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Efficiency of photonic state tomography affected by fiber attenuation
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In this article, we investigate the efficiency of photonic state tomography in the presence of fiber attenuation.
The theoretical formalism of the photon loss is provided by implementing methods from the theory of open
quantum systems. The quantum state is reconstructed from photon counts obtained for symmetric information-
ally complete positive operator-valued measures. The number of photons that reach the detectors is numerically
modeled by the binomial distribution, which describes the loss of light caused by the medium. This approach
allows us to study the quality of state tomography versus the length of the fiber. In particular, we focus on
entangled qubits and qutrits, which are sent through fibers of different lengths. The amount of entanglement
detected by the measurement scheme is quantified and presented on graphs. The results demonstrate how the
quality of photonic tomography depends on the distance between the source and the receiver.
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I. INTRODUCTION

Quantum key distribution (QKD) relies on exchanging a
secure key between two distant parties through a nontrusted
communication channel [1]. The most common implementa-
tion of QKD is based on using single photons as a carrier of
a quantum cryptographic key [2–4]. In other protocols, the
security of the QKD process is guaranteed by the entangle-
ment of the state used to encode the key [5,6]. QKD systems
are built on the existing communication channels utilized
in modern telecommunication to increase the utility of such
systems. The most versatile channel for transmitting infor-
mation is the optical fiber network. Losses in an optical fiber
increase exponentially with the length L of the channel used
and the attenuation coefficient denoted by α. The value of the
attenuation factor, usually expressed in decibels per kilometer
(dB/km), depends on the fiber material and the manufactur-
ing tolerances, but it also varies with the wavelength. Fiber
optic losses are mainly due to material absorption. When the
distance to exchange cryptographic keys is above 300 km,
the losses become significant [7–9]. This is related to the
inability to duplicate the entangled states used to exchange the
cryptographic key because of the no-cloning theorem [10].

To investigate the impact of fiber attenuation on pho-
ton transmission, we implement quantum state tomography
(QST), which allows us to obtain the density matrix represent-
ing the quantum state from measurable data [11]. Methods of
QST are commonly utilized to reconstruct the state of photons
produced by a source [12,13]. Different characteristics of a
photonic state can be determined if its density matrix is re-
constructed. More specifically, for two-photon states, one can
quantify the entanglement by using a variety of entanglement
measures [14,15].
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In this paper, we present a comprehensive framework of
photonic state reconstruction and entanglement quantification
that takes into account fiber attenuation. First, we introduce
theoretical formalism by characterizing the photon loss as a
nonunitary decoherence process that affects the Fock state.
We prove that the decline in the number of photons can be
represented by either Kraus operators or a quantum generator.
As a consequence, the Fock state is subject to a legitimate
quantum evolution in the domain of fiber length.

The formalism allows us to investigate quantum tomogra-
phy of states encoded in a photon’s degree of freedom. We
assume that the number of photons that successfully pass
through the fiber is represented by a binomial distribution.
Then, the shot noise related to photon-counting is imposed
to make the scheme realistic. The efficiency of state recon-
struction is studied in various settings. The fidelity of quantum
states is used as an indicator of the precision of state re-
covery. As for entanglement quantification, we implement
two measures—the concurrence, which relates to two-qubit
states, and the negativity, which works well for two-qutrit
states.

Throughout the article, we follow the bra-ket notation to
denote pure quantum states. We operate in finite-dimensional
spaces with standard bases, which allows us to represent the
density operator as a matrix. To avoid ambiguity, the Fock
state representing the number of photons in a beam is denoted
by �, whereas a quantum state encoded in a degree of freedom
is given by ρ.

In Sec. II, we introduce the theoretical formalism of the
photon loss. The framework of state tomography is presented
in Sec. III, starting from the measurement scheme and noise
model. Then, entanglement measures are defined. Next, in
Sec. IV, we present and discuss the results devoted to qubit
tomography. Finally, in Sec. V, we analyze the figures con-
cerning qutrits. The findings of the article provide valuable
insight into the impact of fiber attenuation on state tomog-
raphy and entanglement detection. The work is concluded in
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the final section, where we also indicate problems for future
research.

II. THEORETICAL MODEL OF THE PHOTON
LOSS IN FIBER TRANSMISSION

According to the Beer-Lambert law, if a source generates
a beam with the initial power P0 that is transmitted through a
fiber of the length L, the receiver gets the output power that
can be expressed as

Pout(L) = P0 10− αL
10 , (1)

where α stands for the attenuation coefficient that charac-
terizes the fiber. Conventionally, α is given in dB/km. For
simplicity, Eq. (1) can be expressed as Pout(L) = P0 e−�t ,
where � ≡ ln 10 α/10.

