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Constructing optimal thermodynamic processes in quantum systems relies on managing the balance between
the average excess work and its stochastic fluctuations. Recently it has been shown that two different quantum
generalizations of thermodynamic length can be utilized to determine protocols with either minimal excess
work or minimal work variance. These lengths measure the distance between points on a manifold of control
parameters, and optimal protocols are achieved by following the relevant geodesic paths given some fixed
boundary conditions. Here we explore this problem in the context of Gaussian quantum states that are weakly
coupled to an environment and derive general expressions for these two forms of thermodynamic length. We
then use this to compute optimal thermodynamic protocols for various examples of externally driven Gaussian
systems with multiple control parameters.
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I. INTRODUCTION

Microscopic systems that are driven out of equilibrium
often exhibit noticeable fluctuations in their work output. In-
vestigating the impact of these fluctuations has been a central
topic in stochastic thermodynamics [1], and this has led to
a more detailed understanding of nonequilibrium thermody-
namics via the celebrated fluctuation theorems [2–4]. More
recently, developments in quantum thermodynamics [5] have
led to a growing interest towards understanding how quantum-
mechanical effects impart signatures on the statistics of work
[6–8], alongside the usual influence of classical stochastic
fluctuations. A range of interrelated phenomena have been
shown to affect the behavior of work in the quantum regime,
including quantum correlations [9], violations of macroreal-
ism [10,11], contextuality [12], quantum coherence [13–16],
and quantum measurement effects [17].

One notable quantum signature that can be observed in
the work statistics of an out-of-equilibrium process is the
breakdown on the work fluctuation-dissipation relation (FDR)
in the slow driving regime. For classical systems driven close
to equilibrium, stochastic work is typically described by a
normal distribution [18]. In this case the average excess work
above the free energy change, 〈Wex〉, is proportional to the
corresponding work variance 〈�W 2〉 according to the FDR
〈Wex〉 = 1

2β〈�W 2〉, with β the inverse temperature of the sur-
rounding environment [2,19]. However, it has recently been
proven that in an analogous quantum-mechanical process that
is driven slowly in time, this FDR can be violated and a more
general relationship between the average and variance holds
[20,21]:

〈Wex〉 = 1
2β〈�W 2〉 − IW . (1)

Here IW � 0 is a measure of the noncommutativity be-
tween the system’s state and the various observables that are

conjugate to the control variables of the system’s time-
dependent Hamiltonian. This measure is closely related to
the Wigner-Yanase-Dyson skew information [22], which is
commonly used as a measure of quantum fluctuations and
uncertainty [23]. The additional dissipation caused by these
quantum fluctuations in the conjugate forces creates a non-
classical signature in the overall work distribution, as this will
typically deviate from a normal distribution [21].

The breakdown of the work FDR has an immediate con-
sequence if one is concerned with optimal thermodynamic
control. Since the excess work is not generally proportional
to the fluctuations, driving protocols with minimal excess
work on average may not coincide with protocols with
minimal work fluctuations. Managing this tradeoff between
fluctuations and dissipation is important for accurate and cost-
effective control of quantum systems, and the equality (1)
demonstrates that changes in the instantaneous eigenbasis of
the system’s Hamiltonian may lead to increased irreversibil-
ity and reductions in reliability. However, if one wishes to
transform a system from one equilibrium state to another in
finite time, then we cannot avoid the generation of quantum
fluctuations if these two states do not commute. It is therefore
necessary to take these limitations and tradeoffs into account
when trying to optimize a thermodynamic process in the quan-
tum regime.

When restricting to regimes where a system is kept suf-
ficiently close to equilibrium, the problem of finding paths
with minimal excess work can be addressed using tools from
thermodynamic geometry [24–29]. It is possible to relate the
average excess work to a Riemann metric tensor, or equiva-
lently a form of thermodynamic length, which is subsequently
minimized by following the associated geodesic within the
manifold of control parameters [30]. This metric is closely
related to the Fisher-Rao metric encountered throughout in-
formation geometry [31,32]. While classically this geodesic
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path will also minimize the work fluctuations, in the quan-
tum case we know this will not generally hold due to the
breakdown of the FDR. Instead, it was shown in [20,33] that
another notion of thermodynamic length must be minimized
in order to reduce fluctuations. This length is constructed
from an alternative metric that only becomes equivalent to the
usual thermodynamic length for protocols in which the system
Hamiltonian commutes with its time derivative. At present,
not much is known about how these two different notions
of thermodynamic length compare to each other in specific
systems.

The goal of this paper is to determine these metrics for a
wide class of quantum Gaussian systems and to use this to
compute optimal work processes. Gaussian bosonic systems
are widely employed in quantum information theory [34–36]
and quantum thermodynamics [37–39] as they are experi-
mentally accessible in current optomechanical experiments
[40]. It is therefore valuable to understand how to optimize
these kind of systems for thermodynamic tasks such as work
extraction. We derive general analytic expressions for the
two forms of thermodynamic length in open systems driven
by a Gaussian Hamiltonian, whereby these quantities can be
computed from knowledge of the system’s covariance matrix
and mean shift in the positions and momenta of the bosonic
system. These general expressions provide a tool to find the
protocols with minimal excess work or minimal fluctuations,
and we illustrate this for three examples. The first example
illustrates how our results connect to the classical limit, and
we derive optimal protocols for a general open and classical
Gaussian system with a single relaxation timescale. Our sec-
ond example is a mean-shifted multimode Gaussian state in
the fully quantum regime with a fixed covariance matrix. We
show that in these two situations, protocols minimizing the
average excess work and variance are equivalent. The third
example we consider is a damped harmonic oscillator with
a driven frequency and shift in mean position. In this case
the two optimal protocols for the excess work and work vari-
ance are no longer equivalent, and we compare and contrast
the geodesic paths associated with the two different metrics
while demonstrating the relative merits of applying these pro-
tocols over naive ones.

