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Preparing many copies of a quantum state in the black-box model
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We describe a simple quantum algorithm for preparing K copies of an N-dimensional quantum state whose
amplitudes are given by a quantum oracle. Our result extends a previous work of Grover, who showed how
to prepare one copy in time O(+/N). In comparison with the naive O(K+/N) solution obtained by repeating
this procedure K times, our algorithm achieves the optimal running time of @(+/KN). Our technique uses a
refinement of the quantum rejection sampling method employed by Grover. As a direct application, we obtain a
similar speedup for obtaining K independent samples from a distribution whose probability vector is given by a

quantum oracle.
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I. INTRODUCTION

The preparation of a specific quantum state is an important
building block and a critical bottleneck in many quantum
algorithms [1-4]. The objective of the state preparation prob-
lem is to find the minimum amount of resources needed to
generate a quantum state given some description of it. In gen-
eral, the complexity of this problem scales linearly with the
dimension of the state to be prepared [5,6]. Yet, it is possible to
achieve sublinear bounds for particular states or input models.
One such example is the black-box model where, given oracle
access to a nonzero non-negative vector w = (wy, ..., Wy),
the objective is to load the associated normalized probability
vector into the amplitudes of the log(N)-qubit state |w) de-
fined as

N
lw) = \%ng/mi» (1)

where W = Zf\’:l w; is the (unknown) normalization factor.
Grover adapted his celebrated quantum search algorithm to
this problem in Ref. [7], where he showed that O(W ) queries
to w are sufficient to prepare |w). In practice, one can expect
that several copies of the same quantum state are needed for
further use. For instance, |w) may be fed in an algorithm
that fails with some probability and that must be repeated
several times. The no-cloning theorem prevents the state |w)
from being easily duplicated. In fact, it is easy to show that
additional queries to the input are required to prepare several
copies of |w). The problem of adapting the state preparation
procedure to the desired number K of copies has received
little attention. Usually, it is possible to simply repeat K times
the procedure used to prepare one copy, but the complexity
grows linearly with K. For instance, the algorithm of Grover
leads to a query complexity of O(K+/N) for preparing the
K-fold state |w)®X. In this paper, we investigate the question
of whether a more efficient approach exists. We describe a
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two-phase algorithm consisting of a preprocessing step that
uses O(+/KN) queries, after which each copy of |w) requires
only O(/N/K) queries to be prepared. Our result improves
upon the previous approach by a factor of v/K, and it is shown
to be optimal.

A. Related work

Our work is based on the quantum rejection sampling
method, where a state that is easy to prepare (e.g., a uniform
superposition) is mapped to a target state by amplitude am-
plification. This method was pioneered by Grover in Ref. [7]
and subsequently studied in Refs. [§—11]. All of these works
(except for Ref. [10]) take place in the quantum oracle model
and they often require a number of queries that is polynomial
in the dimension N of the state. In the nonoracular setting,
the problem of loading an arbitrary vector (wy, ..., wy) into
the amplitudes of a quantum state can be done with a circuit of
depth O(N) and width O(log N) [5,6]. It is possible to use only
polylog(N) resources for specific cases such as efficiently
integrable probability distributions [12-14] (Proposition 4),
uniformly bounded amplitudes [15], Gaussian states [16], or
probability distributions resulting from a Bayesian network
[10]. A different line of work [17-22] studied the prepara-
tion of a quantum state that corresponds to the stationary
distribution of a Markov chain. These algorithms use Markov
chain Monte Carlo methods and quantum walk techniques
to obtain a preparation time scaling with the spectral gap.
Aharonov and Ta-Shma [17] also showed that the existence
of an efficient procedure to convert any circuit into a coherent
state encoding the output distribution of that circuit would
imply that SZK € BQP.