If we implement this law in the single-photon framework, it
implies that one photon can successfully pass through the fiber
with probability e−�L whereas 1 − e−�L gives the probability
of a failure (photon loss). Assuming that the source generates
N photons in beam, the number of particles that reach the
receiver (denoted by Ñ ) can be modeled by the binomial
distribution, i.e., Ñ ∈ B(N , e−�L ). By applying the binomial
distribution, we can study the photon loss as a decoherence
process affecting the Fock state of the beam. We consider two
scenarios. First, we introduce the formalism for one photon
traveling through the fiber and then we generalize it for a beam
consisting of N photons.

A. Decoherence of a one-photon state

One photon traveling through a fiber can be considered
a two-level system associated with an orthonormal basis
{|0〉 , |1〉}. The vectors correspond to physical situations:
“there is a photon” (vector |1〉) and “there is no photon”
(vector |0〉). The initial state is given by �in = |1〉〈1| since the
source is assumed to emit a photon with certainty. By impos-
ing the binomial distribution, we can describe the evolution of
this state versus the fiber length:

�(L) = (1 − e−�L ) |0〉 〈0| + e−�L |1〉 〈1| , (2)

which can be expressed, equivalently, as

�(L) = K0(L)�inK†
0 (L) + K1(L)�inK†

1 (L), (3)

where

K0(L) =
(

0
√

1 − e−�L

0 0

)
, K1(L) =

(
1 0
0

√
e−�L

)
.

(4)

From Eq. (3), we see that the process of photon loss is a type
of nonunitary decoherence that can be described by a Kraus
representation [16,17]. Furthermore, one can notice that for
any L � 0, we have K†

0 (L)K0(L) + K†
1 (L)K1(L) = I2 (where

by Id we denote a d × d identity matrix), which implies
that the map preserves the trace of the density matrix. As a
result, the operation Eq. (3) provides a one-parameter contin-
uous family of complete positive and trace-preserving (CPTP)
maps. This implies that the photon loss can be considered a
legitimate quantum dynamics of the Fock state in the domain
of fiber length.

The formalism can be further developed by differentiating
Eq. (3), which results in

d�(L)

dL
= �

(
E01�(L)E†

01 − 1

2
{E†

01E01, �(L)}
)

, (5)

where E01 = |0〉〈1| and {X,Y } denotes the anticommutator,
i.e., {X,Y } = XY + Y X . The right-hand side of Eq. (5) is a
specific example of Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) quantum generator [18,19]. E01, which describes the
decay from |1〉 to |0〉, can be called a “jump operator.”

The framework of the photon loss is in line with the theory
of open quantum systems. In particular, when we consider
a one-photon Fock state, we notice a direct analogy to the
amplitude damping channel [20]. Such a quantum channel
applied to a two-level atom can describe, for example, sponta-
neous emission, which involves a decay from a higher energy
level to the ground state, cf. Refs. [21,22].

The theory of one-photon decoherence can be considered
in the context of randomness in quantum mechanics [23].
The concept of random numbers is an important question for
many disciplines. However, generation of high-quality ran-
domness has been a difficult problem [24,25]. According to
the physics-based approach, random numbers should be un-
predictable to any observer who is constrained by the laws of
physics [26,27]. In our model, we can obtain a quantum ran-
dom number generator (QRNG) since the attenuation process,
which is inherently uncontrollable and unpredictable, leads to
the realization of perfectly random bits. For any attenuation
coefficient α, we assume to be able to adjust the fiber length
according to

L(α) = 10 ln 2

ln 10

1

α
, (6)

which guarantees that the one-photon Fock state Eq. (2) takes
the form of the maximally mixed state. Consequently, if we
consider a sequence of M photons separated in time, we get
the state

�rand = (
1
2 |0〉 〈0| + 1

2 |1〉 〈1|)⊗M
. (7)

The state �rand represents M realizations of a perfect random
bit, where the values 0 and 1 are taken with equal probability.
For each time slot, if the detector clicks to announce a photon,
we obtain 1. Otherwise, we have 0.

Furthermore, the relation between L and α can be presented
graphically, which is shown in Fig. 1. From Eq. (6), we see
that L and α are inversely proportional. This feature appears to
be a key limiting factor of this scheme of randomness genera-
tion. For a typical fiber, we have α = 0.2 dB/km, which gives
the fiber length required to achieve random states: L ≈ 15 km.
If one would like to extend the distance for transmission
of random states, fibers with lower attenuation coefficients
would be necessary, as presented in Fig. 1.

The model presented in this work belongs to the category
of intrinsic randomness, which occurs when knowledge about
the initial state is not sufficient to predict future evolution.
Probabilities are used here to represent the quantum state as a
statistical mixture Eq. (7), which is a necessary and inevitable
tool to describe the behavior of a system subject to a random-
ized physical process [23].
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FIG. 1. The fiber length required for quantum randomness versus
attenuation.

