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Compared with entanglement with multiple types of noise, entanglement including only one type of error
is a favorable fundamental resource not only for quantum communication but also for distributed quantum
computation. We consider protocols that present single-error-type entanglement for distant qubits via coherent-
state transmission over a lossy channel. Such a protocol is regarded as a subroutine to serve entanglement for
larger protocol to yield a final output, such as ebits or pbits. In this paper, we provide a subroutine protocol
which achieves the global optimal for typical jointly convex yield functions monotonically nondecreasing with
respect to the singlet fraction, such as an arbitrary convex function of a singlet fraction, two-way distillable
entanglement, and two-way distillable key. Entanglement generation based on remote nondestructive parity
measurement protocol [K. Azuma et al., Phys. Rev. A 85, 062309 (2012)] is identified as such an optimal
subroutine.
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I. INTRODUCTION

Generating entanglement between distant qubits is a fun-
damental building block not only for quantum communication
but also for distributed quantum computation. In quantum key
distribution (QKD), private bits (pbits) are distilled from the
(virtually) generated entangled states through error correc-
tion and privacy amplification [1–5], while Bell pairs (ebits)
are through entanglement distillation [6–8] for more general
scenarios such as quantum teleportation [9] and controlled-
not operations [10–12] for spatially distant qubits and chips
in distributed fault-tolerant quantum computation [13–18].
If entanglement generation protocol is run in parallel be-
tween nearest-neighboring nodes in a quantum network, ebits
and pbits are served for arbitrary clients in the network
efficiently [19–21], through aggregation [21] of quantum
repeaters [19,20] with entanglement distillation and entan-
glement swapping [22]. Therefore, entanglement generation
protocol is regarded in general as a subroutine to serve entan-
glement for larger protocol to yield a final output, such as ebits
or pbits.

Entanglement generation protocol is normally based on
transmission of flying bosonic systems, such as photons, over
a communication channel, such as an optical fiber, a mode in
free space, or a microwave transmission line. The dominant
noise in the channel is the photon loss. Recently, excellent
upper bounds on the two-way quantum and private capaci-
ties of a point-to-point pure-loss bosonic channel are derived
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[23,24] (indeed, one of which, now called PLOB bound [24],
coincides with the capacities). These bounds show that there is
no gap in the rate-loss scaling between the upper bounds and
the rates of existing point-to-point entanglement generation
protocols [25–30] or QKD protocols [31–40] based on the
transmission of polarized (or time-bin) single-photon states,
Fock states, and coherent states (or cat states) over a pure-
loss channel. Entanglement generation protocols [41–43] and
QKD protocols [44–57] working with an intermediate node
between communicators also have the same rate-loss scaling
with upper bounds [21,58–60] on the quantum and private
capacities of the corresponding quantum network. Besides, if
such an entanglement generation protocol, which can provide
ebits with the same rate-loss scaling as the upper bounds for
a point-to-point pure-loss channel (by being combined with
optimal entanglement distillation if necessary), is adopted in
the aggregated quantum repeater protocol [21], its rate-loss
scaling essentially has no gap with that given by the quantum
and private capacity of a pure-loss bosonic channel network
[21,59,60], irrespective of its topology (see, e.g., a review ar-
ticle [61] for detail). These facts suggest that there is not much
room to improve further existing entanglement generation
protocols in terms of scaling. In other words, it is rather impor-
tant in practice to design a protocol by considering a balance
between easiness of the implementation and its specific per-
formance.

Especially, a protocol based on coherent-state encoding is
an example of protocol with such a good balance. In B92
QKD protocol [35,37,38], a bit is encoded into phases of a
coherent state, and it is sent from a sender, Alice, to a receiver,
Bob, directly through an optical channel. In the twin-field
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(TF) QKD protocol [47–54], Alice and Bob send coherent
states with information of bits to an intermediate node, called
Claire, which is supposed to perform a Bell measurement
based on single-photon interference. Entanglement generation
protocol [25–28,30,42,43,62] is also based on coherent-state
encoding to generate entanglement between Alice’s qubit and
Bob’s qubit, as such an encoding can be established through a
dispersive Jaynes-Cummings Hamiltonian between a coherent
state and a matter qubit, such as a superconducting qubit,
a quantum dot, a single ion, a nitrogen-vacancy center in
a diamond, or a single atom. Therefore, protocols based on
coherent-state encoding constitute an important category as
practical entanglement generation and QKD.

In this paper, we consider protocols that present entan-
glement with only one type of error (such as a phase error)
for distant qubits via coherent-state transmission over a lossy
channel, as well as local operations and classical communi-
cation (LOCC). On regarding this as a subroutine to serve
single-error-type entanglement for larger protocol to yield a
final output, we identify a protocol which achieves the global
optimal for typical jointly convex yield functions monotoni-
cally nondecreasing with respect to the singlet fraction [63],
such as an arbitrary convex function of a singlet fraction, two-
way distillable entanglement, and two-way distillable key. In
particular, entanglement generation protocol based on remote
nondestructive parity measurement (RNPM) protocol [27,43]
is identified as such an optimal subroutine.

This paper is organized as follows. In Sec. II, we define the
yield function for single-error-type entanglement and show
its several properties. We consider point-to-point protocol in
Sec. III and three-party protocol working with the help of
an intermediate node in Sec. IV. Section V concludes this
paper.

II. SINGLE-ERROR-TYPE ENTANGLEMENT
AND THE YIELD BASED ON IT

In this paper, we consider entanglement generation pro-
tocols which provide single-error-type entanglement τ̂AB for
distant qubits A and B, i.e., a state in the Hilbert subspace
spanned by two orthogonal Bell states, with the free use
of LOCC. Since two orthogonal Bell states can be trans-
formed into |�+〉AB := (|00〉AB + |11〉AB)/

√
2 and |�−〉AB :=

(|00〉AB − |11〉AB)/
√

2 via a local unitary operation [7], we
can assume that the state is described as

τ̂AB(ζ , χ, υ ) = 1 + ζ

2
|�+〉〈�+|AB + 1 − ζ

2
|�−〉〈�−|AB

+ χ − iυ

2
|�+〉〈�−|AB+ χ + iυ

2
|�−〉〈�+|AB

(1)

with three real parameters ζ , χ , and υ satisfying ζ 2 +
χ2 + υ2 � 1. By noting that X̂ A ⊗ X̂ B|�±〉AB = ±|�±〉AB

and ẐA|�+〉AB = |�−〉AB and that the application of a
unitary operation e−iθ ẐA/2 is closed in the Hilbert sub-
space spanned by {|�±〉AB}, where X̂ A := |0〉〈1|A + |1〉〈0|A
and ẐA := |0〉〈0|A − |1〉〈1|A, the state τ̂AB can always be

transformed into a standard form

γ̂ AB(z, x) := 1 + z

2
|�+〉〈�+|AB + 1 − z

2
|�−〉〈�−|AB

+ x

2
(|�+〉〈�−|AB + |�−〉〈�+|AB)

= 1 + x

2
|00〉〈00|AB + 1 − x

2
|11〉〈11|AB

+ z

2
(|00〉〈11|AB + |11〉〈00|AB), (2)

via a local unitary operation, where

x = |χ |,
z =

√
ζ 2 + υ2 (3)

are non-negative parameters satisfying x2 + z2 � 1. Note that
z is related with the singlet fraction F of τ̂AB [64], defined by
F := maxÛ A⊗V̂ B AB〈�+|(Û A ⊗ V̂ B)τ̂AB(Û A† ⊗ V̂ B†)|�+〉AB

with unitary operators Û A and V̂ B, as

z = 2F − 1. (4)

This implies that any single-error-type state τ̂AB whose stan-
dard form γ̂ AB(z, x) has nonzero z is entangled, which can thus
be called a single-error-type entangled state.

