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Quantum illumination can utilize entangled light to detect the low-reflectivity target that is hidden in a bright
thermal background. This technique is applied to the detection of an object in the curved spacetime of the Earth,
in order to explore how the curvature of spacetime affects quantum illumination. It is found that the spatial
quantum illumination with entangled state transmitter outperforms that with coherent-state transmitter in the
near-Earth curved spacetime. Moreover, either the quantum illumination system or the coherent-state system is
employed, and gravity can enhance the spacetime target detection by reducing the thermal signal at the receiver.
Besides, our model in principle can be applied to microwave quantum illumination and thus provides, to some
degree, a theoretical foundation for the upcoming spatial quantum radar technologies.
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I. INTRODUCTION

Quantum illumination (QI) [1] is a quantum-optical sens-
ing technology that utilizes quantum entanglement [2–7] to
improve the detection of low-reflectivity targets under a bright
thermal background. Usually, two entangled optical modes
are prepared in this scenario. One optical beam, as a signal
beam, is utilized to irradiate the target region, and the other,
as an ancilla, is retained. Whether or not the target exists
depends on the returned mode from the target region and the
retained idler [1]. It was experimentally demonstrated that the
QI outperforms the classical protocol with the enhancement of
quantum entanglement [6–9]. Quantum-enhanced strategies
can be applied to more occasions such as quantum sensing in
lossy and noisy environments [6,7] and short-range radar tech-
nology [5,10,11]. Recently, Barzanjeh et al. [12,13] proposed
an approach for microwave quantum illumination (MQI) us-
ing digital receiver. Thanks to the naturally occurring bright
thermal background in the microwave regime, most target
detection radars are available in this regime. The quantum
advantage of MQI in quantum radar technology is studied.

The preparation of quantum states and the implementa-
tion of quantum information tasks are inevitably affected by
relativistic effects since the gravitational interaction is non-
maskable. In this perspective, it is of great significance to
study the gravitational effect of the Earth on quantum systems,
such as the role of gravity in the quantum laboratory [14] and
the space quantum information processing tasks [15–21]. It
is believed that studies of quantum information in relativistic
framework can provide new insights into some key issues
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in quantum mechanics and relativity, such as nonlocality,
causality and the information paradox of black hole. To this
end, a quantum information framework had been introduced
for the description of photon propagation under the Earth’s
gravity [15]. The method was employed to study quantum
communication [15,16], quantum metrology [17–19], quan-
tum correlation [20–22], and quantum clock synchronization
[23] under the influence of the Earth’s spacetime curvature.
The transmission of signal beam involves transmitter-target
range for near-Earth space target detection. Therefore the
spacetime effect of the Earth should be taken into serious
consideration [24,25].

This paper proposes a toy model of spatial QI that describes
the detection of a target located at different heights in a static
gravitational potential. It demonstrates how the Earth’s gravity
affects the QI with Gaussian states and gives a comparison
between its performance and its flat spacetime counterpart. It
is assumed that one component of an entangled light wave
packet is sent from the Earth to a spatial target region where
a target may exist, while the other component is retained to
perform a joint measurement. The wave-packet overlap and
the overall transmissivity are deformed by the Earth’s space-
time curvature during the propagation process. Then the joint
quantum measurement is performed on the returned signal and
the ancilla beam, which presents how the spacetime curvature
dictates the spatial quantum target detection. It is found that
the spacetime curvature of the Earth can weaken the contribu-
tion of thermal-noise to the returned signal, which helps the
gravitational effects of the Earth enhance the probability of
successful detection.