B. Decoherence of an N -photon state

In a general case, we consider a beam that consists of
N photons traveling through a fiber. Then, the initial Fock
state of the ensemble can be denoted by �in = |N 〉〈N |. As
already explained, the number of photons that pass through
the medium can be modeled by a binomial distribution. As a

result, the Fock state of the beam can be written as

�(L) =
N∑
j=0

(N
j

)
(e−�L ) j (1 − e−�L )N− j | j〉 〈 j| , (8)

where, for simplicity, we assume that the vectors
{|0〉 , |1〉 , . . . , |N 〉} form the standard basis. By con-
vention,

(N
j

)
stands for the binomial coefficient, i.e.,(N

j

) ≡ N !/ j!(N − j)!.
The spectral decomposition of the density matrix Eq. (8)

can be put into

�(L) =
N∑
j=0

Kj (L)�inK†
j (L), (9)

with the Kraus operators defined as

Kj (L) =
{√

PN ( j) | j〉 〈N | for j = 0, 1, . . . ,N − 1
diag

(
1, . . . , 1,

√
PN (N )

)
for j = N ,

(10)

where PN ( j) ≡ (N
j

)
(e−�L ) j (1 − e−�L )N− j and by

diag(1, . . . , 1,
√

PN (N )) we denote a (N + 1) × (N + 1)
diagonal matrix in which the first N entries of the main
diagonal are all one, while the last element is

√
PN (N ).

Furthermore, one can notice that

N∑
j=0

K†
j (L)Kj (L) = [1 − PN (N )] |N 〉 〈N | + diag(1, 1, . . . , PN (N )) = IN+1, (11)

which proves that the map Eq. (9) is CPTP for any L � 0. This demonstrates that the transmission of an N -photon state can be
described by a legitimate model of nonunitary decoherence.

The formalism can be developed by differentiating Eq. (8), which leads to a master equation

d�(L)

dL
=

N∑
j=0

(N
j

)
[− j�(e−�L ) j (1 − e−�L )N− j + (N − j)�e−�L(e−�L ) j (1 − e−�L )N− j−1] | j〉 〈 j|

= �

[
−

N∑
j=1

(N
j

)
j(e−�L ) j (1 − e−�L )N− j +

N−1∑
j=0

( N
j + 1

)
( j + 1)(e−�L ) j+1(1 − e−�L )N−( j+1)

]
| j〉 〈 j|

= �

N∑
j=1

j

[(N
j

)
(e−�L ) j (1 − e−�L )N− j | j − 1〉 〈 j − 1| −

(N
j

)
(e−�L ) j (1 − e−�L )N− j | j〉 〈 j|

]

=
N∑
j=1

� j

(
E( j−1) j�(L)E†

( j−1) j − 1

2
{E†

( j−1) jE( j−1) j, �(L)}
)

, (12)

where E( j−1) j = | j − 1〉〈 j| represents the jump operator from
the jth to ( j − 1)st state (for j = 1, . . . ,N ). The last line of
Eq. (12) shows that the process of attenuation of an N -photon
state can also be analyzed within the master-equation ap-
proach by assigning a GKSL generator.

Moreover, the spectral decomposition Eq. (8) enables one
to study the purity

γ (L) := Tr�2(L) =
N∑
j=0

P2
N ( j), (13)

and the von Neumann entropy

S(L) := −
N∑
j=0

PN ( j) ln PN ( j) (14)

of the Fock state �(L) subject to fiber attenuation.
In Fig. 2, one finds the plots of both quantities for a beam

comprising 10 photons that travel through a fiber with the
attenuation coefficient α = 0.2 dB/km. The plots reflect the
structure of the generator of evolution given in Eq. (12) be-
cause the initial Fock state �in = |10〉〈10| is quickly deprived
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FIG. 2. The von Neumann entropy and purity of a Fock state
associated with a beam traveling through a fiber such that α = 0.2
dB/km. Initially, the beam consisted of 10 photons.

of its coherence, which is shown as a boost in entropy and
a decline in purity. Then, as we increase the fiber length,
the state slowly converges to the final pure state, which is
limL→∞ �(L) = |0〉〈0|.

The theoretical model allows us to describe the process of
attenuation within the framework of open quantum systems.
In other words, the photon loss can be treated as a type of
nonunitary decoherence that disturbs the Fock state represent-
ing the number of photons in the fiber.

The exponential decay of the number of photons can signif-
icantly distort measurements based on photon counting. If we
encode a quantum state on a photon by exploiting a particular
degree of freedom (e.g., polarization, temporal), then photon
counts obtained from an experiment will depend not only on
the type of measurement but also on the length of the fiber.
Therefore, we propose a numerical framework to investigate
the impact of fiber attenuation on quantum state tomography
and entanglement quantification.

