fk

|k〉a3√
ς

|Hkp〉a2 |0〉a1 |p〉s, (A5)

where

|H jk〉a =
√

|H jk|
M

|0〉a +
√

1 − |H jk|
M

|1〉a. (A6)

Using the oracle OF [Eq. (43)], one finds a set of column
indices Fj of all nonzero elements on the row j. The operator
T1 reads the row index j and saves the corresponding column
indices to the ancilla register |a3〉. After that, it rotates the
ancilla qubit |a1〉, so the necessary matrix element (its square
root) becomes the amplitude of the zero state |0〉a1 [Eq. (A6)].
This is implemented by the oracle O√

H in Eq. (43). The
operator T2 rotates the ancilla qubit |a2〉 in a similar way by
taking a row index from the ancilla register |a3〉 and column
indices from the register |s〉. Since the encoding of the row
and column indices in the registers a3 and s in |χk〉 is swapped
in comparison with the state |ψ j〉, we introduce the oracle
OM , which performs the corresponding index swapping in
Eq. (43).

APPENDIX B: TABULAR DESCRIPTION
OF THE ORACLE CIRCUITS

In Tables I, II, and III, one can find the descriptions of
the various oracles whose circuits are shown in Sec. V. The
action of each oracle is defined by a set of output states,
which should be returned by the oracle for the indicated input
states. The notations of the main and ancilla registers (d , ad ,
etc.) coincide with those introduced in Secs. III D and V C.
Together, the tables describe the Hamiltonian (17).

TABLE I. Action of the oracle OF . An input variable is encoded into the register |d〉, and its space dependence is taken from the register
| j〉. The operator OF returns the registers |aj〉|ad〉 in the indicated output states, while the states of the registers |d〉| j〉 remain unchanged.

Variable Inputa Output

ξx |000〉d | j〉 j |00〉a j |001〉ad + |00〉a j |010〉ad

|001〉d |0; Nx − 1〉 j |00〉a j |000〉ad
ξy |001〉d |[1, Nx − 2]〉 j |00〉a j |000〉ad + |00〉a j |011〉ad

Ẽx |010〉d | j〉 j |00〉a j |000〉ad

|011〉d |0; Nx − 1〉 j |00〉a j |011〉ad

|011〉d |1〉 j |00〉a j |001〉ad + |10〉a j |100〉adẼy |011〉d |[2, Nx − 3]〉 j |00〉a j |001〉ad + |01〉a j |100〉ad + |10〉a j |100〉ad

|011〉d |Nx − 2〉 j |00〉a j |001〉ad + |01〉a j |100〉ad

|100〉d |0; Nx − 1〉 j |00〉a j |100〉ad

|100〉d |1〉 j |10〉a j |011〉ad

B̃z |100〉d |[2, Nx − 3] �= jQ〉 j |01〉a j |011〉ad + |10〉a j |011〉ad

|100〉d | jQ〉 j |01〉a j |011〉ad + |10〉a j |011〉ad + |00〉a j |101〉ad

|100〉d |Nx − 2〉 j |01〉a j |011〉ad

|101〉d | j �= jQ〉 j |00〉a j |101〉adQ |101〉d | jQ〉 j |00〉a j |100〉ad + |00〉a j |101〉ad

a|0; Nx − 1〉 j denotes |0〉 j or |Nx − 1〉 j states; |[1, Nx − 2]〉 j denotes all states from |1〉 j up to |Nx − 2〉 j ; | jQ〉 j corresponds to the spatial position
of the source Q.
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TABLE II. Action of the oracle O√
H . The operator is controlled

by the indicated input registers. For various bit arrays encoded in
these registers, it returns the indicated output amplitudes on the
ancilla a1 (or a2) as explained in Eq. (37).

Input Output amplitude

|001〉ad |000〉d
√

βH B0

|000〉ad |001〉d
√

βH B0

|010〉ad |000〉d

√
βH n1/2

0

|011〉ad |001〉d

√
βH n1/2

0

|000〉ad |010〉d

√
βH n1/2

0

|001〉ad |011〉d

√
βH n1/2

0

|01〉a j

√
βH/(2h)

|10〉a j

√
βH/(2h)

|101〉ad |100〉d
√

βHβ

|100〉ad |101〉d
√

βHβ

|101〉ad |101〉d
√

βHωa

One can consider Table I as a set of instructions. Each
instruction says which column indices encoded in the ancilla
registers a j and ad should be returned by the oracle OF , when
the oracle is initialized with a row index encoded in the main
registers d and j. In other words, this table indicates where
nonzero matrix elements sit inside the Hamiltonian. Accord-
ing to Eq. (17), several rows of the Hamiltonian have only
zero elements. In this case, to simplify the construction of the
oracle OF , we output the column index equal to the row index,
as one can see, for instance, for the input |101〉d | j �= jQ〉 j

(in the block Q) in Table I. The presence of these diagonal
elements does not affect the action of the oracles O√

H and
OS .

Table II presents the square roots of the absolute values
of the matrix elements given the element row and column
indices. The sign and the additional unitary factor i contained
in these elements are presented in Table III.

To create the O√
H quantum circuit, we use gates that

perform rotations Ry(θ j ) conditioned on the register j. Every

TABLE III. Action of the oracle OS,a1 . For a given indicated state,
the operator outputs the corresponding coefficient that is multiplied
by the value returned by the oracle O√

H ,a1
.

