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The dynamical role of system-environment correlations will lead to the violation of Landauer’s principle and
may result in a non-Markovian dynamics of the system. Here, we employ entropic quantities called the telescopic
relative entropy, to detect non-Markovianity [N. Megier, Phys. Rev. Lett. 127, 030401 (2021)], and study the
relation between information backflow of non-Markovian dynamics and the validity of Landauer’s principle.
We consider a class of energy-conserving system-environment interactions in qubit systems, and we prove that
the violation of Landauer’s principle corresponds to information backflow of a thermalizing process without
coherence and vice versa. Then we study the effect of quantum coherence of the system on the relationship
between non-Markovianity and Landauer’s principle, and we find that coherence will break the corresponding
relation in the information backflow and violation of Landauer’s principle. Based on this, we explain the physical
mechanism of non-Markovianity in this irreversible process of heat dissipation and information erasure. We
further numerically confirm the above theoretical results by means of a collision model.
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I. INTRODUCTION

Non-Markovian open-system dynamics has recently re-
ceived considerable attention [1–3], including the formulation
of figures of merit for its characteristics [4–9] and the first
step towards its experimental assessment [10–13]. While a full
understanding of the origin of non-Markovianity [14,15] and
the formulation of a universal characterization of its impli-
cations are the subjects of current investigations [16–21], the
relevance of non-Markovianity for the assessment of the prop-
erties of nonequilibrium quantum systems has been recently
recognized [22–25]. In particular, the role of non-Markovian
effects in logically irreversible processes has recently at-
tracted much attention [26,27] in light of the relation between
Landauer’s principle and information processing at both the
classical and quantum level [28–30]. Landauer’s principle
[28] states that the dissipated heat of a system in the infor-
mation erasure process is lower bounded by a change in the
information-theoretic entropy of the system. In the quantum
domain, although this statement is validated in the Marko-
vian process, it can be violated in the non-Markovian one
[26,31,32]. Thus interesting questions are raised: What is the
relationship between non-Markovianity and Landauer’s prin-
ciple? Specifically, must the violation of Landauer’s principle
be accompanied by information backflow?

A wide variety of different definitions of quantum non-
Markovianity have been proposed in recent years, and the
most widespread ones are based on the divisibility property
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of the dynamical map [6,33–36], the monotonicity of the
trace distance between two distinct reduced states [4,7,36], the
change in the volume of accessible reduced states [9], and the
process tensor formalism [19,37,38]. Furthermore, entropic
quantities have also been used to detect non-Markovianity
[16,39,40]. In the approach based on trace distance, its in-
crease in time indicates a backflow of information to the open
system, resulting in an enhanced reduced-state distinguisha-
bility and representing the distinctive trait of memory effects
in the dynamics. The revivals of distinguishability are related
to the establishment of system-environment correlations and
changes in the environmental state depending on the initial
system state [14,15,41–43], and the proof of the connection
of the distinguishability revivals with correlations and envi-
ronmental state changes as formulated via the trace distance
essentially relies on the triangle inequality [14], so that one
may think that it only holds when distance quantifiers are
used. To the contrary, recently, Megier et al. have shown
that such a connection can be maintained also when consid-
ering entropic quantifiers [44]. Specifically, by focusing on
the entropic quantifier of non-Markovianity, named telescopic
relative entropy (TRE), they derived an upper bound to the
variation of the reduced state distinguishability determined by
the system-environment correlations and the environmental
states.

In this paper, we consider an irreversible non-Markovian
thermalization process of a qubit system to shed further light
on the interplay between environment memory effects and
logical irreversibility in nonequilibrium processes. We con-
nect Landauer’s principle with non-Markovianity detected
by entropic quantities, and the corresponding relation be-
tween the violation of Landauer’s principle and the occurrence
of information backflow in the thermalization process with-
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out coherence is proved. Based on this, the corresponding
physical interpretation of non-Markovianity is obtained. We
find that the quantum coherence will break the relevance of
non-Markovianity to Landauer’s principle; furthermore, we
investigate how coherence breaks this connection. Finally, we
show the above theoretical results numerically.

This paper is organized as follows. In Sec. II, the non-
Markovianity and Landauer’s principle are introduced. In
Sec. III we study the relation between Landauer’s principle
and the information backflow of non-Markovian dynamics
generally, and some numerical confirmation for a collision
model is given in Sec. IV. The paper ends with Sec. V, where
we draw our conclusions.