III. METHODS OF STATE ESTIMATION AND
ENTANGLEMENT QUANTIFICATION

A. Quantum state tomography

To reconstruct an unknown quantum state encoded on a
photon, we implement a measurement scheme that is based on
symmetric informationally complete positive operator-valued
measures (SIC-POVMs) [28,29]. For qubit tomography, the
SIC-POVM involves four measurement operators, whereas,
for qutrits, nine operators are required [30]. To estimate
the state of entangled qubits, we construct 16 two-qubit
measurement operators by implementing the tensor product.
Analogously, for entangled qutrits, we obtain 81 operators,

In general, let us denote the measurement operators by
M1, . . . , Mη, where η indicates the necessary number of op-
erators. Then, we assume that the source generates a beam
containing N photons (or photon pairs) per measurement.
Each photon is prepared in an identical quantum state that
is described by a density matrix ρx. The quantum state can
be encoded in a photon’s degree of freedom such that one
can realize the SIC-POVM scheme. In particular, one can

consider polarization [31], spatial [32], or time-bin quantum
states [33]. This allows us to write a formula for the expected
photon count:

ek = �N TrMkρx�, (15)

where the symbol �a� denotes rounding a to the nearest
integer since the number of photons cannot be fractional.
The density matrix ρx remains unknown to the observer and,
for this reason, we follow the Cholesky decomposition to
parametrize it depending on its dimension, cf. Refs. [34,35].

The formula Eq. (15) models the photon counts according
to the Born rule, which is a theoretical foundation for this
measurement scheme. However, in practice, any act of mea-
surement involves errors and uncertainty, which implies that
the values provided by the detection system will be different
from what one may expect. In quantum optics, we encounter
the shot noise that describes the fluctuations of the number of
photons counted by the system [36]. As a result, the measured
counts {mk} are statistically independent Poissonian random
variables. Thus, for an input state ρin, we simulate an ex-
perimental scenario by selecting measured counts randomly
from a Poisson distribution: mk ∈ Pois(n) with the mean value
given by

n = �Ñ TrMkρin�, (16)

where Ñ represents the number of photons that reached the
detection system after passing through the fiber. The value
of Ñ is generated randomly by taking into account fiber
attenuation. As explained in Sec. II, we follow the bino-
mial distribution to simulate experimental scenario, i.e., Ñ ∈
B(N , e−�L ). Similarly, for a two-photon state, we assume that
the source generates N photon pairs per measurement, and
each of them travels through a separate fiber (fiber lengths are
denoted by L1 and L2). Since we are interested in detecting
coincidences, both photons need to arrive at the corresponding
detectors. Consequently, for two-photon states, the number of
photon pairs that reach the detection system can be modeled
by implementing the joint probability, which means: Ñ ∈
B(N , e−(�1L1+�2L2 ) ).

The above-described approach allows one to numerically
generate photon counts that correspond to a realistic sce-
nario for any input density matrix ρin. Then, we follow the
method of least squares (LS) to determine how well one can
reconstruct the density matrix in spite of the uncertainty, cf.
Refs. [37,38]. This means that we search for the minimum
value of the function:

fLS (t1, t2, . . . ) =
∑

k

(ek − mk )2, (17)

where t1, t2, . . . denote the set of real parameters that charac-
terize the density matrix ρx.

To evaluate the performance of QST in the presence of fiber
attenuation, we compute, for any input density matrix ρin, its
fidelity with the result of estimation ρx [20]:

F [ρin, ρx] := (Tr
√√

ρinρx
√

ρin)2, (18)

which is known as the Uhlmann-Jozsa fidelity that measures
the closeness of two quantum states [39,40]. The efficiency
of the framework depends on the properties of the input state.
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Therefore, to find an indicator of the average performance,
we first select a sample of input states, then each of them
undergoes the procedure of QST, and, finally, the average
fidelity for the sample is computed. Additionally, we calcu-
late sample standard deviation (SD) to quantify the statistical
dispersion. In our study, the length of the fiber is considered an
independent variable, which implies that the average fidelity
can be treated as a function of L and denoted by Fav(L). As
a result, this figure of merit can be plotted to observe how
the efficiency of QST changes as we increase L. Analogously,
for two-photon states, we treat the average fidelity denoted by
Fav(L1, L2) as a function of two variables.

B. Entanglement quantification

Apart from evaluating the precision of state tomography,
we also quantify the amount of entanglement detected by the
scheme. For two-qubit states, we implement the concurrence,
which can be computed directly for any density matrix ρx

obtained from the scheme [41,42]. The concurrence is an
entanglement monotone, which gives C[ρ] = 0 for a sepa-
rable state ρ, and C[ρ] = 1 for ρ representing a maximally
entangled state. This figure of merit is commonly used to
quantify entanglement with imperfect measurements [43,44].

In our application, we consider entangled photon pairs such
that each photon can travel through a fiber of a different
length, denoted by L1 and L2. Thus, for the reconstructed two-
qubit state ρx, we compute the concurrence, treating the fiber
lengths as independent variables. Finally, the average concur-
rence for a sample of input states, denoted by Cav(L1, L2),
can be plotted like a two-variable function. This approach
allows us to observe the quantity of entanglement embraced
by the reconstructed states for different combinations of fiber
lengths.