Input Output multiplier

|000〉ad |001〉d i
|000〉ad |010〉d i
|001〉ad |011〉d i

|01〉a j i
|001〉ad |000〉d −i
|010〉ad |000〉d −i
|011〉ad |001〉d −i
|10〉a j −i

|101〉ad |100〉d −1
|100〉ad |101〉d −1
|101〉ad |101〉d −1

combination of qubits in | j〉 corresponds to a particular angle
θ j expressing the space dependence of a given field on x. For
instance, to obtain the profile of the background magnetic
field, one can use angles θ j = 2 arccos

√
βH B0, j . For conve-

nience, we denote the corresponding conditional gate as R(B)
in our quantum circuit (Fig. 11).

The conditional-rotation gates must be expressed via arith-
metic functions with a set of additional qubits to store the
angles θ j . In our work, every conditional gate is coded as a
multiqubit gate with inner subblocks as in Eq. (36) on the
main diagonal. Every subblock corresponds to one θ j for a
particular j. The circuit depth of O√

H may strongly depend
on how efficient the implementation of the conditional gates is
for given profiles and how they depend on the system size Nx.
However, the general tendency is that the depth of quantum
arithmetic circuits scales as O (poly(nx )) (Refs. [1,50]).

According to Eq. (28), the normalization of the Hamil-
tonian depends on the matrix sparsity. This dependence is
reflected in the fact that d2

H appears in the normalization
coefficient βH in Eq. (39). In our case, d2

H = 4, which is close
to the sparsity ς = 3 of our wave Hamiltonian [Eq. (17)], as
it should be according to Eq. (26). If ς > 1, then one must
encode the positions of several nonzero elements knowing
only a single row index. This means that a superposition of
several quantum states has to be created from a single input
state. For instance, the input state |011〉d |1〉 j must create a su-
perposition of two states, |00〉a j |001〉ad + |10〉a j |100〉ad . This
can be done by applying a Hadamard gate, and one needs at
least nH = 2 Hadamard gates to produce the superposition
of ς = 3 states. However, the amplitude of each state in the
resulting superposition has an additional multiplier 1/2nH /2.
Then, according to Eq. (37), we encode the square root of the
absolute value of the matrix element v as√

|v|
d2

H M
= 1

2nH /2
cos(θ/2), (B1)

where cos(θ/2) = √|v|/M � 1, and therefore, dH = 2nH /2.

APPENDIX C: AMPLITUDE ESTIMATION

As shown in Fig. 18, we can store the energy integrated
over a given spatial volume as the probability pG of the state
|1〉 on the ancilla qubit m:

ψmeas = aB|0〉 + a|1〉, (C1a)

pG ≡ |a|2 = 〈W 〉x(t f ), (C1b)

pB ≡ |aB|2 = 1 − pG. (C1c)

To save the energy in the ancilla m, we perform the postse-
lection by choosing only those states where all QSP ancillae
qubits are in the zero state. If we calculate the total system
energy, the resulting probability of the postselected state will
be close to unity, pG ≈ 1, with an absolute error defined by
the QSP approximation error εqsp. However, if we want to
find an energy component in a small spatial volume, then
the corresponding probability can be much less than unity,
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FIG. 19. Circuit for the amplitude estimation. Here, F † is the
inverse quantum Fourier transform. The circuit for the Fourier trans-
form, F , can be found in Ref. [30]. Here, as in the rest of the paper,
it is assumed that the top qubit is the most significant one.

pG � 1. Once the state ψmeas is formed, one can use the
amplitude estimation (AE) technique to measure pG.

There is a wide variety of modern AE techniques as has
been discussed in Sec. VI C. Here, however, we use the stan-
dard AE first introduced in Ref. [53] to show how the 1/δ

factor appears in the final scaling of our circuit, Eq. (45). For
any AE method, we need an operator A that creates the state
whose probability pG we need to measure. In Hamiltonian
simulations, A is equal to the product of the QSP operator and
of the energy integration over a given spatial volume.

The value pG can be changed by using the amplitude-
amplification (AA) operator RAA:

RAA = AS0A†SG, (C2a)

S0 = 1 − 2|0〉m〈0|m, (C2b)

SG = 1 − 2|1〉m〈1|m, (C2c)

where the operator S0 inverses the sign of the initial state,
which is |0〉m; the operator SG inverses the sign of the state
to measure, which is |1〉m in our case. To find pG, we need to
estimate the eigenphase 2θB of the operator RAA. This can be
done by using the phase estimation circuit as shown in Fig. 19.
The circuit requires

∑ny−1
k=0 2k = M − 1 queries to RAA, where

M = 2ny . This results in O (M ) requests to the oracle A. More
precisely, one needs M queries to A and M − 1 queries to A†

FIG. 20. Probability distribution of measurement outcomes p̃G.
Amplitude estimation of known pG = 0.1 is performed with ny = 6
(blue markers) and ny = 8 (red markers). The shaded areas mark the
corresponding theoretical intervals presented in Eq. (C5).

to perform the AE. The eigenphase is then calculated by using
the following integer:

y =
ny−1∑
k=0

yk2k, (C3)

where each yk = 0 or 1 is measured on the corresponding
qubit ry,k . The resulting phase and the corresponding proba-
bility are estimated as

θB = πy

2ny
, (C4a)

p̃B = sin2(θB). (C4b)

After that, one can estimate pG by using Eq. (C1c). With a
probability not less than 8/π2 ≈ 0.81, the absolute error of
the estimation is [53]

δ ≡ |pG − p̃G| � 2π

√
pG(1 − pG)

M
+ π2

M2
. (C5)

This means that δ = O (1/M ), which results in O (1/δ) queries
to the oracle A in the AE circuit. As mentioned above, in
the general case of QSP simulations, the oracle A includes
the whole QSP circuit. Therefore, to calculate pG, we need
O (1/δ) requests to the QSP operator. This explains the ap-
pearance of the prefactor O (1/δ) in the final scaling (45).
As an example, numerical estimation of pG = 0.1 is given in
Fig. 20 for two different ny.
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