We consider a scenario where a single-error-type entan-
gled state τ̂AB generated through an entanglement generation
protocol can be used as an input for a subsequent proto-
col such as entanglement distillation, secret-key distillation,
entanglement swapping [22], or their combination. In partic-
ular, we assume that the subsequent protocol accepts only
the standard form γ̂ AB(z, x) and its yield Y is a function
of z and x, i.e., Y = Y (γ̂ AB(z, x)) = Y (z, x). Using the yield
function Y (z, x) of a subsequent protocol as a reference, we
may define a measure of entanglement in general single-
error-type state τ̂AB(ζ , χ, υ ), which we also denote by Y as
Y = Y (τ̂AB(ζ , χ, υ )) = Y (

√
ζ 2 + υ2, |χ |).

For Y (τ̂AB) to be a proper measure, the yield function
Y (z, x) must satisfy several properties as follows. Since
Y (τ̂AB) should be zero for any separable state τ̂AB, the yield
Y is zero for separable states γ̂ AB(0, x), i.e.,

Y (0, x) = 0. (5)

From the monotonicity of Y (τ̂AB) under LOCC as an entangle-
ment measure, if Alice and Bob can deterministically convert
a state γ̂ AB(z, x) to another state γ̂ AB(z′, x′) by LOCC, en-
tanglement in γ̂ AB(z, x) is no smaller than that in γ̂ AB(z′, x′),
namely,

Y (z, x) � Y (z′, x′). (6)

For example, if Alice inputs a qubit pair AB in a state γ̂ AB(z, x)
into a phase-flip channel

	A
v (ρ̂) := 1 + v

2
ρ̂ + 1 − v

2
ẐAρ̂ẐA (7)

with 0 � v � 1, the state of the qubit pair becomes γ̂ AB(vz, x)
and, thus,

Y (z, x) � Y (vz, x), (8)

implying monotonically nondecreasing of Y (z, x) with respect
to z. Similarly, since Alice and Bob can convert state γ̂ AB(z, x)
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into state γ̂ AB(z, vx) by inputting the qubit pair into a channel

EAB
v (ρ̂) := 1 + v

2
ρ̂ + 1 − v

2
(X̂ A ⊗ X̂ B)ρ̂(X̂ A ⊗ X̂ B) (9)

with 0 � v � 1, we have

Y (z, x) � Y (z, vx), (10)

implying monotonically nondecreasing of Y (z, x) over x.
In this paper, we impose two assumptions on the function

Y (z, x). That is to say, the results derived in the subsequent
sections are true for any yield function Y (z, x) as long as
it satisfies those assumptions. The first assumption is that
Y (z, x) is a jointly convex function. This means that Y is also
a convex function over single-error-type states τ̂AB(ζ , χ, υ ),
which can be seen as follows. Consider a convex mixture of a
single-error-type state τ̂AB(ζ ′, χ ′, υ ′) and a single-error-type
state τ̂AB(ζ ′′, χ ′′, υ ′′) and denote it by a single-error-type state
τ̂AB(ζ , χ, υ ). Then,

(ζ , χ, υ ) = p(ζ ′, χ ′, υ ′) + (1 − p)(ζ ′′, χ ′′, υ ′′) (11)

holds for 0 � p � 1. The measure for the mixture
τ̂AB(ζ , χ, υ ) then satisfies

Y (τ̂AB(ζ , χ, υ )) = Y (
√

ζ 2 + υ2, |χ |) � Y (p
√

ζ ′2 + υ ′2

+ (1 − p)
√

ζ ′′2 + υ ′′2, p|χ ′| + (1− p)|χ ′′|)
� pY (

√
ζ ′2 + υ ′2, |χ ′|)

+ (1 − p)Y (
√

ζ ′′2 + υ ′′2, |χ ′′|)
= pY (τ̂AB(ζ ′, χ ′, υ ′))

+ (1 − p)Y (τ̂AB(ζ ′′, χ ′′, υ ′′)), (12)

where we used the convexity of norms and the monotonicity
of Eqs. (8) and (10) to have the first inequality, and we used
the joint convexity of the yield Y (z, x) to have the second
inequality.

The second assumption we make is an inequality

Y (vz,
√

1 − z2) � zY (v, 0) (13)

for any 0 � v � 1 and 0 � z � 1. The left-hand side of
this inequality corresponds to the case where the output of
the phase-flip channel 	A

v with the input of a pure state
γ̂ AB(z,

√
1 − z2) is sent to the subsequent protocol. On the

other hand, the right-hand side corresponds to the case where
a maximally entangled state γ̂ AB(1, 0) given with probability
z is input to the phase-flip channel 	A

v , followed by being sent
to the subsequent protocol. The inequality (13) requires the
latter case to give an average overall yield to be no smaller
than the former. Typical yield functions satisfy the inequality
(13), as inferred from the following examples.

As an example, let us consider a subsequent protocol
whose yield function Y depends only on the singlet fraction
of γ̂ AB(z, x), i.e., Y (z, x) = Y (z) for any x and is convex over
z. In this case, the convexity of Y (z) and Eq. (5) implies

pY (z) � Y (pz) (14)

for any 0 � p � 1, leading to Eq. (13). For instance, when
we execute a quantum repeater protocol composed of single-
error-type entanglement generation, the recurrence method

[6–8], and the entanglement swapping, it is conventional
to start by converting initial entangled states γ̂ AB(z, x) be-
tween neighboring repeater stations into a Bell-diagonal one,
γ̂ AB(z, 0). Then, the yield function of the overall protocol
would naturally depend only on the singlet fraction of the
initial state, namely, Y (z).

Another example of the yield function having convexity
and satisfying Eq. (13) is the distillable entanglement ED. The
analytic formula of the distillable entanglement for general
mixed states has not yet been found, but it has been derived for
maximally correlated states ρ̂AB := ∑

i, j ai j |ii〉〈 j j|AB [63,65].
The formula is described by

ED(ρ̂AB) = S(ρ̂A) − S(ρ̂AB), (15)

where ρ̂A := TrB[ρ̂AB] and S is the von Neumann entropy de-
fined by S(ρ̂) := −Tr[ρ̂ log2 ρ̂]. This quantity coincides with
the two-way distillable key, in this case [65–67]. Since the
single-error-type entangled states γ̂ AB(z, x) are examples of
the maximally correlated states, the distillable entanglement
for γ̂ AB(z, x) is

ED(γ̂ AB(z, x)) = h

(
1 + x

2

)
− h

(
1 + √

z2 + x2

2

)
, (16)

where h is the binary entropy function h(x) := −x log2 x −
(1 − x) log2(1 − x). A direct calculation shows that ED is
convex over (z, x) and also satisfies Eq. (13).