As for two-qutrit states, we utilize the negativity, which
is a measure of quantum entanglement that can be relatively
convenient for an arbitrary bipartite system [45]. For a 9 × 9
density matrix ρx obtained from the scheme, we compute

N[ρx] =
∥∥ρ�A

x

∥∥
1 − 1

2
, (19)

where ρ�A
x denotes the partial transpose of ρx with respect

to the subsystem A and ‖σ‖1 represents the trace norm of
σ , i.e., ‖σ‖1 := Tr[(σ †σ )1/2]. The formula Eq. (19) can be
implemented numerically to allow for straightforward entan-
glement quantification. It is worth stressing that negativity is
an entanglement monotone, but it does not always guarantee
entanglement detection since, for PPT entangled states, it
results in zero. However, in our framework, we operate with
a sample of maximally entangled qutrits, which implies that
negativity can be considered a proper entanglement measure.
In the same vein as with the concurrence, we compute the
average negativity for a sample and plot it as a two-variable
function, denoted by Nav(L1, L2).

IV. QUBIT TOMOGRAPHY

A. Single qubits

First, we consider the efficiency of QST for single qubits.
We selected a sample consisting of 220 pure states that are

FIG. 3. Fidelity of qubit tomography, Fav(L), for three numbers
of photons per measurement. The attenuation coefficient is fixed:
α = 0.2 dB/km.

distributed uniformly on the Bloch sphere. Then, each input
state goes through the framework, and the average fidelity is
computed. In Fig. 3, one finds the results presenting Fav(L),
for three numbers of photons per measurement. The results
correspond to a fixed attenuation coefficient: α = 0.2 dB/km.

From Fig. 3, one can observe that the quality of state
recovery degenerates as we increase the fiber. A longer fiber
involves more attenuated photons, which reduces the preci-
sion of measurements due to the shot noise. If we compare
N = 50 and N = 250, we notice that initially, both settings
provided similar accuracy. However, as we increase the fiber,
the setting with 250 photons per measurement outperforms
the other scenario. Also, one should notice that SD grows
along with the fiber, which implies that the sample features
more statistical dispersion. Finally, for N = 10, we see that
even at the beginning, one is not able to properly estimate the
state. It results from the impact of shot noise, which affects the
smallest ensemble more significantly, even in the absence of
fiber attenuation. Moreover, for 10 photons per measurement,
the results are more scattered, which means we cannot predict
the efficiency for a particular state.

It is worth stressing that ultimately all plots converge to
the value Fav(L) ≈ 0.5 accompanied by a considerable SD.
This tendency confirms the observations from the theoretical
model introduced in Sec. II. At some point, the photon loss
is extremely significant, which, combined with the shot noise,
makes the state estimation impossible. The QST framework
results in random states and, consequently, a great value of
SD. The average value of fidelity is close to 1/2, which
corresponds to quantum fidelity between any pure state and
a maximally mixed state.

Next, we consider Fav(L) for three different attenuation
coefficients while the number of photons is fixed: N = 200.
The findings are presented in Fig. 4. For α = 0.1 dB/km, we
witness stable precision of state estimation since the function
decreases slowly. The results demonstrate that in this scenario,
the framework is efficient even for longer fibers.

Then, for α = 0.3 dB/km, we observe that the fidelity
declines as we increase the fiber up to approx. L = 100 km,
when it stabilizes. There are some irregularities in the plot,
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FIG. 4. Fidelity of qubit tomography, Fav(L), for three attenua-
tion coefficients. The number of photons per measurement is fixed:
N = 200.

which can be attributed to the randomness of noise that affects
the measurements.

Lastly, if α = 0.5 dB/km, the fidelity reduces rapidly.
We notice a similar tendency as for α = 0.5 dB/km, but
the plot declines more sharply. For L = 60 km, we obtain
Fav(60 km) = 0.52 ± 0.33, and then its value remains more
or less constant. This observation suggests that one cannot
efficiently estimate a qubit state in such conditions.

B. Entangled qubits

In this part, we apply the framework to one class of en-
tangled qubits. More specifically, we investigate a following
family of two-qubit states:

|
(φ)〉 = 1√
2

(|0〉 ⊗ |0〉 + eφi |1〉 ⊗ |1〉), (20)

where {|0〉 , |1〉} represents the standard basis in the two-
dimensional Hilbert space and 0 � φ < 2π . We select a
sample of 100 states of the form Eq. (20) such that the relative
phase φ covers the full range.

We focus on this particular class of two-qubit entanglement
since it comprises the celebrated Bell states, i.e., |
+〉 and
|
−〉, which are famous for multiple applications in quantum
information and computation. In quantum optics, such kind of
two-photon entangled states can be produced by spontaneous
four-wave mixing (SFWM) in a dispersion-shifted fiber [46],
or spontaneous parametric down-conversion (SPDC) [47], and
by a source that utilizes quantum dots [48].