This paper is structured as follows. Section II describes
the propagation of the photons under the background of the
Earth. Section III is devoted to analyzing the advantages of the
Earth’s spacetime curvature to QI strategy and coherent-state
strategy. Finally, the conclusions are drawn in Sec. IV.
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II. LIGHT WAVE-PACKETS PROPAGATION
IN EARTH SPACETIME

The model of light wave-packets propagation in the Earth
spacetime has been introduced in detail in Refs. [15,17]. The
Earth spacetime can be approximately described by the Kerr
metric [26]. For simplicity, our work will be constrained to the
equatorial plane θ = π/2. The reduced metric in the Boyer-
Lindquist line element reads [26]

ds2 = −
(

1 − 2M

r

)
dt2 + 1

1 − 2M
r + a2

r2

dr2 +
(

r2 + a2

+ 2Ma2

r

)
dφ2 − 4Ma

r
dt dφ, (1)

where we will consider the rotating plant to be the Earth,
with radius rA, mass MA and angular momentum J respec-
tively, with the Kerr parameter a = J

MA
h̄ = G = c = 1 being

set throughout this paper.
A photon can be properly modeled by a wave packet of

electromagnetic fields with a distribution F (K )
�K,0

, where K =
A and B labels the users at different distances from the Earth.
Here �K is the physical frequency as measured in the cor-
responding transmitter and the peak frequency �K,0 [27,28].
The annihilation operator for the photon, from different loca-
tions of observers, takes the form

â�K,0 (tK ) =
∫ +∞

0
d�K e−i�K tK F (K )

�K,0
(�K ) â�K . (2)

If the frequency distribution F (K )
�K,0

(�K ) is normalized, i.e.,∫
ω>0 dω|F (K )

�K,0
(�K )|2 = 1, such a distribution naturally satis-

fies a pulse where the optical field is described as a local
propagation model in spacetime. The annihilation operator
â�K and creation operator â†

�K
must satisfy the following

canonical commutation relation

[â�K , â†
�′

K
] = δ(�K − �′

K ). (3)

Then we consider the effect of spacetime on the propaga-
tion of the photons. If one observer Alice at time τA and
location rA, sends a wave packet F (A)

�A,0
to the other observer

Bob at location rB. Bob will receive at the time τB = 	τ +√
f (rB)/ f (rA)τA, where 	τ represents the propagation time

of the light, and f (rA(B) ) is the gravitational frequency shifting
factor at different heights. The modified wave packet received
by Bob is denoted by F (B)

�B,0
. Notably, the operators in Eq. (2)

can be used to describe the same optical mode at two different
locations before and after the propagation.

As shown in Refs. [15–20,29,30], we can utilize the rela-
tion between the annihilation operator â�A and â�B to obtain
the relation between the frequency distributions F (K )

�K,0
in dif-

ferent reference frames (or before and after propagation)

F (B)
�B,0

(�B) = 4

√
f (rB)

f (rA)
F (A)

�A,0

(√
f (rB)

f (rA)
�B

)
. (4)

Obviously, the wave packet received by the observer Bob has a
peak frequency and a shape that are different from the wave-
packet prepared by the observer Alice. In Refs. [15,17], the
authors had demonstrated that the gravitational effects affect

quantum communication in space and quantum metrology of
the Schwarzschild radius (mass of the Earth).

In fact, the propagation of the photons between two differ-
ent locations in curved spacetime is similar to a beam splitter
operation performing on propagating photons. To be specific,
it’s possible for the mode ā′ to be decomposed in terms of the
mode â′ and the orthogonal mode â′

⊥ [15,17,21,31]

ā′ = 
â′ +
√

1 − 
2â′
⊥, (5)

where 
 is the wave-packet overlap between the distributions
F (B)

�B,0
(�B) and F (A)

�A,0
(�B),


 =
∫ +∞

0
d�B F (B)�

�B,0
(�B)F (A)

�A,0
(�B). (6)

The quality of the channel can be quantified by fidelity F =
|
|2. If the channel is perfect, 
 = 1. The transformation in
Eq. (5) describes a lossy channel which reflects photon loss
probability 1 − 
2. It’s assumed that the wave-packet F�0 (�)
is Gaussian distribution that satisfies

F�0 (�) = 1
4
√

2πσ 2
e− (�−�0 )2

4σ2 , (7)

with the wave-packet width σ .
The integral in Eq. (6) should perform over strictly posi-

tive frequencies. Nonetheless, since the peak frequency �0 is
typically much larger than the wave-packet width σ , negative
frequencies can be involved without affecting the overlap 
.
Based on the combination of Eqs. (6) and (7), one could obtain