II. NON-MARKOVIANITY AND LANDAUER’S PRINCIPLE

A. Non-Markovianity

Trace-distance-based measure of non-Markovianity. The
trace distance between two quantum states is one of the most
important measures of distinguishability of quantum states
[4], which is given by

D
(
ρ1

S , ρ
2
S

)
:= 1

2 Tr
∣∣ρ1

S − ρ2
S

∣∣, (1)

where |A| =
√

A†A for any operator A. For the time evo-
lution of a quantum state described by completely positive,
trace-preserving (CPTP) maps {�0→t } which are time homo-
geneous and Markovian (they keep no record of the initial
time, �0→t = �t ) [45], the trace distance decreases monoton-
ically with time, i.e., D(�t [ρ1

S ],�t [ρ2
S ]) � D(ρ1

S , ρ
2
S ), for any

pair of states ρ1
S and ρ2

S . In contrast, if the evolution of the
trace distance becomes positive in some time intervals, the
time evolution is non-Markovian,

D
(
ρ1

S (t ), ρ2
S (t )

) − D
(
ρ1

S (s), ρ2
S (s)

)
> 0, (2)

for some t > s and a pair ρ1
S (0) and ρ2

S (0). The revivals in
the trace distance correspond to revivals in distinguishability,
which can be interpreted as information backflow. Note that
the total amount of information at time t is a constant and can
be identified as the distinguishability of the states of both sys-
tem and environment Itot (t ) = D(ρ1

SE (t ), ρ2
SE (t )). This quan-

tity can be naturally written as the sum of two contributions
referring to the information that can be obtained by perform-
ing local measurements only, i.e., IS (t ) = D(ρ1

S (t ), ρ2
S (t )) and

IE (t ) = D(ρ1
SE (t ), ρ2

SE (t )) − D(ρ1
S (t ), ρ2

S (t )), which are infor-
mation accessed by the system and environment, respectively.
Although d

dt Itot (t ) = d
dt (IS (t ) + IE (t )) = 0, the revivals in the

system information can take place, i.e., IS (t ) > IS (s) for t > s,
and this can be interpreted as information backflow. This inter-
pretation is substantiated by the following inequality [43,44]:

D
(
ρ1

S (t ), ρ2
S (t )

) − D
(
ρ1

S (s), ρ2
S (s)

)
� D

(
ρ1

E (s), ρ2
E (s)

)
+ D

(
ρ1

SE (s), ρ1
S (s) ⊗ ρ1

E (s)
)

+ D
(
ρ2

SE (s), ρ2
S (s) ⊗ ρ2

E (s)
)
, (3)

where t � s. It appears that the information backflow associ-
ated with the revival of the trace distance can be traced back
to the establishment of correlations between system and envi-
ronment as well as the changes in the state of the environment.

TRE-based measure of non-Markovianity. Relative entropy
is a fundamental quantity in statistical mechanics and in-
formation theory, and it also plays a distinguished role in
quantum thermodynamics. The expression of the quantum
relative entropy first introduced by Umegaki [46] reads

D(ρ1||ρ2) := Tr(ρ1 log ρ1 − ρ1 log ρ2), (4)

where ρ1 and ρ2 are two density matrices. As is known,
although the quantum relative entropy is the most relevant
quantum f divergence distinguishing quantum states [47], it
is not bounded and can diverge in finite dimensions. To over-
come this difficulty, the TRE has been proposed as regularized
versions [47–50]. The TRE is defined as

Sμ(ρ1, ρ2) = log(1/μ)−1D(ρ1||μρ1 + (1 − μ)ρ2) (5)

and is actually independent of the logarithm basis used in
the definition. The telescopic parameter μ ∈ (0, 1) gives the
amount of mixing between ρ1 and ρ2. The main property of
the TRE, which distinguishes it from the standard quantum
relative entropy, is its boundedness, i.e., 0 � Sμ(ρ1, ρ2) � 1.
Moreover, TRE inherits from the quantum relative entropy the
joint convexity and the contractivity under (C)PTP maps [50],
Sμ(�t [ρ1],�t [ρ2]) � Sμ(ρ1, ρ2). The change in TRE can be
expressed as [44]

Sμ

(
ρ1

S (t ), ρ2
S (t )

) − Sμ

(
ρ1

S (s), ρ2
S (s)

)
� κμ

{
S1/4

μ

(
ρ1

E (s), ρ2
E (s)

) + S1/4
μ

(
ρ1

SE (s), ρ1
S (s) ⊗ ρ1

E (s)
)

+ S1/4
μ

(
ρ2

SE (s), ρ2
S (s) ⊗ ρ2

E (s)
)}

, (6)

with κμ = [2μ2 log3(1/μ)]−1/4 and t � s. Note that the
boundedness of TRE allows us to introduce a well-defined
non-Markovianity measure as for the trace distance [1], and
this bound Eq. (6) permits a full-fledged interpretation of TRE
as a quantifier of information backflow. Thus the dynamic
process is identified as non-Markovian, if and only if

Sμ

(
ρ1

S (t ), ρ2
S (t )

) − Sμ

(
ρ1

S (s), ρ2
S (s)

)
> 0, (7)

for some t > s and a pair ρ1
S (0) and ρ2

S (0).