III. TIGHT BOUND ON SINGLE-ERROR-TYPE
ENTANGLEMENT GENERATION

In this section, we derive a tight bound on entanglement
generation protocols that are based on coherent-state trans-
mission from a sender to a receiver, followed by arbitrary
LOCC operations. We start by defining the protocols and
their yield as the measure of the performance (Sec. III A).
In Sec. III B, instead of considering an LOCC protocol that
is generally complex, we consider separable operations and
show the requisites for producing single-error-type entangle-
ment. In Sec. III C, we derive an upper bound on the yield
that could be given by the separable operations. Finally, in
Sec. III D, we show that a protocol of Ref. [27] achieves the
upper bound. In Sec. III E, we explicitly show how efficient
the optimal protocol is.

A. Single-error-type entanglement generation and the measure
of its performance

Let us define the family of single-error-type entanglement
generation protocols considered in this paper. Suppose that
separated parties called Alice and Bob have qubits A and
B, respectively, and their goal is to make the qubits AB in
a single-error-type entangled state. In general, a protocol is
described as follows (Fig. 1): (i) Alice prepares qubit A in her
desired state |φ〉A = ∑

j=0,1
√

q jei� j | j〉A with real parameters
� j , q j > 0, and

∑
j q j = 1, and she makes it interact with a

pulse in a coherent state |α〉a = e−|α|2/2eαâ† |0〉a via a unitary
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FIG. 1. Scenario of single-error-type entanglement generation.
|φ〉A := ∑

j=0,1
√

qjei� j | j〉A. An outcome k corresponds to the ap-
plication of a separable operator M̂A

k ⊗ N̂B
k . If the final entanglement

τ̂AB
k includes only one type of error, Alice and Bob may declare the

success of the protocol.

operation V̂ Aa defined by

V̂ Aa|0〉A|α〉a = |0〉A|α0〉a,

V̂ Aa|1〉A|α〉a = |1〉A|α1〉a, (17)

where the possible output states {|α j〉a} j=0,1 are also coherent
states. (ii) Alice sends the pulse a to Bob, through a lossy
channel described by an isometry

L̂a→bE |α〉a = |
√

T α〉b|
√

1 − T α〉E , (18)

where 0 < T < 1 is the transmittance of the channel and
system E is the environment. At this point, Alice and Bob
share a quantum state described by

|ψ〉AbE =
∑
j=0,1

√
q je

i� j | j〉A|
√

T α j〉b|
√

1 − T α j〉E . (19)

(iii) Alice and Bob manipulate system Ab through LOCC,
and may declare outcome k with probability pk to herald the
success of the generation of qubits AB in a single-error-type
entangled state τ̂AB

k . The correction of the success events k
is denoted by S . We assume that for successful events with
k ∈ S , the state τ̂AB

k is given by the standard form in Eq. (2),
namely,

τ̂AB
k = γ̂ AB(zk, xk ) (20)

with zk > 0 and xk � 0.
Let us define a method for evaluating single-error-type

entanglement generation protocols. Typically, following such
an entanglement generation, a subsequent protocol that works
with the obtained entanglement τ̂AB

k , such as entanglement
distillation, secret-key distillation, or entanglement swapping
[22], is executed. This implies that the value of the entan-
glement generation cannot be determined by itself, namely,
it depends on the protocol to be performed after the entan-
glement generation. In this paper, using the yield function Y
defined in Sec. II, the performance of the overall protocol is

evaluated by the average overall yield Ȳ , which is defined by

Ȳ :=
∑
k∈S

pkY
(
τ̂AB

k

) =
∑
k∈S

pkY (γ̂ AB(zk, xk ))

=
∑
k∈S

pkY (zk, xk ). (21)

B. Requisites for separable operations

We start by considering the description of the LOCC in
step (iii) of the protocol in Sec. III A. In general, it is known
that any LOCC operation can be described by a separable
operation {M̂A

κ ⊗ N̂B
κ } (although the converse is not true, that

is, there are separable operations [68–71] that are not imple-
mentable by LOCC). Here κ stands for the record of all the
communication between Alice and Bob. The definition of the
protocol in Sec. III A allows the possibility of discarding part
of the record, in which case the output state τ̂AB

k in step (iii) is a
probabilistic mixture

∑
κ qκ|k ρ̂AB

κ over the output states {ρ̂AB
κ }κ

for various values of κ . Since τ̂AB
k is a single-error-type state in

the form of Eq. (1), all the states {ρ̂AB
κ }κ should also be such

single-error-type states. Then, due to the assumed convexity
of the yield function Y in Eq. (12), the optimum value of the
average overall yield Ȳ is always achieved by maintaining all
the record. Hence, we here assume that the state τ̂AB

k obtained
in step (iii) is written by a single term as

τ̂AB
k = 1

pk

(
M̂A

k ⊗ N̂B
k

)
TrE (|ψ〉〈ψ |AbE )

(
M̂A

k ⊗ N̂B
k

)†
(22)

with separable operators {M̂A
k ⊗ N̂B

k } satisfying∑
k∈S

M̂A†
k M̂A

k ⊗ N̂B†
k N̂B

k � 1̂AB, (23)

where M̂A
k is an operator on the qubit A while operator N̂B

k
maps state vectors for the system b to those for the qubit B.
Since τ̂AB

k with k ∈ S is entangled by definition, the ranks of
operators M̂A

k and N̂B
k are 2 for any k ∈ S .

We rewrite the state of Eq. (19) as

|ψ〉AbE =
∑
j=0,1

√
q je

i� j | j〉A|u j〉b|v j〉E (24)

with 0 < q0 < 1, q0 + q1 = 1, and

1 > |〈u1|u0〉|1−T = |〈v1|v0〉|T > 0 (25)

from a property |〈√T α1|
√

T α0〉| = |〈α1|α0〉|T of coherent
states {|α j〉} j=0,1. From Eqs. (24) and (7), we have a simplified
representation [27]

TrE [|ψ〉〈ψ |AbE ] = 	A
|〈v1|v0〉|(|ψ ′〉〈ψ ′|Ab), (26)

where

|ψ ′〉Ab :=
∑
j=0,1

√
q je

i� j+i(−1) jϕ| j〉A|u j〉b (27)

with 2ϕ := arg[〈v1|v0〉]. Thus, Eq. (22) is rewritten as

τ̂AB
k = 1

pk

(
M̂A

k ⊗ N̂B
k

)
	A

|〈v1|v0〉|(|ψ ′〉〈ψ ′|Ab)
(
M̂A

k ⊗ N̂B
k

)†
.

(28)
Let us consider requisites for {M̂A

k ⊗ N̂B
k }k∈S , stemming

from the assumption that τ̂AB
k is in the standard form of Eq. (2).
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FIG. 2. An imaginary protocol equivalent to the real proto-
col in Fig. 1. |ψ ′〉Ab := ∑

j=0,1
√

qjei� j+i(−1) jϕ | j〉A|uj〉b, where ϕ :=
arg[〈v1|v0〉]/2. Channel a → b becomes ideal at the expense of the
application of a phase-flip channel 	A

v with v = |〈v1|v0〉|.