1(2) =
√

2(1 ± δ)

1 + (1 ± δ)2
e− δ2�2

B,0
4(1+(1±δ)2 )σ2 , (8)

where the signs ± occur for the upwards (i.e., rB > rA) and
downwards (i.e., rB < rA) processes. The new parameter in-
troduced to quantify the shifting is

δ = 4

√
f (rA)

f (rB)
− 1 =

√
�B

�A
− 1. (9)

In the equatorial plane of the Kerr spacetime, the frequency
ratio of the wave-packet before sending and receiving is [16]

�B

�A
=

1 + ε a
rB

√
MA
rB

C

√
1 − 3 MA

rB
+ 2ε a

rB

√
MA
rB

, (10)

where C = [1 − 2MA
rA

(1 + 2aω) + (r2
A + a2 − 2MAa2

rA
)ω2]−

1
2 is

the normalization constant (with the Earth’s equatorial angu-
lar velocity ω), and ε = ±1 stands for the direction of the
orbits. To obtain the expression of the frequency shift between
Alice and Bob affected by gravity, we expand Eq. (10) and
keep the second-order term of the parameter rAω. The pertur-
bative result is independent of the states of the Earth and the
satellite (i.e., whether they are corotating or not)

δ = δSch + δrot + δh

= 1

8

rS

rA

(
rA − 2R

rA + R

)
− (rAω)2

4
− (rAω)2

4

(3

4

rS

rA
− 2rSa

ωr3
A

)
,

(11)
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FIG. 1. QI under the curved spacetime background of the Earth.
A photon âS of the entangled light wave-packet is sent from the Earth
to a target region, and the mode âR returned from the target region is
used to decide whether the target is present or absent.

where the parameter R = rB − rA is the height difference be-
tween Bob and Alice. In Eq. (11), δSch, δrot, and δh denote
the first order Schwarzschild term, the rotation term and the
higher-order correction term, respectively. And rS = 2MA is
the Schwarzschild radius of the Earth. If the satellite is located
at the height R � rA/2, δ = 0, and 
 = 1 can be drawn, which
indicates that the photons received at this height possess no
frequency shift.

Considering that the radius of the Earth is about rA =
6371 km, and its Schwarzschild radius is about rS = 9 mm,
we note that in Eq. (8) two different scenarios occur [15]. (i)
If δ�B,0

σ
� δ � 1, (for example, δ � 10−14 is attained if the

target ranges around 100 m), then the wave-packet overlap
is 
 ∼ 1 − O(δ2) ∼ 1. In this case, the gravitational effects
are independent of the peak frequency and on the bandwidth
of the distribution and can be ignored. (ii) The other case is
δ � ( δ�B,0

σ
)2 � 1, which occurs for typical communication

where �B,0 = 700 THz and Gaussian bandwidth σ = 1 MHz
(the similar peak frequencies and bandwidths have been re-
ported recently by trapped ion experiments [32]). In this case,

the wave-packet overlap parameter is 1 − δ2�2
B,0

8σ 2 . The effect of
gravity is much larger than the first scenario, and it should be
taken into account in the propagation of photons. Accordingly,
the final state and the wave-packet overlap 
 are related to the
range R of the target. We assume that the signal photon prop-
agation has additional bright light interference [33], which
accumulates the advantage of the ideal QI radar in the optical
band.