B. Landauer’s principle

Landauer’s principle relates entropy decrease and heat
dissipation during logically irreversible processes [27,51],
and the four assumptions needed for Landauer’s principle
are as follows: (a) the process involves a system S and its
environment E ; (b) the environment E is initially in a ther-
mal state, ρE = e−βĤE /Tr[e−βĤE ] =: η(β ), where ĤE is the
Hamiltonian of the environment and β ∈ (0,+∞) is the in-
verse temperature; (c) the system S and the environment E
are initially uncorrelated, ρSE (0) = ρS (0) ⊗ ρE (0); and (d)
the process proceeds through a joint unitary evolution, ρ ′

SE =
UρSE (0)U †.

For a process as just described, the entropy decrease of the
system is expressed as

�S = S(ρS (0)) − S(ρ ′
S ), (8)

where ρ ′
S = TrE [ρ ′

SE ] and S(ρ) = −Tr[ρ log ρ] is the von
Neumann entropy of a density matrix ρ. The heat transferred
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to the environment

�QE = Tr[ĤE (ρ ′
E − ρE )], (9)

which corresponds to the increase in internal energy of the
thermal environment, where ρ ′

E = TrS[ρ ′
SE ]. The equality

form of Landauer’s principle can be expressed as [27]

β�QE = �S + I (ρ ′
SE ) + D(ρ ′

E ||ρE ), (10)

where I (ρ ′
SE ) := S(ρ ′

S ) + S(ρ ′
E ) − S(ρ ′

SE ) is the mutual in-
formation which characterizes the correlations between the
system and environment. Due to the non-negativity of the mu-
tual information and the relative entropy, Landauer’s principle
can be written as

β�QE − �S � 0. (11)

This embodies an open-system formulation of Landauer’s
principle for the heat dissipation and entropy decrease.

III. NON-MARKOVIANITY ACCOMPANIED
BY LANDAUER’S PRINCIPLE

The following discussion is based on assumptions (a)–(d)
mentioned above. We consider a qubit (system) coupled to a
thermal bath, and the evolution of the system can be described
by a unitary operator Û = e−iĤ intt , where Ĥ int is the inter-
action Hamiltonian, and we set h̄ = 1 throughout this paper.
Specifically, the process can be expressed as

ρS (0) → ρS (t ) = TrE [ρSE (t )], (12)

with ρSE (t ) = Û (ρS (0) ⊗ ρE (0))Û †. We then say that E in-
duces thermalization on S if, irrespective of the specific choice
of ρS (0), S will be driven by �0→t into the equilibrium con-
figuration state η

(β )
S := e−βĤS /Tr[e−βĤS ] in the limit t → ∞;

here, ĤS is the Hamiltonian of S and β = 1/T . We consider
energy-conserving interactions between system and environ-
ment, i.e., [Ĥint, ĤS + ĤE ] = 0; then the heat absorbed by S
can be legitimately identified with the increases in the local
energy of S [52–54],

�QS = Tr[ĤS (ρS (t ) − ρS (0))]. (13)

The conservation of the total energy in the composite system
“S + E” leads to �QS = −�QE . The derivation of the Lan-
dauer inequality in Eq. (11) can be generalized to bound the
differential heat increment dQE (t ) := Tr[ĤE (ρE (t + dt ) −
ρE (t ))] in terms of the corresponding differential entropy
increase dS(t ) := S(ρS (t + dt )) − S(ρS (t )) [55],

βQ̇E − Ṡ � 0, (14)

where Q̇E := d
dt QE (t ) and Ṡ := d

dt S(t ).