Since Eq. (2) implies AB〈01|τ̂AB
k |01〉AB = 0, the separable op-

erator M̂A
k ⊗ N̂B

k must satisfy

0 = AB〈01|M̂A
k 	A

|〈v1|v0〉|
(
σ̂ AB

k

)
M̂A†

k |01〉AB, (29)

where

σ̂ AB
k := N̂B

k (|ψ ′〉〈ψ ′|Ab)N̂B†
k . (30)

From 0 < |〈v1|v0〉| < 1 and the positivity of σ̂ AB
k , we have√

σ̂ AB
k |1〉B

(
M̂A†

k |0〉A
) =

√
σ̂ AB

k |1〉B
(
ẐAM̂A†

k |0〉A
) = 0. (31)

If M̂A†
k |0〉A and ẐAM̂A†

k |0〉A were linearly independent,√
σ̂ AB

k |1〉B = 0, which would imply that σ̂ AB
k is a separable

state. This would, in turn, mean the separability of τ̂AB
k . To

avoid this contradiction, M̂A†
k |0〉A and ẐAM̂A†

k |0〉A must be
linearly dependent, which implies that the state M̂A†

k |0〉A is an
eigenstate of ẐA. Similarly, from AB〈10|τ̂AB

k |10〉AB = 0, i.e.,

0 = AB〈10|M̂A
k 	A

|〈v1|v0〉|
(
σ̂ AB

k

)
M̂A†

k |10〉AB, (32)

we have√
σ̂ AB

k |0〉B
(
M̂A†

k |1〉A
) =

√
σ̂ AB

k |0〉B
(
ẐAM̂A†

k |1〉A
) = 0, (33)

meaning that the state M̂A†
k |1〉A must also be an eigenstate

of ẐA. Combined with rank(MA†
k ) = 2, these conclude that

M̂A†
k |0〉A and M̂A†

k |1〉A are different eigenstates of ẐA. By let-
ting k ∈ Sl for l = 0, 1 denote the subset of outcomes k ∈
S such that M̂A†

k |0〉A ∝ (X̂ A)l |0〉A and M̂A†
k |1〉A ∝ (X̂ A)l |1〉A,

where S = S0 ∪ S1 with S0 ∩ S1 = ∅, this implies

M̂A
k =

{
m0

k |0〉〈0|A + m1
k |1〉〈1|A (k ∈ S0),

m0
k |1〉〈0|A + m1

k |0〉〈1|A (k ∈ S1),
(34)

with nonzero m j
k . This equation shows that M̂A

k commutes with
the phase-flip channel 	A

|〈v1|v0〉|. Hence, the considered proto-
col is simulatable by a protocol of Fig. 2 where the separable
operation {M̂A

k ⊗ N̂B
k }k∈S is applied to the state |ψ ′〉Ab before

the phase-flip channel 	A
|〈v1|v0〉|.

Let us consider the form of N̂B
k . From Eq. (34), Eqs. (31)

and (33) are reduced to√
σ̂ AB

k |01〉AB =
√

σ̂ AB
k |10〉AB = 0 (k ∈ S0),√

σ̂ AB
k |00〉AB =

√
σ̂ AB

k |11〉AB = 0 (k ∈ S1). (35)

From the definition (30) of σ̂ AB
k , N̂B

k should satisfy

N̂B
k |u0〉b = n0

k |0〉B, N̂B
k |u1〉b = n1

k |1〉B (k ∈ S0),

N̂B
k |u0〉b = n0

k |1〉B, N̂B
k |u1〉b = n1

k |0〉B (k ∈ S1), (36)

with nonzero n j
k . Let {b〈ũi|}i=0,1 be a dual basis in the Hilbert

subspace spanned by b〈u0| and b〈u1| for the basis {|ui〉b}i=0,1,
which satisfies

〈ũi|u j〉 = δi j . (37)

By using this dual basis, N̂B
k can be described by

N̂B
k =

{
n0

k |0〉Bb〈ũ0| + n1
k |1〉Bb〈ũ1| (k ∈ S0),

n0
k |1〉Bb〈ũ0| + n1

k |0〉Bb〈ũ1| (k ∈ S1).
(38)

As a result of Eqs. (34) and (38), τ̂AB
k of Eq. (28) is de-

scribed as τ̂AB
k = 	A

|〈v1|v0〉|(|ψ ′
k〉〈ψ ′

k|AB) with

|ψ ′
k〉AB := 1√

pk

(
M̂A

k ⊗ N̂B
k

)|ψ ′〉Ab

= 1√
pk

∑
j=0,1

m j
kn j

k
√

q je
i� j+i(−1) jϕ (X̂ AX̂ B)l | j j〉AB

(39)

for k ∈ Sl (l = 0, 1), where

pk =
∑
j=0,1

q j

∣∣m j
kn j

k

∣∣2
. (40)

Since τ̂AB
k = 	A

|〈v1|v0〉|(|ψ ′
k〉〈ψ ′

k|AB) is in the standard form
γ̂ AB(zk, xk ), so is the state |ψ ′

k〉AB, namely, |ψ ′
k〉〈ψ ′

k|AB =
γ̂ AB(z′

k,

√
1 − z′2

k ), where z′
k is obtained from Eqs. (2) and (39)

as

z′
k = 2

√
q0q1

∣∣m0
km1

kn0
kn1

k

∣∣
pk

. (41)

Considering the action of the phase-flip channel 	A
|〈v1|v0〉|, we

have

zk = |〈v1|v0〉|z′
k,

xk =
√

1 − z′2
k . (42)

Note that we cannot freely choose parameters pk and z′
k . In

particular, in order to make the operators {M̂A
k ⊗ N̂B

k } achiev-
able, the operators should satisfy Eq. (23). From Eqs. (34),
(38), and (37), this condition is shown to be equivalent to(

1 −
∑
k∈S

∣∣m0
kn0

k

∣∣2

)1/2(
1 −

∑
k∈S

∣∣m0
kn1

k

∣∣2

)1/2

� |〈u1|u0〉|,
(

1 −
∑
k∈S

∣∣m1
kn0

k

∣∣2

)1/2(
1 −

∑
k∈S

∣∣m1
kn1

k

∣∣2

)1/2

� |〈u1|u0〉|.

(43)
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One way to derive these inequalities is to take a
representation of N̂B†

k N̂B
k with (orthonormal) cat states

|c±〉b := (e−iφ|u0〉b±eiφ|u1〉b)/
√

2(1 ± |〈u1|u0〉|), where
2φ := arg[〈u1|u0〉], and to notice that Eq. (23) means
1̂B − ∑

k∈S m j
kN̂B†

k N̂B
k � 0 for j = 0, 1.