II. EXCESS WORK AND FLUCTUATIONS UNDER SLOW
DRIVING: GENERAL CASE

In this section we give a brief overview of how to describe
the work statistics for a driven open quantum system, along
with how the resulting average work and variance can be
connected to a pair of metric tensors in the slow driving
regime. Let us first consider an open quantum system in
contact with an environment the local Hamiltonian H (λt ) of
which is parametrized by a set of d scalar control variables,
denoted by vector λt ∈ Rd with

λt = {λ1(t ), λ2(t ), . . . , λd (t )}. (2)

We assume that our system is driven over a fixed duration
t ∈ [0, τ ] according to some path γ : t �→ λt in the parameter
space given some fixed boundary conditions, namely,

λ0 = λA, λτ = λB. (3)

Our second assumption is that the dynamics of this process
can be modeled by a time-dependent Lindblad equation of
generic form [41]:

ρ̇t = Lλt [ρt ] = −i[H (λt ), ρt ] +
D∑

n=1

Ln(λt )ρt L
†
n (λt )

− 1

2
{L†

n (λt )Ln(λt ), ρt }, (4)

where each of the D jump operators Ln(λt ) may depend on the
control variables. We further assume that there exists a unique
thermal fixed point at any given λ, such that

Lλ[π (λ)] = 0, π (λ) = e−βH (λ)

tr(e−βH (λ) )
, (5)

with β = 1/(kBT ) the inverse temperature of the environment,
and assume a thermal initial condition, ρ0 = π (λA). The equi-
librium free energy of a thermal state is given by F (λ) =
−β−1ln tr(e−βH (λ) ). For each control parameter we will define
a corresponding conjugate observable that is shifted from its
equilibrium average:

Xj (λ) = ∂H (λ)

∂λ j
− Tr

(
πλ

∂H (λ)

∂λ j

)
. (6)

As we will see below, the covariance between these different
observables can be used to construct a pair of metric tensors
for the manifold of equilibrium states. We will be interested
in the excess work Wex along a given process, which is the
difference between the work done and change in equilibrium
free energy, �F = FB − FA:

Wex = W − �F. (7)

The work W done on the system during a particular pro-
tocol is a stochastic variable that may be determined from
the two-point-measurement protocol [42], where the system
and environment are projected onto their respective energy
eigenstates at the beginning and end of the process. This
measurement scheme gives rise to a work distribution P(W )
that may be approximated in an appropriate weak-coupling
limit that is consistent with the approximations used to con-
struct the Lindblad equation in (4) [43,44]. Alternatively, for
open systems this distribution may be accessed using quantum
jump unravelling of the master equation, leading to an equiv-
alent work distribution [45–49]. In our notation the average
dissipation 〈Wex〉 and work variance per unit temperature,
〈�W 2〉 = 〈W 2〉 − 〈W 〉2, are given by [50]

〈Wex〉 =
∫ τ

0
dt λ̇ j (t ) Tr(Xj (λt )ρt ), (8)

〈�W 2〉 = 2 Re
∫ τ

0
dt

∫ t

0
dt ′ λ̇k (t )λ̇ j (t ′)

× Tr(Xk (λt )P (t, t ′)[ρt ′�ρt ′ Xj (λt ′ )]) (9)

where we adopt Einstein summation notation and denote the
shifted observable �ρt Xj (λt ) = Xj (λt ) − Tr(ρt Xj (λt )) and
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time-ordered propagator P (t, t ′) = ←−T exp(
∫ t

t ′ dνLλν
). We

will focus on the regime of slow driving, where the system
stays close to its instantaneous thermal state at all times [51].
If the characteristic timescale of the system τ eq is short com-
pared to the total duration τ , it has been shown that the average
dissipation (8) is approximated to linear order in τ eq/τ by the
following expression [52]:

〈Wex〉 	
∫ τ

0
dt ξ jk (λt ) λ̇ j (t )λ̇k (t ), (10)

where

ξ jk (λ) = 1
2 (ξ̃ jk (λ) + ξ̃k j (λ)) (11)

is a symmetric tensor with elements

ξ̃ jk (λ) =
∫ ∞

0
dν

∫ β

0
ds Tr(Mλ(ν)[Xk (λ)]Uλ(is)[Xj (λ)] πλ).

(12)

Here we have defined a pair of evolution maps in the Heisen-
berg picture:

Mλ(ν)[(.)] = eνL †
λ [(.)], (13)

Uλ(ν)[(.)] = eiνH (λ)[(.)]e−iνH (λ). (14)

Similarly, for the fluctuations (9) one can show that in the slow
driving limit one has [20]

〈�W 2〉 	
∫ τ

0
dt � jk (λt )λ̇

j (t )λ̇k (t ), (15)

where

� jk (λ) = 1
2 (�̃ jk (λ) + �̃k j (λ)) (16)

is another symmetric tensor with elements

�̃ jk (λ) = 2 Re
∫ ∞

0
dν Tr(Mλ(ν)[Xk (λ)]Xj (λ) πλ). (17)

If the conjugate observables commute with each other, this is
sufficient to ensure the two tensors are proportional, meaning

[Xj (λ), Xk (λ)] = 0 ∀ j, k ⇒ � jk (λ) = 2kBT ξ jk (λ). (18)

If this is satisfied at points along a trajectory γ , one obtains
the FDR [18]:

〈Wex〉 = 1
2β〈�W 2〉. (19)

However, in general the tensor elements ξ jk and � jk differ if
there are pairs of noncommuting conjugate observables such

as [Xj (λ), Xk (λ)] = 0. This leads to a breakdown of the FDR
and we obtain the equality (1) with a positive quantum correc-
tion IW , which can be viewed as a manifestation of quantum
friction [53]. If we additionally assume that the dynamics (4)
satisfy detailed balance, one may derive a matrix inequality
[20,49]:

� � 2kBT ξ � 0 (20)

where ξ and � denote matrices with elements (11) and (16),
respectively. The first inequality implies that the rate of excess
work is less than half the rate of work fluctuations per unit
temperature:

d

dt
〈Wex〉 � 1

2
β

d

dt
〈�W 2〉, (21)

with excess fluctuations stemming from noncommutativity of
the set {Xj (λ)} relative to the equilibrium state. Note that this
is a stronger inequality than that implied by the overall pos-
itivity of the quantum term IW in (1). The second inequality
means that the tensors ξ and � give rise to a semi-Riemann
metric structure on the manifold of control parameters, be-
cause they are positive semidefinite, symmetric, and smooth
with respect to λ [32]. For most situations of interest we can
strengthen this condition so that ξ and � are positive definite,
which is assumed throughout the rest of the paper. In this case
the form of (10) and (15) is that of a pair of action integrals
acting on a Riemann manifold of the set of control param-
eters [28,29]. This means dissipation or fluctuations can be
minimized using techniques from differential geometry that
we outline in the next section. It is worth remarking that there
may be weaker conditions than quantum detailed balance that
ensure that the inequality (20) and associated metric structure
holds, though this has not yet been established.

III. WORK OPTIMIZATION VIA THE
GEODESIC EQUATION

As already pointed out, the metric structure underlying the
variables 〈Wex〉 and 〈�W 2〉 allows one to use a geometric
approach to optimize the work dissipation or fluctuations of
a slowly driven open quantum system. Optimal protocols are
found by following a geodesic path along the space of control
variables. In a fully quantum setting, there will be distinct
geodesic paths that minimize either the fluctuations or dissi-
pation due to the difference between the metrics ξ and �. First
note that both 〈Wex〉 and 〈�W 2〉, as defined in (10) and (15),
respectively, take on the form of an action integral of generic
form:

Sγ =
∫ τ

0
dt g jk (λt )λ̇

j (t )λ̇k (t ), (22)

where γ : t �→ λt denotes the protocol and g jk (λt ) denotes a
Riemann metric tensor. A protocol minimizing the action will
then satisfy the geodesic equation [32]

d2λi

dt2
+ i

jk

dλ j

dt

dλk

dt
= 0, (23)

subject to the fixed boundary conditions (3). Here we denote
the Christoffel symbols


j
ik = 1

2 gjl
(
∂λi gkl + ∂λk gil − ∂λl gik

)
, (24)
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and gjl denotes the metric inverse. The solution λ∗
t gives

a minimal action S∗
γ proportional to the squared geodesic

length:

Sγ � S∗
γ = L2

τ
, (25)

where the length traversed between the initial and final point
is defined by

L :=
∫ τ

0
dt

√
g jk (λt )λ̇ j (t )λ̇k (t )

∣∣
λt =λ∗

t
. (26)

In our case we can minimize the average excess work by
following a geodesic with respect to the metric ξ in (11) and
fixed boundary conditions (3). The minimum is then given by
the corresponding squared length per unit time [28,52]:

〈Wex〉 � 〈Wex〉∗ := L2
A
τ

, (27)

where

LA :=
∫ τ

0
dt

√
ξ jk (λt )λ̇ j (t )λ̇k (t )

∣∣∣∣
λt =λA

t

(28)

denotes our first notion of thermodynamic length, labeled
with subscript A to indicate this quantity relates to the av-
erage excess work. We also denote λA

t as the solution to the
geodesic equation (23) with respect to the metric choice g =
ξ . Similarly, minimizing the work fluctuations gives another
geometric bound that is saturated by following a geodesic with
respect to the other metric � in (16), so that

〈�W 2〉 � 〈�W 2〉∗ := L2
V
τ

(29)

with

LV :=
∫ τ

0
dt

√
� jk (λt )λ̇ j (t )λ̇k (t )

∣∣
λt =λV

t
. (30)

This is our second notion of thermodynamic length, which
we label with V since it describes the variance rather than the
average, and its solution λV

t is determined from the geodesic
equation (23) by choosing metric g = �. Finding these two
optimal paths via (23) amounts to solving a set of d coupled
second-order differential equations for each metric, which is
typically a formidable task. However, we will demonstrate
some examples that involve Gaussian open quantum systems
where analytic solutions can be found. Before we consider
solving any optimization problems, in the next section we will
first derive a general expression for the metric tensors (11) and
(16) for quantum Gaussian states and processes.

IV. METRIC TENSORS FOR QUANTUM GAUSSIAN
SYSTEMS

We now focus specifically on N-mode bosonic systems
with quadrature vector R = (q1, . . . , qN , p1, . . . , pN )T , with
qn and pn the respective position and momentum operator
for the nth mode. The quadrature operators satisfy a bosonic
algebra:

[Rn, Rm] = �nm, (31)

where �nm is the symplectic form (h̄ = 1), which is a 2N ×
2N matrix with block form

� := i

(
ON IN

−IN ON

)
. (32)

We consider a class of Hamiltonians that are at most quadratic
with respect to the quadrature R, which can be expressed in the
form

Hλ = 1
2 RT

λ GλRλ. (33)

Here we have introduced a symmetric matrix Gλ ∈ R2N×2N

representing the second-order coupling terms in the Hamil-
tonian, while Rλ = R − μλ is a linear order shift in the
quadratures with real vector μλ ∈ R2N . We allow for external
control of both the quadratic and linear terms in the Hamilto-
nian, and thus the matrix Gλ and vector μλ depend on a set
of d control parameters λ as defined by (2). The quadratic
Hamiltonian is such that the corresponding thermal state πλ

in (5) is a quantum Gaussian state [34,54]. From this we can
express the conjugate forces (6) in the form