A. Relation between Landauer’s principle and information
backflow with diagonal states of the system

We consider a pair of initial states of a system without
coherence, ρ1

S (0) and ρ2
S (0) (their off-diagonal elements are

zero). We assume that the system undergoes the same process
Eq. (12) for the pair of initial states; then a pair of linearly
independent states without coherence during the time evolu-
tion is obtained [i.e., ρ1

S (t ) and ρ2
S (t ) are linearly independent],

until the system thermalizes completely (namely, the system

is in a thermal equilibrium state η
(β )
S ). According to Ref. [55]

we obtain

Ṡ − βQ̇E = d

dt
D

(
ρ1

S (t )||η(β )
S

)
, (15)

and a proof is provided in the Appendix. It is obvious that
the left-hand side and right-hand side of Eq. (15) are always
zero in the limit t → ∞; thus we discuss the transient period
before the system is completely thermalized in the following.
Due to the linear independence of ρ1

S (t ) and ρ2
S (t ) mentioned

above, η
(β )
S in Eq. (15) can be written as

η
(β )
S = μρ1

S (t ) + λρ2
S (t ); (16)

here μ, λ ∈ (0, 1), and note that they are functions of t , i.e.,
μ = μ(t ), λ = λ(t ). As the density matrix is trace 1, namely,
Trη(β )

S = μ Tr[ρ1
S (t )] + λ Tr[ρ2

S (t )] = μ + λ, we thus obtain
λ = 1 − μ. Then Eq. (15) can be rewritten as

Ṡ − βQ̇E = d

dt
D

(
ρ1

S (t )||μρ1
S (t ) + (1 − μ)ρ2

S (t )
)
, (17)

and from Eq. (5), the right-hand side of Eq. (17) can be written
as

d

dt

[
log

1

μ
Sμ

(
ρ1

S (t ), ρ2
S (t )

)]

= ∂

∂μ

[
log

1

μ
Sμ

(
ρ1

S (t ), ρ2
S (t )

)]dμ

dt

+ log
1

μ

∂

∂t

[
Sμ

(
ρ1

S (t ), ρ2
S (t )

)]
; (18)

as mentioned above, it is independent of the logarithm basis
here. It can be seen that the first term on the right-hand side of
Eq. (18) can be written as ∂

∂μ
D(ρ1

S (t )||η(β )
S ) dμ

dt , which is found
to be zero. Therefore we can obtain

Ṡ − βQ̇E = log
1

μ

∂

∂t

[
Sμ

(
ρ1

S (t ), ρ2
S (t )

)]
, (19)

where log 1
μ

> 0 (0 < μ < 1) and μ = μ(t ) is a function of
t as mentioned above in Eq. (16). This shows that Eq. (19)
links non-Markovianity which is detected by TRE to Lan-
dauer’s principle. Specifically, a non-Markovian evolution
[σ = ∂

∂t Sμ(ρ1
S (t ), ρ2

S (t )) > 0] corresponds to the violation of
Landauer’s principle (Ṡ − βQ̇E > 0), and the converse is also
true that if Landauer’s principle is violated (Ṡ − βQ̇E > 0),
the information backflow must happen (σ > 0).

B. The mechanism of non-Markovianity

Taking the derivative of the equality version of Landauer’s
principle [Eq. (10)], we obtain

βQ̇E − Ṡ = d

dt
I (ρSE (t )) + d

dt
D(ρE (t )||ρE (0)). (20)

Putting Eq. (19) into Eq. (20), we obtain

log
1

μ

∂

∂t

[
Sμ

(
ρ1

S (t ), ρ2
S (t )

)]

= −
[

d

dt
I (ρSE (t )) + d

dt
D(ρE (t )||ρE (0))

]
. (21)
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From Eq. (21), it is apparent that ∂
∂t [Sμ(ρ1

S (t )||ρ2
S (t ))] > 0 if

and only if d
dt I (ρSE )(t ) + d

dt D(ρE (t )||ρE (0)) < 0. The left-
hand side of Eq. (21) quantifies the amount of information
gained or lost by the pair of reduced states of the system, and
any information backflow towards the system in a time inter-
val will thus result in a positive value of it. As the composite
system (system + thermal bath) is closed, this information
comes from the establishment of correlations between system
and environment and/or from the changes in the state of
the environment [right-hand side of Eq. (21)]. This result is
similar to that of Eqs. (3) and (6) in spirit, namely, the actual
physical mechanism behind the occurrence of memory effects
in quantum dynamics is the establishment of correlations or
changes in the environmental states.