C. An upper bound on separable operations

Let us derive an upper bound on the average overall yield
Ȳ defined in Eq. (21) assuming that Y satisfies Eq. (13). From
Eq. (42), we have

Ȳ =
∑
k∈S

pkY
(|〈v1|v0〉|z′

k,

√
1 − z′2

k

)

� Y (|〈v1|v0〉|, 0)
∑
k∈S

pkz′
k. (44)

On the other hand, since conditions of Eq. (43) imply

1

4

∑
k∈S

∑
i, j=0,1

∣∣mi
kn j

k

∣∣2 � 1 − |〈u1|u0〉|, (45)

we have∑
k∈S

pkz′
k = 2

√
q0q1

∑
k∈S

∣∣m0
kn0

km1
kn1

k

∣∣
�

∑
k∈S

∣∣m0
kn0

km1
kn1

k

∣∣ � 1

4

∑
k∈S

∑
i, j=0,1

∣∣mi
kn j

k

∣∣2

� 1 − |〈u1|u0〉|. (46)

Therefore, substituting Eq. (46) for the bound of Eq. (44), we
obtain an upper bound described by

Ȳ � Y (|〈v1|v0〉|, 0)(1 − |〈u1|u0〉|). (47)

If we use Eq. (25), this bound is rewritten as

Ȳ � Y
(|〈u1|u0〉| 1−T

T , 0
)
(1 − |〈u1|u0〉|), (48)

which gives an upper bound,

Ȳ � max
0<u<1

Y
(
u

1−T
T , 0

)
(1 − u). (49)

D. An optimal protocol and the optimal performance

Conversely, here we show that the bound of Eq. (49) is
achievable by an entanglement generation protocol introduced
in Ref. [27]. This protocol uses a dispersive Jaynes-Cummings
Hamiltonian between a matter qubit and a coherent state |α〉a

leading to the assumption of |α0〉a = |αeiθ/2〉a and |α1〉a =
|αe−iθ/2〉a with a constant θ > 0 in Eq. (17) for unitary
operation V̂ Aa, and it is regarded as a specific example
of the protocol of Sec. III A, based only on Bob’s local
operation composed of linear optical elements and ideal
photon-number-resolving detectors. In particular, in the pro-
tocol, Alice first makes a probe pulse a in a coherent state
|α/

√
T 〉a interact with her qubit A in state |+〉A := (|0〉A +

|1〉A)/
√

2 with the unitary operation V̂ Aa and then sends it to
Bob together with a local-oscillator (LO) pulse. On receiving
the pulse a and the LO pulse, Bob generates a probe pulse b in
a coherent state |α〉b from the LO pulse, and makes it interact
with his qubit B in state |+〉B with the unitary operation V̂ Bb.

Then, he inputs the pulses a and b to a 50:50 beam split-
ter, followed by a displacement operation D̂[−√

2α cos(θ/2)]
(using a remaining LO pulse) on the pulse having experienced
the constructive interference. Finally, he measures two output
pulses with photon-number-resolving detectors.

The protocol provides [27] single-error-type entangled
states when it succeeds (i.e., when the photon detectors
find nonzero photons), all of which can be transformed to
γ̂ AB(2F − 1, 0) with fidelity

F = 1 + u
1−T

T

2
, (50)

and the total success probability Ps = ∑
k∈S pk is

Ps = 1 − u, (51)

where u := |〈αeiθ/2|αe−iθ/2〉|T is controllable by choosing α.
Hence, with the entanglement generation protocol, the aver-
age overall yield Ȳ is given by

Ȳ =
∑
k∈S

pkY (2F − 1, 0) = Y (2F − 1, 0)Ps

= Y
(
u

1−T
T , 0

)
(1 − u). (52)

Since the parameter u can be chosen freely in the protocol, the
protocol can achieve

Ȳ = max
0<u<1

Y
(
u

1−T
T , 0

)
(1 − u), (53)

which coincides with the upper bound (49). Therefore, for
the yield function Y satisfying Eq. (13), the entanglement
generation protocol of Ref. [27] is concluded to give the max-
imum yield of the single-error-type entanglement generation
protocols.

E. Comparison with the quantum and private capacity

To see how efficient the optimal protocol in Sec. III D is,
let us consider the asymptotic yield of an overall protocol, by
assuming that the single-error-type entangled states success-
fully generated by the protocol are collectively input to the
optimal two-way entanglement distillation protocol, implying
the assumption of Y = ED. In this case, from Eqs. (16) and
(53), the overall performance is

ĒD,max := max
0<u<1

(1 − u)

[
1 − h

(
1 + u

1−T
T

2

)]
. (54)

This quantity represents how many ebits are obtained per
use of the entanglement generation protocol, i.e., per channel
use, in an asymptotically faithful scenario. The overall yield
ĒD,max is plotted by Fig. 3(b). On the other hand, the two-way
quantum and private capacity of a pure-loss channel with
the transmittance T is − log2(1 − T ) [24], represented by
Fig. 3(a). We also describe the success probabilities to ob-
tain single-error-type entanglement with F = 99.4% and with
F = 99.8% by using the optimal entanglement generation in
Sec. III D as Figs. 3(c) and 3(d), respectively. As shown in
Fig. 3, the overall yield ĒD,max based on the optimal two-way
entanglement distillation [Fig. 3(b)] is one order of magnitude
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FIG. 3. Performance of the point-to-point optimal supplier of
single-error-type entanglement over coherent-state transmission over
a lossy channel with the transmittance T . Curve (a) describes the
quantum and private capacity of the lossy channel as a reference.
Curve (b) describes ĒD,max which is the two-way distillable en-
tanglement of the single-error-type entanglement generated by the
optimal supplier, per channel use. Curves (c) and (d) represent the
success probabilities to obtain single-error-type entanglement with
F = 99.4% and with F = 99.8% by using the optimal supplier,
respectively.

less than the quantum and private capacity of the lossy channel
[Fig. 3(a)], and one order of magnitude better than direct
generation of 99.4%-fidelity entanglement with the optimal
protocol in Sec. III D [Fig. 3(c)].

IV. TIGHT BOUND ON SINGLE-ERROR-TYPE
ENTANGLEMENT GENERATION BY THREE PARTIES

In this section, we derive a tight bound on the entangle-
ment generation protocols based on three parties. We start
by defining the protocols in Sec. IV A. Using the results
in Secs. III B and III C, we derive an upper bound on the
performance of protocols based on separable operations in
Sec. IV B. In Sec. IV C, we show that a protocol based on
the remote nondestructive parity measurement of Ref. [43]
achieves the upper bound. In Sec. IV D, we explicitly show
how efficient the optimal protocol is.