The results with the fidelity of state estimation can be
found in Appendix. Here, we concentrate on entanglement
quantification because it is a crucial question in the context
of practical applications. In Fig. 5, we present the average
concurrence Cav(L1, L2), which corresponds to the estimated
states. Originally, all input states were maximally entangled
with concurrence equal to one. However, as a consequence of
photon loss and shot noise, the measured states feature less
entanglement. The plot in Fig. 5 allows one to track how
the quantity of entanglement detected by the measurement
scheme depends on fiber lengths.

FIG. 5. Concurrence of entangled qubits tomography,
Cav(L1, L2). The number of photon pairs per measurement is
fixed: N = 1000 and attenuation coefficient is α = 0.2 dB/km.

For practical reasons, we are usually interested in detecting
such a quantity of entanglement that is sufficient to announce
the violation of the Bell–Clauser-Horne-Shimony-Holt in-
equality [49,50]. Based on the concurrence, we can say that
a quantum state ρ allows of such a violation if C[ρ] > 1/

√
2

[51,52]. From Fig. 5, one can conclude that Cav(L1, L2) >

1/
√

2 as long as L1 + L2 < 110 km. This observation pro-
vides us with a threshold for detecting quantum correlations.
By following the framework introduced in this work, one can
determine an analogous criterion for a different number of
photon pairs or distinct attenuation coefficients.

C. Application: Security of quantum communication

We propose to implement the tomographic scheme in the
context of security in quantum communication. When two
parties share an entangled state, they can establish a private
key by exploiting the quantum correlations associated with
measurements [5]. However, the task is more challenging if
we assume that an eavesdropper may hack into the communi-
cation system and impose some measurements on the photons.
There are numerous works on the impact of an eavesdropper
on a quantum cryptography system, see, e.g., Refs. [53,54].
Usually, eavesdropper detection requires discarding some per-
centage of bits to compare them over a public channel. In
this work, we introduce a tomographic approach to detecting
an eavesdropper. From Sec. IV B, we know how well entan-
glement can be retrieved in the presence of fiber attenuation.
Thus, the key idea is that by performing entanglement quan-
tification, we can discover a security threat if the result we
obtain is below the theoretically estimated boundary.

As for the eavesdropper (Eve), we assume that she can plug
in between the source and one party. She tries to avoid being
caught easily, so she captures only a portion of photons in
each beam, denoted by p (where 0 � p � 1). Moreover, Eve
performs the SIC-POVM measurements on her photons and
lets them through the rest of the fiber. However, we do not
know which operator is measured when. Thus, we consider
her measurements to be random. Then, the postmeasurement
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FIG. 6. Concurrence of a two-qubit state via quantum tomogra-
phy affected by an eavesdropper. Error margins correspond to the
SD. The horizontal lines represent the lower bounds in the scenario
with p = 0.

state of a photon pair is given by

ρk
Eve := (I2 ⊗ Mk ) |
(φ)〉 〈
(φ)| (I2 ⊗ Mk ), (21)

where for each photon beam, Mk is assigned randomly from
the set {M1, M2, M3, M4} which denotes the single-qubit SIC-
POVM. As a results of the eavesdropping, the quantum state
can be described by a statistical mixture

ρ̃k = (1 − p) |
(φ)〉 〈
(φ)| + pρk
Eve. (22)

The state (22) undergoes the series of 16 measurements
by the two-qubit operators, as described in Sec. III. For each
measurement, the Eve’s operator Mk is selected randomly to
simulate the effect of eavesdropping.

In Fig. 6, we present the results of numerical simulations,
i.e., the concurrence as a function of p, which is denoted
Cav(p). The same sample of |
(φ)〉 was used as in Sec. IV B.
We assumed that the source emitted 1000 photon pairs per
measurement which are attenuated by the fiber. The eaves-
dropper was located in the middle of the fiber between the
source and one of the parties. We considered two com-
binations of fiber lengths to discuss the efficiency of the
eavesdropper detection.

First, we observe that Cav(p) decreases monotonically
when L1 = L2 = 20 km. When Eve is not active, we obtain
Cav(0) = 0.94 ± 0.06, which corresponds to the results pre-
sented in Fig. 5. The lower bound of this interval is used as
a frame of reference to determine a condition that allows one
to detect the eavesdropper. We notice that for all p � 0.2, the
entire intervals of Cav(p) lie below the threshold. Based on
this observation, we conclude that under such assumptions,
one can detect the eavesdropper if Eve captures at least 20%
of photons.