Xj (λ) = 1
2 tr(X j (λ)(�λ − σλ)) − (x j (λ))T GλRλ, (34)

where we denote [�λ]nm = 1
2 {[Rλ]n, [Rλ]m} as the matrix of

second-order quadratures with respect to Rλ, while X j (λ) =
∂λ j Gλ and x j (λ) = ∂λ j μλ are the respective derivatives of the
quadratic and linear terms in the Hamiltonian with respect to
the jth control variable. Note that in the above notation we use
a lowercase “tr” to indicate a trace over the real matrix space
R2N×2N rather than the Hilbert space. Finally, we also denote
the thermal covariance matrix by

σλ = Tr(�λπλ) = 1
2 coth(βGλ�/2)�, (35)

which contains all the second moments of the system with
respect to the steady state πλ [55,56]. We also note that for
a thermal state πλ, the mean quadrature (also known as the
displacement vector) equals the linear shift, i.e., Tr(πλR) =
μλ. As we consider an open system, we further assume that
the Lindblad jump operators in (4) are linear in quadratures,
namely,

Ln(λ) := cT
n (λ)Rλ, (36)

where cn(λ) ∈ C2N is a vector of complex numbers that may
depend on the control parameters. Equations (33) and (36)
guarantee that dissipative dynamics is Gaussian, that is, it
maps the Gaussian state to Gaussian states [36].

Next, let us focus on the evolution maps (13) and (14) in the
Gaussian formalism. It suffices to characterize the evolution of
the first- and second-order quadrature operators that read

Mλ(ν)(�λ) = Fλ,ν�λF T
λ,ν +

∫ ν

0
dν ′Fλ,ν ′DλF T

λ,ν ′ , (37)

Mλ(ν)(Rλ) = Fλ,νRλ, (38)

where Fλ,ν = eνAλ , Aλ = −i�(Gλ − Im(C†
λCλ)), and Dλ =

�Re(C†
λCλ)� [36]. Here we define the rectangular matrix

Cλ = (cT
1 (λ); ...; cT

D(λ))T ∈ C2N×D. The application of the
channel to σλ should be understood through its application
on the identity operator, since in fact by σλ we mean σλI .
Therefore, Mλ(ν)(σλ) = σλ due to unitality of the dynamics.
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Furthermore, by using the fact that σλ represents the covari-
ance matrix of the fixed point of the dynamics, by multiplying
both sides of (37) with πλ and taking the trace, we have

σλ = Mλ(ν)(σλ) = Fλ,νσλ F T
λ,ν

+
∫ ν

0
dν ′Fλ,ν ′DλF T

λ,ν ′ ∀ν ∈ [0,∞), (39)

which by putting together with (37) gives

Mλ(ν)(�λ − σλ) = Fλ,ν (�λ − σλ) F T
λ,ν . (40)

As for the unitary map in (14), we have

Uλ(ν)(�λ − σλ) = eiνHλ (�λ − σλ)e−iνHλ = Sν
Gλ

�λSνT
Gλ

− σλ,

(41)

Uλ(ν)(Rλ) = eiνHλRλe−iνHλ = Sν
λRλ (42)

where we use the Baker-Campbell-Hausdorff lemma, and de-
fine Sν

λ = e−iν�Gλ . By substituting in (12), one gets

ξ̃ jk (λ) =
∫ ∞

0
dν

∫ β

0
ds Tr(Mλ(ν)[Xj (λ)]Uλ(is)[Xk (λ)] πλ)

=
∫ ∞

0
dν

∫ β

0
ds Tr

[(
1

2
tr
((

Fλ,ν (�λ − σλ)F T
λ,ν

)
X j (λ)

) − xT
j (λ)GλFλ,νRλ

)

×
(

1

2
tr
(
Sis

λ (�λ − σλ

) (
Sis

λ

)TXk (λ)) − xT
k (λ)GλSis

λ Rλ

)
πλ

]

=
∫ ∞

0
dν

∫ β

0
ds

(
1

2
tr

((
Sis

λ

)TXk (λ)Sis
λ

((
σλ − 1

2
�

)
F T

λ,νX j (λ)Fλ,ν

(
σλ + 1

2
�

)))

+ xT
j (λ)GλFλ,ν

(
σλ + 1

2
�

)
SixT

λ Gλxk (λ)

)
, (43)

where we used Wick’s theorem in order to expand the fourth-order correlations in terms of second moments. To simplify our
notation we now define the maps

Jλ[(.)] :=
∫ β

0
ds

(
Sis

λ

)T
(.)Sis

λ , (44)

Fλ[(.)] :=
∫ ∞

0
dν F T

λ,ν (.)Fλ,ν (45)

and the matrix

Yλ =
∫ ∞

0
dν Fλ,ν . (46)

We then have

ξ̃ jk (λ) = 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλ

(
σλ + 1

2
�

)(∫ β

0
ds[es�Gλ ]T

)
Gλxk (λ)

= 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλ

(
σλ� + I

2

)(∫ β

0
ds �[es�Gλ ]T �

)
�Gλxk (λ)

= 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλ

(
σλ� + I

2

)(∫ β

0
ds[e−s�Gλ ]

)
�Gλxk (λ)

= 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλ

(
σλ� + I

2

)
(I − e−β�Gλ )(�Gλ)−1�Gλxk (λ)

= 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλ

(
σλ� + I

2

)
(I − e−β�Gλ )xk (λ) (47)

where in the second line we used �2 = I with I being the 2N × 2N dimensional identity matrix (not to be mistaken with I ,
which is the identity operator in the infinite dimensional Hilbert space), in the third line we used � f (A)� = f (�A�) for any
function f (x) and matrix A, and in the fourth line we evaluated the integral with respect to s. The second term can be simplified
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by using the Cayley transform:

e−β�Gλ = (2σλ� − I)(2σλ� + I)−1, (48)

which follows from the expression for the covariance matrix in (35). This gives us a final expression for the tensor:

ξ̃ jk (λ) = 1

2
tr

(
Jλ[Xk (λ)]

(
σλ − 1

2
�

)
Fλ[X j (λ)]

(
σλ + 1

2
�

))
+ xT

j (λ)GλYλxk (λ). (49)

In a similar fashion we evaluate the other tensor (16). This gives

�̃ jk (λ) = 2 Re
∫ ∞

0
dν Tr(Mλ(ν)[Xj (λ)]Xi(λ) πλ) = 2Re

∫ ∞

0
dνTr

[(
1

2
tr
((

Fλ,ν (�λ − σλ)F T
λ,ν

)
X j (λ)

) − xT
j (λ)GλFλ,νRλ

)

×
(

1

2
tr

(
(�λ − σλ)Xk (λ)

)
− xT

k (λ)GλRλ

)
πλ

]

= Re
∫ ∞

0
dν

(
tr

(
Xk (λ)

((
σλ − 1

2
�)F T

λ,νX j (λ)Fλ,ν

(
σλ + 1

2
�

)))
+ 2xT

j (λ)GλFλ,ν

(
σλ + 1

2
�

)
Gλxk (λ)

)
. (50)

This can be written in the final form

�̃ jk (λ) = Re tr

(
Xk (λ)

(
σλ − 1

2
�

)
Fλ[X j (λ)]

×
(

σλ + 1

2
�

))
+ 2 xT

j (λ)GλYλσλGλxk (λ). (51)

The expressions for the tensors (49) and (51) now allow
us to compute the thermodynamic metrics directly from the
variables composing the set (Gλ, {ck (λ)}, μλ) which appear in
the Lindblad equation. Note that in both instances the metric
decomposes into a sum between one contribution dependent
on the second-order coupling terms {X j (λ)} and another con-
tribution from the linear terms {x j (λ)}. This means that if the
quadratic and linear terms in the Hamiltonian are controlled
independently, then the metric tensors ξ (λ) and �(λ) will
split into a block-diagonal form with linear and quadratic
terms separated. As we will demonstrate with some examples,
this simplifies the computation of geodesics through the man-
ifold.

V. COMPUTING GEODESIC PATHS

In this final section of the paper we present three different
examples of Gaussian open systems that can be optimized
using our geometric methods.

A. Example 1: Open system in the classical limit

It is instructive to consider what happens to our expres-
sions in the classical limit. To construct this limit we need
to reintroduce a factor of h̄ that we had previously neglected
for convenience, which follows by the replacement � → h̄�.
We can define a classical limit by treating h̄ � 1 as small and
Taylor expanding the covariance matrix (35) [57], which in
the limit h̄ → 0 gives

lim
h̄→0

σλ = lim
h̄→0

h̄

2
coth(β h̄Gλ�/2)� = kBT G−1

λ . (52)

Applying this expansion to the excess work metric (49) gives

lim
h̄→0

ξ̃ jk (λ) = 1

2
lim
h̄→0

∫ β

0
ds tr

(
[eish̄�Gλ ]TXk (λ)e−ish̄�Gλ

(
σλ − h̄

2
�

)
Fλ[X j (λ)]

(
σλ + h̄

2
�

))
+ xT

j (λ)GλYλxk (λ)

= 1

2
kBT tr

(
Xk (λ)G−1

λ Fλ[X j (λ)]G−1
λ

) + xT
j (λ)GλYλxk (λ). (53)

Similarly, taking the limit h̄ → 0 for the work fluctuations
(51) gives

lim
h̄→0

�̃ jk (λ) = (kBT )2 tr
(
Xk (λ)G−1

λ Fλ[X j (λ)]G−1
λ

)

+ 2kBT xT
j (λ)GλYλxk (λ). (54)

Comparing these two expressions tells us that the two metrics
are proportional for h̄ � 1, since

� 	 2kBT ξ . (55)

This means that we recover the work FDR (19) in this classical
limit, so that

〈Wex〉 	 1
2β〈�W 2〉. (56)

By treating h̄ � 1 we are essentially guaranteeing that all
conjugate forces associated with the system Hamiltonian will
commute with the thermal state πλ at zeroth order in h̄, which
means quantum fluctuations can be neglected and the term IW

in (1) becomes negligible. Our results are therefore consistent
with classical derivations of the work FDR that model the
open system with Focker-Planck dynamics, such as [18]. In
this classical regime the metric tensor ξ is closely related to
the Fisher-Rao metric over the manifold of Gaussian proba-
bility distributions. To see this consider an equation of motion
with a single characteristic timescale τ eq that is independent
of the control parameters [30,52], such as

Lλt [ρt ] = π (λt ) − ρt

τ eq
. (57)
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In this case one can show that the classical metric (53) reduces
to

ξ jk (λ) = 1

2

(
ξ̃ jk (λ) + ξ̃k j (λ)

) = 1

2
τ eqkBT

× tr
(
Xk (λ)G−1

λ X j (λ)G−1
λ

) + τ eqxT
j (λ)Gλxk (λ).

(58)

It then follows that βξ (λ)/τ eq is equivalent to the Fisher-Rao
metric for a Gaussian distribution with covariance matrix
kBT G−1

λ and mean vector μλ [31,32]. In this case analytic
expressions for geodesic paths are well known. For example,
consider the case where μλ = 0 and we can control all ele-
ments of the covariance matrix. Then the excess work per kBT
and variance can be compactly expressed as

β〈Wex〉 = 1

2
β2〈�W 2〉 = 1

2
τ eq

∫ τ

0
dt tr

((
G−1

λ

dGλ

dt

)2)
.