A. Single-error-type entanglement generation by three parties

To generate a single-error-type entangled state between
Alice and Bob, they can ask another party called Claire for
help. In fact, single-error-type entanglement generation found
in Ref. [43] adopts such a three-party protocol. This kind of
protocol proceeds as follows (Fig. 4): (i) Alice prepares qubit

A in her desired state |φ〉A = ∑
j=0,1

√
qA

j ei�A
j | j〉A with real

parameters �A
j , qA

j > 0, and
∑

j qA
j = 1, and she makes it

interact with a pulse in a coherent state |α〉a = e−|α|2/2eαâ† |0〉a

via a unitary operation V̂ Aa of Eq. (17). (ii) Similarly, by
using a unitary operation V̂ Bb, Bob makes a pulse in coherent
state |β〉b interact with his qubit B prepared in his desired

state |ϕ〉B = ∑
j=0,1

√
qB

j ei�B
j | j〉B. (iii) Alice and Bob send the

pulses a and b to Claire through lossy channels described by

k

Lossy channel

kk

L

A a

c

B

V

AB
k

A a

O C
kM A

k

V

N B
k

b

c

B b

a b

τ

Aa Bb

FIG. 4. Scenario of single-error-type entanglement genera-
tion by three parties. |φ〉A := ∑

j=0,1

√
qA

j ei�A
j | j〉A and |ϕ〉B :=∑

j=0,1

√
qB

j ei�B
j | j〉B. An outcome k corresponds to the application of

a separable operator M̂A
k ⊗ N̂B

k ⊗ C〈Ok |. If the final entanglement τ̂AB
k

includes only one type of error, Alice, Bob, and Claire may declare
the success of the protocol.

isometries L̂a→caEa and L̂b→cbEb ,

L̂x→cxEx |α〉x = |√Txα〉cx |
√

1 − Txα〉Ex (55)

for x = a, b, respectively, where cx is the pulse at Claire’s
location, 0 < Tx < 1 is the transmittance of the channel for
pulse x, and Ex is the environment. At this point, Alice, Bob,
and Claire share a quantum state |ξ 〉AcaEa ⊗ |ζ 〉BcbEb with

|ξ 〉AcaEa =
∑
j=0,1

√
qA

j ei�A
j | j〉A|√Taα j〉ca |

√
1 − Taα j〉Ea ,

|ζ 〉BcbEb =
∑
j=0,1

√
qB

j ei�B
j | j〉B|√Tbβ j〉cb |

√
1 − Tbβ j〉Eb . (56)

(iv) Alice, Bob, and Claire manipulate system ABcacb through
LOCC, and may declare outcome k with probability pk to
herald the success of the generation of qubits AB in a single-
error-type entangled state τ̂AB

k in the form of Eq. (20) for
k ∈ S .

This protocol is evaluated by the same way as in Sec. III A,
namely, by Eq. (21).

B. An upper bound on single-error-type entanglement
generation by three parties

Similar to Sec. III B, we consider a separable operation
{M̂A

k ⊗ N̂B
k ⊗ C〈Ok|}, instead of the LOCC operation executed

by Alice, Bob, and Claire at step (iv), based on the fact that
separable operations compose a class of operations (strictly)
larger than the set of LOCC operations. Here, through find-
ing the form of separable operators M̂A

k ⊗ N̂B
k ⊗ C〈Ok| that

successfully return single-error-type entanglement τ̂AB
k in the

form of Eq. (20), we associate the three-party protocol with a
two-party protocol as in Fig. 2.
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For simplicity, let us rewrite the states of Eq. (56) as

|ξ 〉AcaEa =
∑
j=0,1

√
qA

j ei�A
j | j〉A

∣∣ua
j

〉
ca

∣∣va
j

〉
Ea

,

|ζ 〉BcbEb =
∑
j=0,1

√
qB

j ei�B
j | j〉B

∣∣ub
j

〉
cb

∣∣vb
j

〉
Eb

, (57)

where 0 < qX
0 < 1 and qX

0 + qX
1 = 1 for X = A, B, and

1 >
∣∣〈ua

1

∣∣ua
0

〉∣∣1−Ta = ∣∣〈va
1

∣∣va
0

〉∣∣Ta
> 0,

1 >
∣∣〈ub

1

∣∣ub
0

〉∣∣1−Tb = ∣∣〈vb
1

∣∣vb
0

〉∣∣Tb
> 0. (58)

From Eqs. (57) and (7), we have

TrEa [|ξ 〉〈ξ |AcaEa ] = 	A
|〈va

1 |va
0 〉|(|ξ ′〉〈ξ ′|Aca ),

TrEb[|ζ 〉〈ζ |BcbEb] = 	B
|〈vb

1 |vb
0〉|(|ζ

′〉〈ζ ′|Bcb ), (59)

where

|ξ ′〉Aca :=
∑
j=0,1

√
qA

j ei�A
j +i(−1) jϕa | j〉A

∣∣ua
j

〉
ca
,

|ζ ′〉Bcb :=
∑
j=0,1

√
qB

j ei�B
j +i(−1) jϕb | j〉B

∣∣ub
j

〉
cb

(60)

with 2ϕx := arg[〈vx
1|vx

0〉] for x = a, b. Hence, a separa-
ble operation {M̂A

k ⊗ N̂B
k ⊗ C〈Ok|} to the system ABcacb

in state |ξ 〉AcaEa ⊗ |ζ 〉BcbEb is equivalent to that in state
	A

|〈va
1 |va

0 〉|(|ξ ′〉〈ξ ′|Aca ) ⊗ 	B
|〈vb

1 |vb
0〉|

(|ζ ′〉〈ζ ′|Bcb ).

Suppose that Alice, Bob, and Claire apply a separable
operator M̂A

k ⊗ N̂B
k ⊗ C〈Ok| to the state 	A

|〈va
1 |va

0 〉|(|ξ ′〉〈ξ ′|Aca ) ⊗
	B

|〈vb
1 |vb

0〉|
(|ζ ′〉〈ζ ′|Bcb ), and they return an entangled state τ̂AB

k in

the form (2). The separable operator M̂A
k ⊗ N̂B

k ⊗ C〈Ok| must
satisfy

AB〈01|M̂A
k 	A

|〈va
1 |va

0 〉|
(
μ̂AB

k

)
M̂A†

k |01〉AB = 0,

AB〈10|M̂A
k 	A

|〈va
1 |va

0 〉|
(
μ̂AB

k

)
M̂A†

k |10〉AB = 0, (61)

with

μ̂AB
k := N̂B

k C〈Ok|
[|ξ ′〉〈ξ ′|Aca

⊗ 	B
|〈vb

1 |vb
0〉|(|ζ

′〉〈ζ ′|Bcb )
]|Ok〉CN̂B†

k . (62)

Note that Eq. (61) is in the same form as Eqs. (29) and (32).
In addition, μ̂AB

k is a positive operator and 0 < |〈va
1 |va

0〉| < 1.
Thus, similar to considerations from Eqs. (29) to (34), M̂A

k can
be assumed to be in the form of

M̂A
k =

{
m0

k |0〉〈0|A + m1
k |1〉〈1|A

(
k ∈ SA

0

)
,

m0
k |1〉〈0|A + m1

k |0〉〈1|A
(
k ∈ SA

1

)
,

(63)

with nonzero m j
k , where SA

0 and SA
1 are two disjoint subsets

of set S , i.e., satisfying S = SA
0 ∪ SA

1 and SA
0 ∩ SA

1 = ∅, and

μ̂AB
k satisfies√

μ̂AB
k |01〉AB =

√
μ̂AB

k |10〉AB = 0
(
k ∈ SA

0

)
,√

μ̂AB
k |00〉AB =

√
μ̂AB

k |11〉AB = 0
(
k ∈ SA

1

)
. (64)