On the other hand, if we take longer fibers such that
L1 = L2 = 50 km, we obtain more statistical dispersion since
Cav(0) = 0.69 ± 0.24. Due to photon loss, which is more sig-
nificant in this case, the results for the sample are considerably
affected by the shot noise and, as a result, more scattered.
Again, the lower error margin is treated as a threshold for the
eavesdropper detection. As we increase p, we see that Cav(p)

FIG. 7. Fidelity of qutrit tomography, Fav(L), for three numbers
of photons per measurement. The attenuation coefficient is fixed:
α = 0.2 dB/km.

behaves nonmonotonically. Although the average concurrence
tends to decrease, we cannot detect the eavesdropper within
the investigated range of p. In no case, the interval for the
concurrence lies below the threshold.

In our example, we see that the fiber length can be con-
sidered a key limiting factor since the scenario is focused on
the impact of fiber attenuation. This approach is in agreement
with other quantum information protocols that investigate the
efficiency of information exchange by photons transmitted
through a lossy fiber. A remedy for the effect of photon
loss would involve increasing the number of photon pairs
per measurement. As we already know, a longer fiber can be
compensated for by a larger ensemble of quantum systems,
which could be realized by a longer-lasting light pulse. In con-
clusion, due to the interdependence between the parameters,
for a given setting, one would need to determine the optimal
duration of the light pulse to utilize the method proposed in
this work.

V. QUTRIT TOMOGRAPHY

A. Single qutrits

In addition, we examine the performance of the QST
framework with single qutrits. We took a sample of 5184 pure
qutrit states, which are equidistant across all parameters of
the general representation of a qutrit pure state [55]. Each
input state sequentially passes through the framework, and
the average fidelity is calculated. In Fig. 7, we present the
results of the average fidelity calculation, Fav(L), for three
numbers of photons per measurement: N = 10, 50, and 250.
The results are estimated for a fixed attenuation coefficient:
α = 0.2 dB/km.

The results presented in Fig. 7 demonstrate that if we
increase the fiber length, one can observe that the average
fidelity in every case, Fav(L), drops down nearly linearly in
some range and then achieves a constant value roughly equal
to the 1/3. Deformation of the estimated state is caused by
the absorption, which decreases the number of photons in
measurements. Also, these findings are in line with the theo-
retical analysis presented in Fig. 2. A tomography scheme can
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FIG. 8. Fidelity of qutrit tomography, Fav(L), for three attenua-
tion coefficients. The number of photons per measurement is fixed:
N = 200.

extract the reliable state when there is a sufficient probability
of getting enough photons to extract the parameters that char-
acterize the density matrix. This can be related to the entropy
of the Fock state that declines as we increase L, which implies
that the Fock state converges to |0〉.

Comparing these findings with qubits, we observe a faster
degradation of the estimated state while increasing the length
of the fiber. It can be concluded that one needs more mea-
surements to achieve decent fidelity for a higher dimensional
state. It stems from the need to estimate more parameters.
Furthermore, different constant values of the average fidelity
can be observed in the long fiber regime. In the qubit scenario,
Fav(L) approaches 1/2, whereas, for qutrits, it converges to
1/3. These values are connected to the scenario when we do
not have any information about the measured state since the
framework randomly assigns a density matrix to the data due
to noise.

Increasing the number of input photons extends the length
of the fiber for which we can achieve a reliable state. Thanks
to this, we can predict, for a specific length of the fiber, the
number of photons that we must be measured to get sufficient
quality of estimation. Moreover, we can observe that the stan-
dard deviation increases with the length of the fiber, which is
related to the statistical dispersion of the sample.

Then, we considered the properties of Fav(L) for a constant
number of photons: N = 200 (see Fig. 8), and three different
attenuation parameters: α = 0.1, 0.3 and 0.5 dB/km. We ob-
serve faster degradation of state estimation for an increased
damping factor. The trend of the decrease of the average
fidelity is close to the linear for 0.1 dB/km. This behavior is
no longer valid for the highest attenuation coefficient α = 0.3
and α = 0.5 dB/km. First, we witness a rapid decline in the
accuracy of state estimation. Later, for the attenuation coef-
ficient α = 0.3 dB/km when L � 85 m and α = 0.5 dB/km
when L � 55 m, the function Fav(L) stabilizes and maintains
roughly a constant value close to 1/3. This feature is analo-
gous to the characteristics of Fav(L) observed for qubits for the
same parameters, see Fig. 4. However, in the case of qutrits,
the constant value of Fav(L) is achieved for shorter fibers than
in the case of qubits. This implies that a long fiber combined

FIG. 9. Negativity of entangled qutrits tomography, Nav(L1, L2).
The number of photon pairs per measurement is fixed: N = 1000
and the attenuation coefficient is α = 0.2 dB/km.

with a higher attenuation coefficient is highly detrimental to a
qutrit state recovery.