(59)

The integrand is proportional to the squared line element ds2

of a Siegel metric [31,58], defined by

ds :=
√

1

2
tr
((

G−1
λ dGλ

)2)
, (60)

such that we can write

〈Wex〉 = kBT τ eq
∫ τ

0

(
ds

dt

)2

. (61)

Using (27) the excess work can be lower bounded, 〈Wex〉 �
〈Wex〉∗, according to

〈Wex〉∗ = kBT

(
τ eq

τ

)
L2 (62)

where

L =
√

1

2
tr
(

ln2 G−1/2
λA

GλB G−1/2
λA

)
(63)

is the geodesic length between an initial and final Gaussian
thermal state [31]. This bound is tight and saturated by fol-
lowing the geodesic curve λ∗

t such that

Gλ∗
t
= G1/2

λA
exp

(
t

τ
ln

(
G−1/2

λA
GλB G−1/2

λA

))
G1/2

λA
. (64)

A proof of this fact can be found in [59]. Note that clearly
due to the validity of the work FDR the optimal protocol
minimizes both the average excess work and variance, i.e.,
λ∗

t = λA
t = λV

t . For more complicated open classical systems
where there are multiple relaxation timescales associated with
the environment, general expressions for the geodesics are
not known since one has to consider the modifications to the
Siegel line element (60) that come from the integral relaxation
time of the environment [28,60]. There are some examples
of more complicated Gaussian classical systems that can be
solved, such as a driven one-dimensional harmonic potential
[29].

B. Example 2: Driving via linear coupling

Returning to a fully quantum example, consider a situation
where we treat the displacement vector components, λ = μλ,

as our control variables while fixing the quadratic terms in the
matrix G. We further assume the Lindblad jump operators are
linear with respect to the quadratures, meaning

Hλ = 1
2 RT

λ GRλ, Ln(λ) := cT
n Rλ. (65)

In this situation, the equilibrium free energy will not change,
namely, �F = 0. This is because for a Gaussian Hamiltonian,
the free energy is independent of the linear coupling μλ. As a
result, processes of this form will always consume work and
hence

〈W 〉 � 0. (66)

In terms of optimization, we are interested in minimizing
the average work cost and fluctuations required to displace a
thermal state with initial mean μλA to a new thermal state with
mean μλB over a finite but slow process. From our formulas
(49) and (51) we can express the metric tensors in the matrix
form

ξ = 1
2 GY + Y T G, (67)

� = G(Y σ + σY T )G, (68)

where again we write Yλ = Y as this does not depend on λ.
Since the above metrics are independent of the control param-
eters, we immediately see that the geodesic path satisfying
(23) will be a linear protocol with

λ∗
t = (τ − t )λA + tλB

τ
. (69)

Crucially, this optimal solution will simultaneously minimize
both the dissipation and fluctuations uniquely so that, as we
found in the classical limit, λ∗

t = λA
t = λV

t . This corresponds
in both cases to a flat manifold with vanishing curvature, and
the minimal work done work and minimal variance are then
given by the squared lengths (28) and (30) with

〈W 〉∗ = 1

τ
ξ jk

(
λ

j
B − λ

j
A

)(
λk

B − λk
A

)
, (70)

〈�W 2〉∗ = 1

τ
� jk

(
λ

j
B − λ

j
A

)(
λk

B − λk
A

)
. (71)

The corresponding geodesic lengths can be expressed in terms
of the initial and final displacement vectors, such that

LA =
√

(μλB − μλA )T ξ (μλB − μλA ), (72)

LV =
√

(μλB − μλA )T �(μλB − μλA ), (73)

which may be interpreted as the Euclidean distances between
the images of μλB and μλA under the respective transforma-
tions μ �→ Pμ and μ �→ P̃μ, where ξ = PPT and � = P̃P̃T

are the Cholesky decompositions of the two metrics [61]. Our
result here demonstrates that the cheapest and most reliable
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way to displace a Gaussian open quantum system, close to
equilibrium, is via a naive protocol. Interestingly, this example
demonstrates that there can be situations where the optimal
protocols minimizing 〈Wex〉 and 〈�W 2〉 can still coincide
even though the work FDR is broken due to noncommuting
conjugate forces, i.e., the quantum term IW in (1) is positive
definite.

C. Example 3: Driving a damped harmonic oscillator

So far we have only encountered situations where the op-
timal protocol uniquely minimize the average excess work
and fluctuations. However, in the quantum regime this is most
often not the case, as we demonstrate in this final example.
We consider a single harmonic oscillator of unit mass weakly
coupled to a thermal bath, the frequency ω and mean position
y of which can be controlled externally. The Gaussian Hamil-
tonian (33) is composed of the terms

Gω =
(

ω2 0
0 1

)
, μT

y = (y, 0). (74)

Note that we have used a change of notation Gλ → Gω and
μλ → μy to indicate that the collective control variables are

λt := {ω(t ), y(t )}. (75)

We assume there are two jump operators for the Lindblad
equation (4), which we label as

L1(λ) = cT
1 (ω)Ry, L2(λ) = cT

2 (ω)Ry, (76)

where

cT
1 (ω) = 1

2

√
γ (ω)(1, i/ω), (77)

cT
2 (ω) = 1

2

√
γ (−ω) (1, −i/ω). (78)

Here we denote the damping rate by

γ (ω) = 2J (ω)(N (ω) + 1) (79)

where N (ω) = [exp(ω/T ) − 1]−1 is the average occupation
of a bosonic mode with frequency ω at temperature T , the
spectral density is J (ω) = γ0 ω, and γ0 represents the cou-
pling strength between the system and bath. The thermal
covariance matrix is given by

σω = 1

2
coth(βω/2)