This implies

AB〈01|N̂B
k 	B

|〈vb
1 |vb

0〉|
(
ν̂AB

k

)
N̂B

k |01〉AB = 0,

AB〈10|N̂B
k 	B

|〈vb
1 |vb

0〉|
(
ν̂AB

k

)
N̂B

k |10〉AB = 0 (65)

for any k ∈ SA
0 and

AB〈00|N̂B
k 	B

|〈vb
1 |vb

0〉|
(
ν̂AB

k

)
N̂B

k |00〉AB = 0,

AB〈11|N̂B
k 	B

|〈vb
1 |vb

0〉|
(
ν̂AB

k

)
N̂B

k |11〉AB = 0 (66)

for any k ∈ SA
1 , with

ν̂AB
k := C〈Ok|(|ξ ′〉〈ξ ′|Aca ⊗ |ζ ′〉〈ζ ′|Bcb )|Ok〉C . (67)

Similar to considerations from Eqs. (29) to (34), combined
with 0 < |〈vb

1|vb
0〉| < 1, Eqs. (65) and (66) conclude that N̂B

k
can be assumed to be in the form of

N̂B
k =

{
n0

k |0〉〈0|B + n1
k |1〉〈1|B

(
k ∈ SB

0

)
,

n0
k |1〉〈0|B + n1

k |0〉〈1|B
(
k ∈ SB

1

)
,

(68)

where SB
0 and SB

1 are two disjoint subsets of set S , with
nonzero n j

k , and ν̂AB
k satisfies√

ν̂AB
k |01〉AB =

√
ν̂AB

k |10〉AB = 0
(
k ∈ ⋃

i=0,1 SA
i ∩ SB

i

)
,√

ν̂AB
k |00〉AB =

√
ν̂AB

k |11〉AB = 0
(
k ∈ ⋃

i=0,1 SA
i ∩ SB

i⊕1

)
.

(69)

At this point, we have obtained two facts: (i) M̂A
k ⊗ N̂B

k com-
mutes with the phase-flip channel 	A

|〈va
1 |va

0 〉| ⊗ 	B
|〈vb

1 |vb
0〉|

; (ii)

the range of ν̂AB
k is either the two-dimensional Hilbert sub-

space spanned by states {|00〉AB, |11〉AB} or that by states
{|01〉AB, |10〉AB}. The fact (i) implies that the considered pro-
tocol is simulatable by a protocol of Fig. 5 where the separable
operation {M̂A

k ⊗ N̂B
k ⊗ C〈Ok|} is applied to the state |ξ ′〉Aca ⊗

|ζ ′〉Bcb before the phase-flip channel 	A
|〈va

1 |va
0 〉| ⊗ 	B

|〈vb
1 |vb

0〉|
. In

addition, combined with Eqs. (63), (68), and (69), the fact
(ii) indicates that M̂A

k N̂B
k C〈Ok||ξ ′〉Aca |ζ ′〉Bcb belongs to the

subspace spanned by states {|00〉AB, |11〉AB}. This implies
that the effect of the phase-flip channel 	B

|〈vb
1 |vb

0〉|
(	A

|〈va
1 |va

0 〉|)

on the entangled state M̂A
k N̂B

k C〈Ok||ξ ′〉Aca |ζ ′〉Bcb is equivalent
to that of a phase-flip channel 	A

|〈vb
1 |vb

0〉|
(	B

|〈va
1 |va

0 〉|). Hence,

in the success cases, the protocol works equivalently to a
virtual protocol A (B) in Fig. 5 where Alice, Bob, and Claire
prepare unnormalized state M̂A

k N̂B
k C〈Ok||ξ ′〉Aca |ζ ′〉Bcb to be in-

put into a series of phase-flip channels 	A
|〈vb

1 |vb
0〉|

	A
|〈va

1 |va
0 〉| =

	A
|〈va

1 |va
0 〉||〈vb

1 |vb
0〉|

(	B
|〈va

1 |va
0 〉|	

B
|〈vb

1 |vb
0〉|

= 	B
|〈va

1 |va
0 〉||〈vb

1 |vb
0〉|

).

Let us relate the virtual protocol A in Fig. 5 to the two-party
protocol depicted in Fig. 2 by regarding Claire and Bob in
the former as a single party, which is Bob in the latter. Since
Alice’s operator M̂A

k takes the same form [see Eqs. (63) and
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FIG. 5. An imaginary protocol equivalent to the real protocol

in Fig. 4. |ξ ′〉Aca := ∑
j=0,1

√
qA

j ei�A
j +i(−1) jϕa | j〉A|ua

j 〉ca and |ζ ′〉Bcb :=∑
j=0,1

√
qB

j ei�B
j +i(−1) jϕb | j〉B|ub

j〉cb . Channels a → ca and b → cb be-

come ideal at the expense of the application of phase-flip channels
	A

va with va = |〈va
1 |va

0〉| and 	B
vb with vb = |〈vb

1|vb
0〉|, respectively.

If the protocol returns success outcome k, the effect of phase-flip
channel 	B

vb (	A
va ) is equivalent to that of 	A

vb (	B
va ). We define

virtual protocol A (B) as the modified protocol where 	B
vb (	A

va ) is
converted to 	A

vb (	B
va ).

(34)], we notice that the protocol A is a special case of the
protocol in Fig. 2 with the following substitutions:

q j �→ qA
j ,

� j �→ �A
j ,

|u j〉b �→ ∣∣ua
j

〉
ca
,

|〈v1|v0〉| �→ ∣∣〈va
1

∣∣va
0

〉∣∣∣∣〈vb
1

∣∣vb
0

〉∣∣,
N̂B

k �→ (
C〈Ok| ⊗ N̂B

k

)|ζ ′〉Bcb . (70)

Therefore, derivation of requisites starting from Eqs. (35) to
(47) is also applicable here under the above substitution. We
thus obtain a bound

Ȳ � Y
(∣∣〈va

1

∣∣va
0

〉∣∣∣∣〈vb
1

∣∣vb
0

〉∣∣, 0
)(

1 − ∣∣〈ua
1

∣∣ua
0

〉∣∣) (71)

for the virtual protocol A. Similarly, by exchanging the roles of
Alice and Bob in the above argument, we also obtain a bound

Ȳ � Y
(∣∣〈va

1

∣∣va
0

〉∣∣∣∣〈vb
1

∣∣vb
0

〉∣∣, 0
)(

1 − ∣∣〈ub
1

∣∣ub
0

〉∣∣) (72)

for the virtual protocol B. Let u := max{|〈ua
1|ua

0〉|, |〈ub
1|ub

0〉|}.
Since both inequalities (71) and (72) hold, use of Eqs. (58)
and (8) leads to

Ȳ � Y
(∣∣〈va

1

∣∣va
0

〉∣∣∣∣〈vb
1

∣∣vb
0

〉∣∣, 0
)
(1 − u)

� Y
(
u

1−Ta
Ta

+ 1−Tb
Tb , 0

)
(1 − u). (73)

This gives an upper bound on Ȳ ,

Ȳ � max
0<u<1

Y
(
u

1−Ta
Ta

+ 1−Tb
Tb , 0

)
(1 − u). (74)

C. An optimal protocol and the optimal performance
for three-party protocols

Conversely, here we show that the bound of Eq. (74)
for protocols based on separable operations is achievable

by a protocol based on the remote nondestructive parity
measurement proposed in Ref. [43], which is a three-party
implementation of the optimal protocol [27] (employed in
Sec. III D) for executing projective measurement ẐA ⊗ ẐB.
In particular, similar to the protocol [27], this protocol uses
unitary interaction V̂ Aa of Eq. (17) with the assumption of
|α0〉a = |αeiθ/2〉a and |α1〉a = |αe−iθ/2〉a for the coherent-state
input |α〉a with a constant θ > 0, and it is based only on
Claire’s local operation composed of linear optical elements
and ideal photon-number-resolving detectors. More precisely,
in the protocol, Alice (Bob) first makes probe pulse a (b) in
a coherent state |α/

√
Ta〉a (|α/

√
Tb〉b) interact with her qubit

A (his qubit B) in state |+〉A (|+〉B) with the unitary operation
V̂ Aa (V̂ Bb) and then sends it to Claire. On receiving the pulse
a from Alice and the pulse b from Bob, Claire makes them
interfere via a 50:50 beam splitter, and applies a displacement
operation D̂[−√

2α cos(θ/2)] on the pulse having experi-
enced the constructive interference. Finally, Claire measures
two output pulses with photon-number-resolving detectors.