C. Effects of quantum coherence

In this section, we consider the effect of quantum coher-
ence on the relation between the information backflow of
non-Markovian dynamics and Landauer’s principle. We con-
sider a pair of initial states of a system with coherence, ρ1

coh(0)
and ρ2

coh(0), and we also assume that the system undergoes the

same process Eq. (12) for this pair of initial states. Then we
obtain the corresponding pair of states with coherence during
the time evolution, ρ1

coh(t ) and ρ2
coh(t ), which can be expressed

as

ρ
1(2)
coh (t ) = σ

1(2)
dia (t ) + χ

1(2)
coh (t ), (22)

where σ
1(2)
dia (t ) is a diagonal state which has the same energy as

ρ
1(2)
coh (t ), i.e., Tr[ĤSσ

1(2)
dia (t )] = Tr[ĤSρ

1(2)
coh (t )], and χ

1(2)
coh (t ) =

ρ
1(2)
coh (t ) − σ

1(2)
dia (t ). By means of the linearly independence of

σ 1
dia (t ) and σ 2

dia (t ), η
(β )
S in Eq. (15) satisfies

η
(β )
S = μσ 1

dia (t ) + (1 − μ)σ 2
dia (t ), (23)

where μ = μ(t ) ∈ (0, 1); then from Eq. (22) we obtain

η
(β )
S + μχ1

coh(t ) + (1 − μ)χ2
coh(t )

= μρ1
coh(t ) + (1 − μ)ρ2

coh(t ). (24)

Here, we define a quantity κ as

κ = d

dt
D

(
ρ1

coh(t )||η(β )
S + μχ1

coh(t ) + (1 − μ)χ2
coh(t )

)
, (25)

and from Eqs. (22) and (5), Eq. (25) can be rewritten as

κ = d

dt

[
log

1

μ
Sμ

(
ρ1

coh(t ), ρ2
coh(t )

)] = log
1

μ

∂

∂t

[
Sμ

(
ρ1

coh(t ), ρ2
coh(t )

)] + ε, (26)

where ε = ∂
∂μ

[D(ρ1
coh(t )||η(β )

S + μχ1
coh(t ) + (1 − μ)χ2

coh(t ))] dμ

dt . Now Eq. (15) can be expressed as

Ṡ − βQ̇E = log
1

μ

∂

∂t

[
Sμ

(
ρ1

coh(t ), ρ2
coh(t )

)] + ξcoh, (27)

where ξcoh = d
dt Tr

[
ρ1

coh(t ) log
η

(β )
S + μχ1

coh(t ) + (1 − μ)χ2
coh(t )

η
(β )
S

]
+ ε. It can be seen that the first term on the right-hand side

of Eq. (27) is the contribution of TRE and the second term ξcoh is the effects of quantum coherence. This is different from the
cases of linearly independent thermal states [Eq. (19)]. In other words, the relation of Landauer’s principle and the information
backflow of non-Markovian dynamics Eq. (19) is no longer valid due to quantum coherence. If there is no quantum coherence
during the time evolution, i.e., χ1

coh(t ) = χ2
coh(t ) = 0, ξcoh = 0 and Eq. (27) is reduced to Eq. (19).

IV. NUMERICAL VERIFICATION

We now showcase our findings by numerical calculations.
Let us consider a qubit (system S) that couples to a hierarchi-
cal environment E , which contains an auxiliary qubit AQ and a
large collection of N identical noninteracting ancillas (qubits)
{R1,R2, . . . ,RN } (see Fig. 1); E is initially in the product
state ρE = η

(β )
AQ

⊗N
j=1 η

(β )
j , i.e., AQ and RN are initially in

thermal diagonal states. The Hamiltonians of the system and
a generic environment particle including the auxiliary qubit
and ancillas are ĤS(E ) = ω0σ̂z/2, with ω0 and σ̂z being the
transition frequency and the Pauli matrices, respectively. The
evolution of system S and its interaction with the environment
are as follows: S and AQ interact first, and subsequently, AQ

collides with the individual ancilla Rn; then this process is
repeated. The general scheme is illustrated in Fig. 1. The as-
sumption of a large collection of ancillas implies that AQ never
interacts twice with the same ancilla, i.e., at each collision the
state of the ancilla is refreshed. This process is implemented

through the unitary operator

ÛSE = ÛAQ,R j ÛS,AQ , (28)

where ÛS,AQ = e−iĤ int
S,AQ

t , ÛAQ,R j = e
−iĤ int

AQ ,R j
t
, and Ĥ int

S,AQ
and

Ĥ int
AQ,R j

are the interactions between S and AQ (“S-AQ”) and the
interactions between AQ and R j (“AQ-R j”), respectively. We
consider a coherent interaction between the bipartite systems,
Ĥ int