III. QUANTUM ILLUMINATION IN CURVED SPACETIME

Figure 1 shows the diagram of our proposed strategy for
QI under the Earth’s gravitational effect. Unlike the original
QI model proposed in Ref. [2], the propagation of photons
in curved spacetime is considered here. Continuous-wave
(cw) spontaneous parametric down-conversion (SPDC) [34]
produces a pair of entangled photons. One of the entangled
photons forming the signal beam âS irradiates a spatial target
region. The other photon is retained as the idler mode âI

to perform a joint quantum measurement with the returned
mode. The sources for noise photons in the environment
are countless and varied, including the sunlight, atmospheric
counter radiation, urban illumination, etc. For simplicity, the
noise background in our model is assumed to be a thermal-
noise bath. Due to the curvature of spacetime, the propagation
of photon is affected via changing their frequency distribution
in center, shape and bandwidth. Because of the change of the
above mode, the final joint measurement is different from that
in the flat spacetime.

The interaction of the transmitter with the target may be
modeled as a beam splitter with transmissivity κ [1,2,11].
In the hypothesis of the target presents (H1), transmissivity
κ includes the impact of the path loss and nondirectional
antennas. Although the probability of a signal photon returned
by a target is quite low, the occurrence of such an event will
play a crucial role in the subsequent joint measurement. In the
hypothesis of the target absent (H0), a beam splitter scheme
with κ = 0 is obtained. In this case, all the signal modes
filter through the target region without any reflection, and the
returned mode is completely replaced by the optical mode of
thermal-noise. Then we obtain a very strong background con-
tribution at the receiver, which is independent of the target’s
presence or absence. If both hypotheses are equally likely,
Helstrom [35] had given a minimum error probability decision
rule for the QI strategy.

Through measuring ρ (1)(κ 	= 0) − ρ (0)(κ = 0), it is argued
that the target is present if the result is a non-negative number;
otherwise, the target is absent. Then the error probability of
this optimum quantum receiver for the quantum target detec-
tion transmitter is

Pr(e) = 1

2

(
1 −

∑
n

γ (+)
n ), (12)

where γ (+)
n denotes the non-negative eigenvalues of ρ̂ (1) −

ρ̂ (0). To better discriminate the quantum states under each of
the two hypotheses, the study adopted the multicopy states
ρ̂ (1)⊗ M and ρ̂ (0)⊗ M and utilized the optimal joint quantum
measurement [2]. Then the mean error probability is found
to be

Pr(e) = 1
2

(
1 − 1

2 ‖ ρ̂ (1)
⊗

M − ρ̂ (0)
⊗

M ‖ )
,

where M is the number of entangled light sources used for
QI detection, and ‖A‖ = Tr

√
A†A represents the trace norm

of quantum state A. Calculating the trace norm in Eq. (12) is
a daunting task, yet the quantum Chernoff bound [36–38] sets
a limit on the error probability

Pr(e) � 1
2 e−Mε ≡ 1

2 { min
0� s�1

Tr[(ρ (0) )s(ρ (1) )(1−s)]}M . (13)

The bound is exponentially tight, i.e., the error probability
exponent − ln[Pr(e)]/M converges to ε as M → ∞. In the
potentially weaker case(s = 1/2), one can obtain the Bhat-
tacharyya bound [39,40]

Pr(e) � 1
2 {Tr[(ρ̂ (0) )1/2(ρ̂ (1) )1/2]}M . (14)

In order to obtain more amenable analytic results, we combine
the lower bound of the error probability

Pr(e) � 1
2 (1 −

√
1 − {Tr[(ρ̂ (0) )1/2(ρ̂ (1) )1/2]}2M ), (15)
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in general, which is not exponentially tight.
In the following, we will investigate the target detection

with the QI transmitter and coherent-state transmitter. It is
feasible to evaluate the Chernoff or Bhattacharyya bounds for
Gaussian quantum states with the help of Ref. [40]. For the
QI transmitters [2], an entangled signal and idler mode pair
are obtained from cw SPDC. This mode pair with annihilation
operators âS and âI is in the entangled state with number-ket
representation

|φ〉IS =
∞∑

n=0

√
Nn

S

(NS + 1)n+1
|n〉I|n〉S, (16)

where NS is the average photon number per mode. We work
on the phase space, where quantum states can be described by
quadrature operators R̂ = (x̂1, p̂1, x̂2, p̂2, . . . , x̂n, p̂n)T . Such
operators are related to the annihilation âi and creation â†

i

operators by the relations x̂i = (âi+â†
i )√

2
and p̂i = (âi−â†

i )√
2i

, for

each mode i. The quadrature operator R̂ satisfies the commu-
tation relation: [R̂k, R̂l ] = i�k,l , with � = ⊕n+m