The state preparation problem is also related to the task
of preparing samples from a discrete distribution. We refer
the reader to Refs. [23-25] for a general introduction on
the latter topic. In particular, the importance sampling prob-
lem (also called weighted sampling or L; sampling) asks to
generate K independent samples from the probability vector
(%, el w—WN) associated with a non-negative weight vector
w. The alias method [26-29] solves this problem with a
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preprocessing cost of O(N) operations, and a generating cost
of O(1) operations per sample. Grover [7,30] suggested a
quadratically faster algorithm for obtaining one sample, based
on preparing the state |w) and measuring it in the computa-
tional basis. Our state preparation algorithm extends the work
of Grover to the case of generating K independent samples
with a total cost of O(+/ KN ) operations. An alternative quan-
tum algorithm for (approximately) generating K such samples
was proposed before in Ref. [31], where it was combined
with the stochastic gradient descent method to address the
submodular function minimization problem.

B. Overview

The two parts of our state preparation algorithm are de-
scribed in Theorems 2 and 3. Combined together, these results
lead to the following main theorem.

Theorem 1. There is a quantum algorithm with the fol-
lowing properties. Consider two integers 1 < K < N, a real
6 € (0, 1) and a nonzero vector w € Rgo. Then, with proba-
bility at least 1 — &, the algorithm outputs K copies of the state
|w) and it uses O(+/ KN log(1/8)) queries to w in expectation.

We now provide a high-level description of how the al-
gorithm works. Our starting point is the result from Grover
[7] for preparing one copy of the state |w) in the black-box
model. Given an upper bound /4 on the largest value max; w;,
this algorithm uses two queries and one controlled rotation to
implement a unitary U such that

o 1 N . w; w;
U|0>=ﬁ;|z>< 510+ 1—7|1>). )

The state |w)|0) has amplitude ,/% in U I6), thus it can

be extracted by using the amplitude amplification algorithm

with O(,/ NWh) applications of U and U~'. In particular, if the

largest coordinate of w is smaller than & = W/K, then we
can prepare one copy of |w) in time O(4/N/K), and K copies
in time O(v/KN). We use this observation to construct a new
circuit C (Fig. 2) such that |w)|0) has amplitude at least ./K/N
in Cla), even if w contains large coordinates. This circuit uses
only two queries to w, but it requires O(~/KN) queries to
be constructed during a preprocessing phase that is executed
only once (Theorem 2). The preprocessing phase consists first
of computing the set H that contains the positions of the K
largest coordinates in w, by using a variant of the quantum
maximum finding algorithm (Proposition 2). The circuit C is
then defined to proceed in two stages. First, it prepares a state
whose amplitudes depend only on the values in {w; : i € H}
[Eq. (4)]. Next, it modifies this state by querying the set
{w; : i ¢ H} in a way that is similar to that of U. The crucial
observation is that the values in {w; : i ¢ H} must be smaller
than WW/K by definition of H, thus they can be amplified at
a smaller cost. Finally, each copy of |w) can be obtained by
one application of the amplitude amplification algorithm on C
(Theorem 3).

We show in the next proposition that our algorithm is
optimal by a simple reduction from the K-search problem.

Proposition 1. Any bounded-error quantum algorithm that
can output K copies of the quantum state |w) given oracle

Query gate

|v) — — v D w;)

Ouw

) — 10

Indicator gate Controlled rotation gate

— [9) b) —
]1H ROth
— b i ¢ H])

i) — — x)

b — W— =

FIG. 1. Three gates used in our circuits. The state |x) is defined
as \/7|b) + /1 — 2|1 — b) if 0 < v < h, and |b) otherwise.

access to any nonzero vector w € Rﬁo must perform at least
>

Q(+/KN) quantum queries to w.