S,AQ (AQ,R j )
= g1(2)(σ̂xσ̂x + σ̂yσ̂y + σ̂zσ̂z ), with g1(2) being a

coupling constant. In this case, we can write the unitary time-
evolution operator ÛS,AQ in Eq. (28) as [56]

ÛS,AQ (γ ) = (cos γ )Î + i(sin γ )Ŝsw, (29)

where γ = 2g1t is a dimensionless interaction strength,
Î is the identity operator, and Ŝsw is the two-particle
swap operator whose action is |ψ1〉 ⊗ |ψ2〉 → |ψ2〉 ⊗ |ψ1〉
for all |ψ1〉, |ψ2〉 ∈ C2. Note that in the ordered basis
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FIG. 1. Sketch of the protocol of system S plus a hierarchical
environment: After AQ interacts with Rn, it collides with S and is
then directed to Rn+1.

{|00〉, |01〉, |10〉, |11〉}, Ŝsw reads [57]

Ŝsw =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠. (30)

Similarly, ÛAQ,R j (δ) = (cos δ)Î + i(sin δ)Ŝsw, with δ 	= γ in
general. As mentioned above, the dynamics of system S
consists of sequential system-environment interaction inter-
spersed with interenvironmental collisions. Thus the system
is brought from step n to step n + 1 through the process

ρ
S,AQ
n ⊗ η

(β )
n+1 → ρSE

n+1 = ÛSE
(
ρ

S,AQ
n ⊗ η

(β )
n+1

)
Û †

SE , (31)

where ρ
S,AQ
n is the state of S-AQ after the nth interaction.

Hence after the (n + 1)th interaction, we can obtain the re-
duced states, ρ

S,AQ

n+1 = TrR[ρSE
n+1] (the state of S-AQ), ρS

n+1 =
TrAQ [ρS,AQ

n+1 ] (the state of S), and ρ
AQ

n+1 = TrS[ρS,AQ

n+1 ] (the state of
AQ), where Trx[· · · ] means the trace of x’s degrees of freedom.

We consider a pair of orthogonal initial states of system S

|ψ+〉 = cos
θ

2
|0〉 + sin

θ

2
|1〉,

|ψ−〉 = sin
θ

2
|0〉 − cos

θ

2
|1〉, (32)

where θ ∈ [0, π
2 ].

A. Diagonal states of the system

Firstly, we consider the case of a pair of linearly inde-
pendent states without coherence during the time evolution
(Sec. III A), and we choose θ = 0 in Eq. (32); namely, the pair
of initial states of the system is |0〉 and |1〉. From numerical
calculations we find that when the initial state is given, μ does
not change with time and is a constant depending on the given
initial state. In Fig. 2, we plot Ṡ − βQ̇E , d

dt D(ρ1
S (t ), ρ2

S (t )),
and d

dt Sμ(ρ1
S (t ), ρ2

S (t )) against the number of collisions n for
a pair of initial states |0〉 and |1〉 (μ = 0.378), and it presents
a perfect correspondence between them; that is, the ranges of
positive and negative of these three quantities are completely
consistent with each other (see inset for a magnified view).
Specifically, a non-Markovian evolution [ d

dt D(ρ1
S (t ), ρ2

S (t )) >

0, d
dt Sμ(ρ1

S (t ), ρ2
S (t )) > 0] corresponds to the violation of

FIG. 2. We consider a pair of initial states of system |0〉 and
|1〉 with μ = 0.378 in Eq. (19). (Ṡ − βQ̇E )1 for initial state |0〉
(brown solid line) and (Ṡ − βQ̇E )2 for |1〉 (purple dotted line),
d
dt D(ρ1

S (t ), ρ2
S (t )) (blue dash-dotted line), and d

dt Sμ(ρ1
S (t ), ρ2

S (t ))
(black dashed line). γ = 0.03π , δ = 0.045π , β = 1, and ω0 = 1.
The inset is a magnified display.

Landauer’s principle (Ṡ − βQ̇E > 0), and the converse is also
true that the violation of Landauer’s principle (Ṡ − βQ̇E > 0)
corresponds to information backflow.