The protocol provides [43] single-error-type entangled
states when it succeeds (i.e., when Claire’s photon detectors
find nonzero photons), all of which can be transformed to
γ̂ AB(2F − 1, 0) with fidelity

F = 1 + u
1−Ta

Ta
+ 1−Tb

Tb

2
, (75)

and the total success probability Ps = ∑
k∈S pk is

Ps = 1 − u, (76)

where u := |〈αeiθ/2|αe−iθ/2〉|Ta is a parameter controllable by
choosing α. Therefore, with the entanglement generation pro-
tocol, the yield Ȳ is

Ȳ =
∑
k∈S

pkY (2F − 1, 0) = Y (2F − 1, 0)Ps

= Y
(
u

1−Ta
Ta

+ 1−Tb
Tb , 0

)
(1 − u). (77)

Since u can freely be chosen in the entanglement generation
protocol of Ref. [43], it can achieve the bound of (74), i.e.,

Ȳ = max
0<u<1

Y
(
u

1−Ta
Ta

+ 1−Tb
Tb , 0

)
(1 − u). (78)

D. Comparison with the quantum and private capacity

Similar to Sec. III D, to see how efficient the optimal pro-
tocol in Sec. IV C is, let us consider an asymptotic yield with
Y = ED, by assuming that the single-error-type entangled
states successfully generated by the protocol are collectively
input to the optimal two-way entanglement distillation pro-
tocol. In this case, from Eqs. (16) and (78), the overall
performance is

ĒD,max := max
0<u<1

(1 − u)

[
1 − h

(
1 + u

1−Ta
Ta

+ 1−Tb
Tb

2

)]
. (79)

For simplicity, let Ta = Tb = √
T , where T represents the

transmittance of a series of lossy channels between Alice
and Claire and between Claire and Bob. Then, the yield
ĒD,max is described by Fig. 6(b). On the other hand, the two-
way quantum and private capacity (per use of the pair of
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FIG. 6. Performance of the optimal supplier of single-error-type
entanglement with a middle measuring station. This middle station is
connected with Alice and Bob by a lossy channel with transmittance√

T , respectively (i.e., Ta = Tb = √
T ). Curve (a) describes the quan-

tum and private capacity of this network. Curve (b) describes ĒD,max

which is the two-way distillable entanglement of the single-error-
type entanglement generated by the optimal supplier, per use of the
pair of channels between AC and CB. Curves (c) and (d) represent
the success probabilities to obtain single-error-type entanglement
with F = 99.4% and with F = 99.8% by using the optimal supplier,
respectively. Curve (e) describes the quantum and private capacity
of a lossy channel with transmittance T (which can directly connect
Alice and Bob).

channels between A and C and between C and B) of the con-
sidered network is − log2(1 − √

T ) [21,59–61], represented
by Fig. 6(a). We also describe the success probabilities to
obtain single-error-type entanglement with F = 99.4% and
with F = 99.8% by using the optimal entanglement genera-
tion in Sec. IV D as Figs. 6(c) and 6(d), respectively. As a
reference, we also describe the quantum and private capacity
− log2(1 − T ) of a lossy channel with transmittance T (which
can directly connect Alice and Bob) as Fig. 6(e). As shown
in Fig. 6, the yield ĒD,max based on the optimal two-way
entanglement distillation [Fig. 6(b)] is one order of magnitude
less than the quantum and private capacity of the network
[Fig. 6(a)], and one order of magnitude better than direct
generation of 99.4%-fidelity entanglement with the RNPM
protocol in Sec. IV C [Fig. 6(c)].

V. DISCUSSION

In this paper, we have identified entanglement generation
based on the RNPM as the optimal supplier of single-
error-type entanglement over coherent-state transmission, for
arbitrary subsequent protocol with a jointly convex yield func-
tion satisfying Eq. (13). Notice that although the RNPM is
designed to distribute entanglement (or, more generally, to
implement the projective measurement ẐA ⊗ ẐB), it is closely
related with QKD as well. In fact, the RNPMs for the two-

party scenario in Sec. III D and for the three-party scenario
in Sec. IV C can be regarded as coherent versions of the B92
QKD and of the TF QKD, respectively. Besides, note that they
have a slight difference in the implementation, as described
in Secs. III D and IV C. In particular, the receiver can use
a transmitted LO pulse to generate a coherent state with a
properly locked phase in the former scenario, while both of
the communicators need their own local LOs phase-locked
to each other in the latter. Nevertheless, even in the latter
scenario, we would be able to lock the phases properly in
the near future, by considering recent progress of the related
technology in the context of realization of TF QKD (see, e.g.,
[73]).

The condition (13) is satisfied by typical yield functions,
such as arbitrary convex functions of the singlet fraction, two-
way distillable entanglement, and two-way distillable key. If
the distillable entanglement or key is adopted as a measure of
the performance, its overall yield is only one order of magni-
tude less than the quantum and private capacity [21,24,59,60]
of the associated pure-loss bosonic channel network, and
merely one order of magnitude better than direct generation of
high-fidelity (in particular, 99.4%-fidelity) entanglement with
the RNPM, as represented by Fig. 3 for the two-party protocol
and by Fig. 6 for the three-party protocol. Considering that
the overall yield cannot be achieved without the use of the
optimal entanglement distillation in an asymptotic scenario,
the latter gap implies that if entanglement generation protocol
is efficient like one based on the RNPM, entanglement distil-
lation protocol may not be necessary to achieve controlled-not
operations in distributed quantum computation, in contrast to
what one may infer from existing schemes [13–16]. This sug-
gests that performance of entanglement generation protocol
affects the overall design of a distributed quantum computing
architecture. On the other hand, considering that the quantum
and private capacity [21,24,59,60] of the associated pure-loss
bosonic channel network is achieved with the use of two-mode
infinitely squeezed vacuum states [72], the former gap implies
that it is reasonable in practice to adopt protocol based on
coherent-state transmission, like the RNPM protocol. Indeed,
in the field of QKD, TF QKD protocol [47–54] based on
coherent-state encoding has already been identified as an
important class of protocol to beat the repeaterless bounds
[23,24] in a practical manner (see, e.g., [73]).
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