(
1/ω 0

0 ω

)
. (80)

Introducing the matrix Cω = (cT
1 (ω); cT

2 (ω))T , we calculate
the following:

Aω = −i�(Gω − Im(C†
ωCω ))

=
(−γ0/2 1

−ω2 −γ0/2

)
. (81)

Taking the exponential gives

Fω,ν = exp(νAω )

= e−γ0ν/2

(
cos(ων) sin(ων)/ω

−ω sin(ων) cos(ων)

)
. (82)

Furthermore we have

Six
ω = ex�Gω ,

=
(

cosh(ωx) i sinh(ωx)/ω
−iω sinh(ωx) cosh(ωx)

)
. (83)

To compute the metric ξ , we simply plug these matrices into
the expression (49), and after some lengthy but straightfor-
ward algebra we obtain a diagonal tensor:

ξ11 =
ω csch2(βω/2) + 2γ 2

0 coth(βω/2)
γ 2

0 +4ω2

16γ0ω3
	 1

16ω2
csch2(βω/2)

×
(

β

γ0
+ γ0

2ω3
sinh(βω/2) cosh(βω/2)

)
, (84)

ξ22 = γ0ω
2

2γ 2
0 + 8ω2

	 γ0

8
, (85)

ξ12 = 0 (86)

where we have taken an approximation γ 2 � ω2 which is
consistent with weak coupling used to derive the original
Lindblad equation. A similar calculation for the other metric
(51) yields

�11 	 1

4ω2
csch2(βω/2)

(
1

γ0
+ γ0

4ω2
cosh(βω)

)
, (87)

�22 = 	γ0ω

4
coth(βω/2), (88)

�12 = 0. (89)

As a consistency check, one can verify the inequality � j j �
2kBT ξ j j � 0 for j = 1, 2 as expected by (20). We also re-
cover the equality � 	 2kBT ξ in the high-temperature limit
β2ω2 � 1, which implies the classical work FDR 〈Wex〉 =
1
2β〈�W 2〉 + O(β2ω2). We can view this as an alternative
form of classical limit (56), where in this case the thermal fluc-
tuations are much larger than any quantum contributions. For
general temperatures, we now turn to computing the geodesic
paths corresponding to minimal excess work and minimal
work fluctuations. Unlike our previous example, in this case
these geodesic paths will be distinct from each other due to the
difference between the metric tensors. Concerning the metric
ξ , we find that there is only one nonzero Christoffel symbol
given by

1
11 = ∂ω ln

√
ξ11[ω], (90)

where we have switched notation ξ11 → ξ11[ω] to highlight
the dependence of the metric on the frequency. Substituting
this into the geodesic equation (23) gives us a pair of decou-
pled second-order differential equations:

d2ω

dt2
+

(
dω

dt

)2

∂ω ln
√

ξ11[ω] = 0, (91)

d2y

dt2
= 0. (92)

The solution λA
t = {ωA(t ), yA(t )} yields a rate of change for

each parameter given by

d

dt
ωA(t ) = (ωB − ωA)ξ−1/2

11 [ωA(t )]∫ τ

0 dt ′ ξ
−1/2
11 [ωA(t ′)]

, (93)

d

dt
yA(t ) = yB − yA

τ
. (94)

This means that in order to minimize the excess work, one
needs to vary the average position at a constant rate while
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FIG. 1. Plot of different geodesic solutions for the damped oscillator with boundary conditions λA = {0.5ω0, 0.5y0} and λB = {2ω0, 2y0}
with parameters βω0 = 20, τ = 100/ω0, and γ0 = 0.1ω0, with ω0 = y0 = 1 a reference frequency and position. The lower blue curve
represents the geodesic solution to (93) and (94) that minimizes the average excess work, while the orange curve above represents a geodesic
for the alternative Eqs. (98) and (99) that minimize the work fluctuations. The temperatures plotted are (a) βω0 = 20 and (b) βω0 = 10.

changing the frequency at a rate proportional to the inverse
square root of the friction ξ11.

To find the geodesic for the metric � we cannot find a
closed form expression since the resulting geodesic equa-
tion remains coupled between the parameters ω(t ) and y(t ). To
see this, first note that we now have four nonzero Christoffel
symbols given by

1
11 = ∂ω ln

√
�11[ω], (95)

1
22 = − 1

2�−1
11 [ω] ∂ω�22[ω], (96)

2
12 = 2

21 = ∂ω ln
√

�22[ω]. (97)

Substituting this into the geodesic equation gives us a pair of
coupled second-order differential equations:

d2ω

dt2
+

(
dω

dt

)2

∂ω ln
√

�11[ω]

− 1

2

(
dy

dt

)2

�−1
11 [ω]∂ω�22[ω] = 0, (98)

d2y

dt2
+ 2

(
dω

dt

)(
dy

dt

)
∂ω ln

√
�22[ω] = 0. (99)

Since these equations are coupled, they cannot be solved
independently of each other, unlike the solution for minimal
excess work. One immediate consequence of this is that a
naive protocol that changes the mean position at a constant
rate will in fact not minimize the work fluctuations. In Fig.
1 we plot the geodesic solutions optimizing either the excess
work, i.e., solution (93) and (94), or the fluctuations, i.e., the
numerical solution to (98) and (99), in the parameter space.
It is clear that these paths are distinct from each other, with
a larger discrepancy shown at lower temperatures as we ex-
pect due to the breakdown of the work fluctuation-dissipation
relation (19).