B. System states with coherence

We now consider the effect of coherence on the relation
between Landauer’s principle and information backflow. In
Fig. 3, we plot Ṡ − βQ̇E , d

dt D(ρ1
S (t ), ρ2

S (t )), and d
dt Sμ(ρ1

S (t ),
ρ2

S (t )) against the number of collisions n for initial states
of a system with coherence, i.e., Eq. (32) with θ = 2π/5
(μ = 0.896). In contrast to the case of initial states of a system

FIG. 3. The pair of initial states of the system in Eq. (32)
with θ = 2π/5 (μ = 0.896). (Ṡ − βQ̇E )1 for initial state |ψ+〉
(brown solid line) and (Ṡ − βQ̇E )2 for |ψ−〉 (purple dotted line),
d
dt D(ρ1

S (t ), ρ2
S (t )) (blue dash-dotted line), and d

dt Sμ(ρ1
S (t ), ρ2

S (t ))
(black dashed line). γ = 0.03π , δ = 0.045π , β = 1, and ω0 = 1.
The insets are magnified views of quantities as indicated in the plot.
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FIG. 4. The pair of initial states of the system in Eq. (32)
with (a) θ = π/10 (μ = 0.629), (b) θ = 2π/5 (μ = 0.896),
(c) θ = π/10 (μ = 0.371), and (d) θ = 2π/5 (μ = 0.104).
ln 1

μ

∂

∂t [Sμ(ρ1
coh(t ), ρ2

coh(t ))] [the first term on the right-hand side of
Eq. (27) with logarithm base e] can reflect non-Markovianity mea-
sured by TRE, and ξcoh in Eq. (27) is the contribution of quantum
coherence; the other parameters are the same as in Fig. 3.

without coherence discussed above, these three quantities no
longer have a strict correspondence between them. Specif-
ically, the violation of Landauer’s principle (Ṡ − βQ̇E >

0) does not always correspond to backflow of information
[ d

dt D(ρ1
S (t ), ρ2

S (t )) > 0, d
dt Sμ(ρ1

S (t ), ρ2
S (t )) > 0], which can

be seen from the upper inset of Fig. 3, and this is the effect
of quantum coherence [ξcoh in Eq. (27)]. In the following,
we study the contribution of TRE [the first term on the
right-hand side of Eq. (27)] and quantum coherence (ξcoh)
to Ṡ − βQ̇E in Eq. (27). In Fig. 4, we show each quantity
in Eq. (27) for initial states |ψ+〉 and |ψ−〉 in Eq. (32). It
can be seen that the term ln 1

μ
∂
∂t [Sμ(ρ1

coh(t ), ρ2
coh(t ))] plays a

major role in Landauer’s principle (Ṡ − βQ̇E ) if the effect of
quantum coherence is weak (small ξcoh), and Ṡ − βQ̇E and
ln 1

μ
∂
∂t [Sμ(ρ1

coh(t ), ρ2
coh(t ))] are almost coincident with each

other when ξcoh is small enough. In contrast to this, ξcoh breaks
the corresponding relation Eq. (19) when ξcoh is big. However,
the decoherence effect caused by the environment would make
the system be thermalized; in a long-time limit, ρ1

coh(t ) →
ρ1

S (t ) in Eq. (19), ξcoh in Eq. (27) tends to zero, and Eq. (27)
is reduced to Eq. (19). In other words, the correspondence be-
tween the information backflow of non-Markovian dynamics
and the violation of Landauer’s principle is reestablished in
the long-time limit, and this is shown in the lower inset of
Fig. 3.

For the pair of initial states |+〉 = (|0〉 + |1〉)/
√

2 and
|−〉 = (|0〉 − |1〉)/

√
2 [Eq. (32) with θ = π/2], from nu-

merical calculations we find that the time-varying density
matrices ρ1

coh(t ) and ρ2
coh(t ) in Eq. (22) satisfy the relation

σ
1(2)
dia (t ) = (ρ1

coh(t ) + ρ2
coh(t ))/2, and Eq. (23) does not hold

now. With the help of the “Pythagoras theorem” of rela-
tive entropy [58], Eq. (15) can be rewritten as Ṡ − βQ̇E =
d
dt D(ρ1

coh(t )||σ 1
dia (t )) + d

dt D(σ 1
dia (t )||η(β )

S ), and from Eq. (5),

FIG. 5. The pair of initial states of the system is |+〉 and |−〉
with μ = 0.5, γ = 0.03π , δ = 0.045π , and ω0 = 1. (a) Ṡ − βQ̇E

for initial state |+〉 (|−〉) (brown solid line), d
dt D(ρ1

S (t ), ρ2
S (t )) (blue

dash-dotted line), and d
dt Sμ(ρ1

S (t ), ρ2
S (t )) (black dashed line), and

β = 1. The insets provide a magnified display of quantities as in-
dicated in the plot. (b) Eq. (33) in the high-temperature limit β =
1/100.

we obtain

Ṡ − βQ̇E = log 2
d

dt
Sμ

(
ρ1

coh(t ), ρ2
coh(t )