Proof. We consider a variant of the K-search problem
where the objective is to find K preimages of 1 in an
oracle O : [N] — {0, 1} containing at least 2K such preim-
ages. The bounded-error quantum query complexity of this
problem is ®(+/KN) (the proof can easily be derived from
Appendix A in Ref. [32], for instance). On the other hand, by
a coupon collector argument [33], if we prepare and measure
in the computational basis ®(K) copies of |w) where w =
(OQ),...,O(N)) e {0, 1}V, then we obtain the positions of
at least K different preimages of 1 with constant success prob-
ability. It implies that generating Q2(K) such copies requires
using at least Q2(+/KN) quantum queries to w. |

II. PRELIMINARIES

A. Computational model

We use the quantum circuit model over a universal gate set
made of the controlled-NOT (CNOT) gate and of all one-qubit
gates. We suppose that the real numbers manipulated by our
algorithms (such as the coordinates of w) can be encoded over
¢ bits, for a fixed value of c. In particular, these numbers can
be stored in quantum registers of size c. We also add the three
gates described in Fig. 1. The indicator gate 1 is specified
by a subset H C [N]. It operates on a Boolean value b and
an index i € [N]. The Boolean value [i ¢ H] is equal to 1
if and only if i ¢ H. The query gate O, is specified by the
input vector w to the problem. It operates on an index i € [N]
and a real v (encoded over c¢ bits). Finally, the controlled
rotation gate Roty, is specified by a real 7 > 0 and it operates
on a Boolean value b and a real v. We refer the reader to
Refs. [9,34] and references therein for efficient implementa-
tions of the arithmetic gates and controlled rotation gates with
a given precision. We will also use |0) in our notations to
represent a multiqubit basis state |0)®¢ for some £ > 1.

The query complexity of an algorithm is the number of
times it uses the oracle gate O,, to access the input w. If not
specified, the total number of elementary gates used by our al-
gorithms will be larger than their respective query complexity
by at most a polylog(N) factor.
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Algorithm 1 Preprocessing phase.

1: Compute a set H C [N] of the positions of K largest entries in w
by using the top-K maximum finding algorithm (Proposition 2)
with failure probability §.

2: Compute &2 = min;cy w; and

Z=WN-Kh+)Y w. (3)
ieH
3: Use the state preparation algorithm of Proposition 4 to construct
a circuit D such that, on input |0)yt, it prepares the state

2 w; . h .
D|0)out = E E“)out + E \ Emout- 4)
i¢H

ieH
4: Output the circuit C represented in Fig. 2.

B. Quantum subroutines

The next algorithm generalizes the quantum minimum
finding of Diirr and Hgyer [35] to finding K largest entries in
a vector w. The algorithm succeeds if it outputs a set H C [N]
of K coordinates that dominate all other entries. There is not
necessarily a unique choice for H since different coordinates
of w may be equal.

Proposition 2 (top-K maximum finding: Theorem 4.2 in
Ref. [36]). There exists a quantum algorithm with the fol-
lowing properties. Consider two integers 1 < K < N, a real
6 € (0,1) and a vector w € Rgo. Then, the algorithm outputs
the positions of K largest entries in w with success probability
at least 1 — 8, and it performs O(v/KN log(1/8)) queries to w.

We also need the well-known amplitude amplification al-
gorithm.

Proposition 3 (amplitude amplification: Theorem 3 in
Ref. [37]). Let C be a quantum circuit that prepares the state
C10) = /ple)|0) + /T — ple*)|1) for some p € [0, 1] and
two unit states |@), |¢). Then, the amplitude amplification
algorithm outputs the state |¢) by using O(1/,/p) applications
of C and C' in expectation.

Finally, we will use the next quantum state preparation al-
gorithm that requires having an efficient procedure to compute
the partial sum »_)_, w, forany 1 <i < j < N.

Proposition 4 (state preparation by integration [12—14]).
There is a quantum algorithm with the following properties.
Consider an integer N and a nonzero vector w € Rgo such
that there is a (classical) reversible circuit with 7" gates that
computes y ;_. w, given i < j. Then, the algorithm outputs
|w) and it uses O(T log N) elementary gates.