B. Entangled qutrits

To study the performance of QST for entangled qutrit
states, we chose a class of maximally entangled states:

|
(φ)〉 = 1√
3

(eiφ |0〉 ⊗ |2〉 + |1〉 ⊗ |1〉 + eiφ |2〉 ⊗ |0〉),

(23)

where {|0〉 , |1〉 , |2〉} represents the standard basis in the
three-dimensional Hilbert space and 0 � φ < 2π . The sample
consists of 100 states equally spaced due to the relative phase
φ. We selected the input states |
(φ)〉 since such systems can
be easily produced with a spatial degree of freedom in the
SPDC process [32].

In Fig. 9, we present the mean negativity, which represents
the amount of entanglement of the reconstructed two-qutrit
state after the transmission in fibers in two arms. The sim-
ulations were performed for N = 1000 and an attenuation
coefficient 0.2 dB/km. The amount of entanglement tends to
decrease monotonically as the optical fiber length becomes
greater in both directions. The measurement of negativity
gives a high amount of entanglement when one party has
a long fiber and the other uses a short channel. Due to the
necessity to estimate many parameters, the performance for
entangled qutrits is more distorted by the absorption in op-
tical fibers than in the qubit case. Moreover, the negativity
measurement for the employed sample of states with defor-
mation stemming from the absorption in fiber is well-behaved.
Minor inaccuracies that occurred in Fig. 9 [e.g., the function
Nav(L1, L2) is not always monotone] can be attributed to the
random nature of noise. Both photon loss and shot noise are
governed by probability distributions, which results in random
fluctuations of the figures of merit.
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FIG. 10. Fidelity of entangled qubits tomography, Fav(L1, L2).
The number of photon pairs per measurement is fixed: N = 1000
and attenuation coefficient is α = 0.2 dB/km.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced the formalism of photon
loss within the theory of open quantum systems. The binomial
distribution and the Beer-Lambert law were implemented to
describe how the Fock state changes when a beam of photons
travels through a fiber. The impact of fiber attenuation can be
modeled by amplitude-damping quantum channels, which is
in line with other quantum phenomena such as spontaneous
emission. In addition, the evolution of the Fock state in the
domain of the fiber length can be represented by a master
equation with a linear generator. Both theoretical frameworks
provide valuable insight into the process of photon loss. Also,
the framework appears applicable in generating random num-
bers.

In practice, polarization-entangled photon sources suffer
from limited performance [56,57], which means that produced
photon pairs should be distributed efficiently. Therefore, the
scheme was adapted to qubit and qutrit tomography, while
special attention was paid to entangled states. With selected
figures of merit, we could track both the precision of state re-
construction and the quantity of entanglement detected by the
framework. The results allow one to observe how the quality
of transmission degenerates as we increase the fiber length.
The findings of the paper may have relevant implications for
future experiments. One needs to properly select the duration
of a light pulse to guarantee a sufficient number of photons
per measurement. In other words, the awareness of how fiber
attenuation impacts the transmission of photons will help an
experimenter to adjust the input power of the source so that
the detectors receive a satisfactory signal.

Furthermore, we demonstrated that the framework could
be implemented to detect an eavesdropper in quantum com-
munication based on entangled photon pairs. If a sufficient
percentage of photons is disturbed by the eavesdropper’s mea-
surements, we can expose the eavesdropper by comparing the
obtained concurrence with a threshold value. This method
can be an alternative to other approaches to the eavesdropper
detection problem.

FIG. 11. Fidelity of entangled qutrits tomography, Fav(L1, L2).
The number of photons pairs per measurement is fixed: N = 1000
and the attenuation coefficient is α = 0.2 dB/km.

There are remaining open problems that can be addressed
in forthcoming papers. Most of all, fluctuations of the source
should be taken into account. Even if we tune the source
to a specific power, the number of photons emitted in a
single shot can vary. More specifically, it should not be
treated as a constant value but rather as a random variable
generated from a distribution that characterizes the source.
Furthermore, apart from fiber attenuation, we should also
consider scattering processes that occur during the trans-
mission of photons and influence the detection. A thorough
description of all factors that impact the photonic tomography
will lead to a better understanding and, presumably, more
effective practical implementations of quantum information
protocols.
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APPENDIX: FIDELITY OF ENTANGLED
STATES ESTIMATION

In the Appendix, we provide plots presenting the fidelity of
entangled states estimation.

In Fig. 10, one finds the average fidelity, Fav(L1, L2), cor-
responding to entangled qubits estimation, as discussed in
Sec. IV B. The map allows one to follow the precision of state
reconstruction for different combinations of fiber lengths. We
assumed that the number of photon pairs per measurement and
the attenuation coefficient remained unchanged.

In Fig. 11, we display the average fidelity depending on
lengths of two fibers, with N = 1000 and the attenuation
coefficient: 0.2 dB/km, as discussed in Sec. V B. The state
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deformation becomes larger as the lengths of the optical fibers
increase in both arms. However, it can be concluded that

the region of reliable state estimation can be defined by the
following constraint: L1 + L2 � 90 m.
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