)+ d

dt
D

(
σ 1

dia (t )||η(β )
S

)
,

(33)

where μ = 0.5. It can be seen that the first term on the
right-hand side of Eq. (33) can be expressed as the time
derivative of TRE and the second term is the contribution of
the quantum coherence of the system. In Fig. 5(a) we plot
Ṡ − βQ̇E , d

dt D(ρ1
S (t ), ρ2

S (t )), and d
dt Sμ(ρ1

S (t ), ρ2
S (t )) against

the number of collisions n for two initial states |+〉 and
|−〉. As expected, the violation of Landauer’s principle (Ṡ −
βQ̇E > 0) does not always correspond to the information
backflow of non-Markovian evolution [ d

dt D(ρ1
S (t ), ρ2

S (t )) >

0, d
dt Sμ(ρ1

S (t ), ρ2
S (t )) > 0], and this can be seen from the

upper inset of Fig. 5(a). The one-to-one relation of the vi-
olation of Landauer’s principle and information backflow is
reestablished in the process of decoherence [the lower inset
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of Fig. 5(a)]. When we consider a high-temperature limit, the
second term on the right-hand side of Eq. (33) tends to zero,
and Eq. (33) becomes

Ṡ − βQ̇E = log 2
d

dt
Sμ

(
ρ1

coh(t )||ρ2
coh(t )

)
, (34)

with μ = 0.5; the numerical results of Eq. (34) with logarithm
base e are shown in Fig. 5(b).

V. CONCLUSION

In this paper, we have investigated the relation between
the information backflow of non-Markovian dynamics and
Landauer’s principle. Specifically, we have considered a qubit
coupled to its thermal environment, and we have proved that
there is a one-to-one correspondence between the violation
of Landauer’s principle and the backflow of information for
thermal initial states of system. However, this correspondence
does not hold for initial states of a system with coherence,
and the relevance of Landauer’s principle and information
backflow is reestablished during the dynamical process of the
decoherence. We have verified our findings through numerical
calculations.

Note that in this paper we have used qubit systems to
investigate the relationship between the information backflow
of non-Markovian dynamics and Landauer’s principle. The
reason to consider this simple model is that exact solutions can
be obtained for a general class of linearly independent thermal
diagonal states during the time evolution. This class of models
may reveal the relation between the information backflow
and Landauer’s principle that is not satisfied by general non-
Markovian systems. We expect that the properties revealed in
this paper can help one to gain some insight into the relation
between non-Markovianity and Landauer’s principle and can
inspire more work in investigating their connections.
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APPENDIX

According to the expression of quantum relative entropy
given in Eq. (4), at any time t ,

D
(
ρ1

S (t )||η(β )
S

) − D
(
ρ1

S (0)
∣∣∣∣η(β )

S

)

= Tr
[
ρ1

S (t ) log ρ1
S (t )

− ρ1
S (t ) log η

(β )
S − ρ1

S (0)

× log ρ1
S (0) + ρ1

S (0) log η
(β )
S

]
, (A1)

where Tr[ρ1
S (t ) log ρ1

S (t ) − ρ1
S (0) log ρ1

S (0)] = −S(ρ1
S (t )) +

S(ρ1
S (0)) = �S, and

Tr
[
ρ1

S (0) log η
(β )
S − ρ1

S (t ) log η
(β )
S

]
= Tr

[(
ρ1

S (0) − ρ1
S (t )

)
( − βĤS − Î log Tr(e−βĤS ))

]
= Tr

[ − β
(
ρ1

S (0) − ρ1
S (t )

)
ĤS

]
+ Tr

[(
ρ1

S (0) − ρ1
S (t )

)( − Î log Tr(e−βĤS )
)]

= −β�QE . (A2)

Thus Eq. (A1) can be written as

�S − β�QE = D
(
ρ1

S (t )||η(β )
S

) − D
(
ρ1

S (0)||η(β )
S

)
. (A3)

For time t + dt , we have

�S(t + dt ) − β�QE (t + dt ) =D
(
ρ1

S (t + dt )||η(β )
S

)
− D

(
ρ1

S (0)||η(β )
S

)
; (A4)

from Eqs. (A3) and (A4) in the limit dt → 0, we obtain

Ṡ − βQ̇E = lim
dt→0

[
D

(
ρ1

S (t + dt )||η(β )
S

) − D
(
ρ1

S (t )||η(β )
S

)]
/dt

= d

dt
D

(
ρ1

S (t )||η(β )
S

)
. (A5)
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