III. MAIN ALGORITHM

We describe in details our state preparation algorithm
for preparing K copies of |w) given oracle access to w =
(wi, ..., wy). The first step of the algorithm is a preprocess-
ing phase (Algorithm 1) that constructs a particular circuit C
described in Fig. 2.

Theorem 2 (preprocessing phase). Consider two integers
1<K <N,areal § € (0, 1) and a nonzero vector w € Rgo.
Then, Algorithm 1 outputs with probability at least 1 — § the

‘O> rot

~ Roty,

‘0>qry - ] | |
Ow Ow

|6>out ]

1y 1y
0)ind —

FIG. 2. Circuit C output at the end of the preprocessing phase
(Algorithm 1).

description of a quantum circuit C such that, on input |0), it
prepares the state

1) = V/Pulw)0) + /1 = pyJw)1), o)

where p,, > K/N and |w™) is some unit state. The algorithm
performs O(~/KN log(1/8)) queries to w. The circuit C per-
forms two queries to w and it uses O(K logN) elementary
gates.

Proof. We assume that the top-K maximum finding al-
gorithm returns a correct set H at step 1 of Algorithm 1,
which is the case with probability at least 1 — §. The circuit
C represented in Fig. 2 operates on four registers: rot and ind
that contain a Boolean value, qry that contains a real v > 0,
and out that contains an integer i € [N]. The indicator gate
1y flips the content of ind when the out register contains
i ¢ H, which allows the rotation gate Rot; to be activated
only when i ¢ H. The gates O,, and 1y are applied a sec-
ond time at the end of C to uncompute the registers qry
and ind. A simple calculation shows that the final state is

-

C10) = 10)qry|0)indl ¥ )out rot Where

w; .
W’)out,rot = Z,/ E|l)0ut|0>rot

ieH
e (,/ﬂm + /1= )
o z out h rot h rot

4% w
= E|w>out|0>rot +,4/1- E|wl>out|1>rot (6)

for some irrelevant unit state |wl)ou. In order to lower

bound the coefficient p,, := %, we first observe that the

smallest value & = min;cy w; over H must satisfy i < w

since otherwise Y_,_,; w; would exceed W. Thus, p,! =
(N—K)h+Y" oy wi < 1% +1= %

The algorithm uses O(+/ KN log(1/8)) queries at step 1 by
Proposition 2. The set {w; : i € H} can be computed with K
queries, after which steps 2—4 do not need to perform any new

query. For any i < j, the partial amplitude sum Zé: i(E|D|(3)2

(e

Z
W

can be computed by a classical circuit with O(K) gates
since H is of size K. Thus, by Proposition 4, the circuit D
constructed at step 3 requires O(K log N) elementary gates.
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Finally, the number of gates needed to implement the circuit
C at step 4 is dominated by the number of gates needed in D
since the other gates are included in the computational model
(see Sec. IT A). |

We use the circuit C constructed during the above pre-
processing phase, together with the amplitude amplification
algorithm, to obtain the next state preparation phase that gen-
erates one copy of |w) in time O(/N/K).

Theorem 3 (state preparation phase). Consider two integers
1<K <N,areal § € (0, 1) and a nonzero vector w € Rgo.
Let C denote a quantum circuit obtained with Algorithm 1 on
input K, 8, w that correctly prepares the state |1) described in
Theorem 2. Then, given the description of C, one can prepare
the state |w) by using O(4/N/K) queries to w in expectation.

Proof. This is a direct application of the amplitude amplifi-
cation algorithm (Proposition 3) on C, where the complexity is
derived from the fact that |w)|0) has amplitude at least /K/N
in |¢) by Theorem 2. |

IV. DISCUSSION

We did not address the precision errors in our analysis. In
particular, it can be relevant to replace the controlled rotation
gate (which requires to calculate the arcsine function) by the
comparison-based circuit defined in Ref. [9] that avoids arith-
metic. We also restricted ourselves to preparing states with
non-negative real amplitudes. Arbitrary phase factors can be
introduced by using the techniques discussed in Refs. [9,14].
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