In order to quantify the benefit of choosing a geodesic path
as opposed to a naive protocol, we introduce the following
quantities:

Asave := 〈Wex〉∗
〈Wex〉lin

, (100)

Vsave := 〈�W 2〉∗
〈�W 2〉lin

. (101)

Here 〈Wex〉∗ denotes the minimal excess work (27) done while
following the geodesic protocol (93) and (94), while 〈Wex〉lin

is the same quantity when following a linear protocol λt =
((τ − t )λA + tλB)/τ . Similarly, 〈�W 2〉∗ is the minimal work
variance (29) determined by the geodesic path satisfying (98)
and (99), and is compared to the amount 〈�W 2〉lin obtained
by a linear protocol. In Fig. 2(a) we plot these quantities as a
function of the inverse temperature. For the parameter values
shown in the figure, one finds improvements of up to 80% for
the excess work, while up to 70% improvements in the work
fluctuations. It is worth noting that neither Asave or Vsave is
monotonic with respect to temperature, meaning that one may
obtain more significant improvements over naive protocols in
both dissipation and fluctuations at intermediate temperatures.
Nevertheless, clearly one can see that the geodesic paths have
the potential to provide very significant improvements over
naive protocols. Given that we observe distinct geodesic
protocols for minimizing the excess work versus the fluctu-
ations, it is also worth considering how much fluctuations or
dissipation can increase if one follows the opposite geodesic.
To quantify this, we turn to the dimensionless Fano factor:

SW := 〈�W 2〉
kBT 〈Wex〉 . (102)

This measures the dispersion of the work probability
distribution, and we plot its value in Fig. 2(b) as a function of
inverse temperature. It can be seen that, in general, dispersion
increases at lower temperatures, while it approaches the
expected value SW = 2 in the high-temperature limit in
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FIG. 2. (a) Quantities Asave defined in (100) and Vsave defined in (101) as a function of inverse temperature. (b) Fano factor SW in (102) for
the two different geodesic paths, where the upper red line corresponds to the minimal excess work protocol while the black line underneath
it corresponds to the minimal fluctuation protocol. In both figures the boundary conditions are λA = {0.5ω0, 0.5y0} and λB = {2ω0, 2y0} with
γ0 = 0.1ω0 and τ = 100.

accordance with the work FDR (19). If we follow the geodesic
with minimal excess work, we generally cause the work
distribution to become more dispersed than if we follow the
geodesic minimizing the fluctuations, and this increase occurs
with a greater slope for this choice of protocol as we approach
lower temperatures.

VI. CONCLUSIONS

We have considered the problem of finding optimal proto-
cols that minimize both the excess work and work fluctuations
for general Gaussian open quantum systems subject to ex-
ternal driving and fixed boundary conditions. By addressing
this problem in the regime of slow driving, where the system
remains close to an instantaneous thermal state at all times,
we were able to apply geometric techniques to find these
optimal protocols. We derived a set of general expressions
for the corresponding metric tensors, (49) and (51), that are
stated in terms of the Gaussian equilibrium covariance matrix
and mean quadrature variables. Due to the noncommutativity
between the conjugate forces acting on the system, it is clear
that (49) and (51) are not typically proportional to each other,
as we expect due to the breakdown of the work FDR indicated
by (1). Minimizing either the excess work or the work vari-
ance thus requires solving two different geodesic equations,
which we illustrated with three examples. In the first example,
we showed that taking a classical limit h̄ � 1 recovers the
work FDR (19) and ensures the path of minimal average
excess work coincides with the path of minimal work vari-
ance. When the dissipative dynamics has a single relaxation
timescale, geodesic solutions can be found using results from
information geometry for the multivariate normal distribution.
In our second example, we found that the optimal way to
displace an open Gaussian system with a constant covariance
matrix is via a linear protocol even in a fully quantum regime.
We found that this protocol can simultaneously optimize the
average and variance in work despite the breakdown of the
work FDR and quantum fluctuations in the conjugate vari-
ables. In the third example, we considered the optimization of
a damped quantum harmonic oscillator with control over the

frequency and average position. We found that in this case,
the geodesic for minimal excess work can substantially devi-
ate from the geodesic minimizing the fluctuations. Choosing
either path was found to give significant improvements over a
naive protocol, though following the path of minimal excess
work was shown to lead to more dispersion in the overall
work distribution that grows larger at smaller temperatures.
This highlights the importance of considering the impact of
quantum fluctuations and uncertainty for work processes in
small scale systems. For small systems there is an inevitable
compromise between the average work cost or gain along a
process and the price one has to pay in increased fluctuations,
and our method provides a geometric interpretation of this
tradeoff. More specifically, while the thermodynamic length
may be shortened by a geodesic path with respect to one
choice of metric, such as (49), this may not be the shortest
distance with respect to another metric such as (51) due to
a difference in curvature. It is worth comparing these results
to that of [49], which considered the problem of minimiz-
ing the thermodynamic efficiency and work fluctuations in
microscopic engines around a closed cycle. This represents
a different kind of optimization problem, as one fixes the
path and needs to find the optimal speed at which to move
around the cycle rather than determining a geodesic. In the
case of speed optimization, geometric tradeoffs between effi-
ciency and work fluctuations were found to hold, although it
is worth noting that this tradeoff is also applicable to classical
heat engines. This is due to the fact that these quantities are
not typically proportional to each other even classically. In
contrast, the tradeoffs between excess work and its variance
that we observe in this paper arise solely from the fact that
quantum fluctuations can be generated along a driving pro-
cess, and this behavior does not arise in classical systems close
to equilibrium. If one were to drive a classical system further
from equilibrium, then tradeoffs between excess work and its
variance begin to occur and the work FDR can be violated
regardless of the presence of quantum fluctuations [62]. In
light of this, it would be interesting to extend our results to
Gaussian processes that move far from equilibrium, beyond
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the slow driving approximation, and understand how quantum
effects influence this tradeoff. Excess work minimization be-
yond the slow driving regime has been achieved in a number
of classical-mechanical examples involving driven Gaussian
states [63,64], so one might hope that similar progress can be
made in the quantum regime.
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