1

( 0 1
−1 0

)
being

symplectic matrix. The properties of a Gaussian state are
completely specified by the first moment and the second mo-
ment. In the phase space representation, |φ〉IS is a zero-mean
Gaussian state whose corresponding covariance matrix [2,41]
is

�IS =

⎡
⎢⎣

C 0 S 0
0 C 0 −S
S 0 C 0
0 −S 0 C

⎤
⎥⎦, (17)

where C = 2NS + 1 and S = 2
√

NS (NS + 1).
For the QI strategy, the entangled signal âS and âI are

prepared in the cw SPDC. In the present proposal, an en-
tangled state transmitter illuminates a region containing a
bright thermal-noise bath, in which a low-reflectivity target
might be embedded. The overall process is carried out under
the influence of the Earth. If the target is not detected, the
returned signal will be composed of the thermal signal âB.
If a low-reflectivity target is detected, the signal photon will
be affected by the thermal signal, so the returned signal is a
combination of âS and âB. In either case, the space contains
a bright thermal-noise bath. We take a joint measurement of
the mode âI and âR returned from the target region. Under
hypothesis H0 (target absent), the mode returned from the
target region will be

âR0 = 
âB +
√

1 − 
2âB⊥, (18)

where âB is the annihilation operator of the thermal-noise
mode. Under hypothesis H1 (target present), the respective
effects of the gravitational red-shift and the gravitational blue-
shift on the illuminating signal âS are canceled with each
other. However, the gravity of the Earth still has impact on the
signal coming from the thermal background that is transmitted
from the target to the receiver. Then the annihilation operator
for the returned mode will be

âR1 = √
κ âS + √

1 − κ (
âB +
√

1 − 
2âB⊥). (19)

In the present model, the overall transmissivity κ is the
ratio between the received power PR and the transmitted power

PT [11],

κ = PR

PT
= GF 4ARσ ′

(4π )2R4
, (20)

where σ ′ and G are the cross-section of the target and gain
of the transmit antennas, and R is the transmitter target range.
The other two factors, AR and F are the effective areas of the
radar receive antenna and the form factor, respectively. Here
the factor 1

(4π )2R4 represents the loss of the pulse signal during
the whole propagation process. In addition, for a short-range
QI, the beam spreading does not involve too much loss, which
is the major killing factor for any practical quantum target
detection tasks. In fact, the QI proposal can be extended to
variable distances by sending entangled pulses at different
carrier frequencies and measuring their reflection at different
round-trip times.

In the short range scenario, we can assume F = 1 (no free
space loss) and an ideal pencil beam, so that its solid angle δ′
is exactly subtended by the target’s cross section σ ′ [11]. This
means that gain factor can be technically given by

G = 4π

δ′ = 4πR2

σ ′ .

Then the overall transmissivity is found to be

κ = AR

(4πR)2
. (21)

We can obtain a one-to-one correspondence between trans-
missivity κ and range R by fixing the receive antenna
collecting area AR = 0.1 m2.

It is noticed that under both hypotheses, the joint state of
the âR and âI modes is a zero-mean mixed Gaussian state. The
corresponding covariance matrices under H0 and H1 are

�
(0)
IR =

⎡
⎢⎢⎣

C 0 0 0
0 C 0 0
0 0 1 − 
2 + 
2B 0
0 0 0 1 − 
2 + 
2B

⎤
⎥⎥⎦ (22)

and

�
(1)
IR =

⎡
⎢⎢⎣

C 0 S′ 0
0 C 0 −S′

S′ 0 1 − 
2 + A 0
0 −S′ 0 1 − 
2 + A

⎤
⎥⎥⎦, (23)

respectively, where S′ = √
κS, A = 2κ NS + 
2B and B =

2NB + 1. To obtain the error probability, it is necessary to
diagonalize the Gaussian states Eqs. (22) and (23) with ap-
propriate symplectic matrices. For �

(0)
IR , its four dimension

symplectic matrix is an identity matrix, and the associated
symplectic eigenvalues are ν1 = C and ν2 = 1 − 
2 + 
2B.
One can compute the symplectic matrix [41] to diagonalize
�

(1)
IR , which is given by

M =
(

ω+1 ω−Z
ω−Z ω+1

)
, (24)

with 1 = diag{1, 1}, Z = diag{1,−1}, and

ω± =
√

C′ ± √
C′2 − 4κ S2

2
√

C′2 − 4κ S2
, (25)
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FIG. 2. The advantage of the target detection error probability in curved spacetime over flat spacetime of (a) the QI transmitter and (b) the
coherent-state transmitter. Here the signal brightness NS = 0.01 and the environmental noise NB = 20.

where C′ = C + A + 1 − 
2 is assumed. In this case, the
associated symplectic eigenvalues can be denoted by

νn = 1

2
[(−1)n(2C − C′) +

√
C′2 − 4κ S2], (26)

with n = 1, 2. These symplectic eigenvalues can be employed
to attain an asymptotical expression for the QI transmitter’s
Bhattacharyya bound when κ � 1, NS � 1, and NB � 1:

Pr(e)QI � 1
2 exp[−Mκ NS/


2NB]. (27)

If we employ a single mode coherent-state to irradiate
the target region, the covariance matrices can be obtained
in a similar way. Under the assumptions that the target is

either absent or present, the forms of the covariance matrices
of the returned mode are �(0) = diag{1 − 
2 + 
2B, 1 −

2 + 
2B}, �(1) = diag{1 − 
2 + 
2B, 1 − 
2 + 
2B},
and Tr(ρ (0)âR) = 0, Tr(ρ (1)âR) = √

κ NS . In this case, the
quantum Chernoff bound [40] (which turns out to be the
Bhattacharyya bound) is found to be

Pr(e)CS1 � 1
2 exp[−Mκ 
2NS (

√
NB + 1/
2 − √

NB)2]

≈ 1
2 exp[−Mκ NS/4
2NB], when NB � 1. (28)

On the other hand, the lower bound of the error probability
of the coherent-state transmitter is also an important figure of
merit [40], which is given by

Pr(e)CS0 � 1

2

(
1 −

√
1 − exp[−2Mκ 
2NS (

√
NB + 1/
2 − √

NB)2]

)

≈ 1

4
exp[−Mκ NS/2
2NB], when NB � 1 and Mκ 
2NS/2NB � 1. (29)

In Fig. 2(a), we plot the advantage of the target detection
error probability 	(Pr(e)QI) of the QI transmitter in the near-
Earth spacetime over the flat case. 	(Pr(e)QI) is a positive
value in the figure, which indicates that the error probabilities
in the near-Earth curved spacetime is lower than its flat coun-
terpart. Furthermore, the advantage of QI systems is positively
associated with the copies of the transmitted modes M. The
advantage error probability of the curved spacetime target
detection for the coherent-state transmitter in Fig. 2(b). The
Earth’s gravity is able to reduce the detection error of the
coherent-state transmitter. When either the QI system or the
coherent-state system is employed, the error probability in the
near-Earth curved spacetime case is always lower than that in
the flat spacetime. We also find that the advantage of the detec-
tion error probability of the QI transmitter in curved spacetime
is about 10−15 compared with that in the flat spacetime. These
advantages outweigh the detecting precision of atom clocks
[42]. Therefore the Earth’s gravity presents non-negligible

effects on the QI proposal. This is not surprising since the
time dilation induced by the Earth’s spacetime curvature is
experimentally observed for a height change of 0.33 m [42].
It is expected that the gravitational effects of the Earth would
be more pronounced for MQI at longer distances.

We can see that the Earth’s gravity enhances the efficiency
of the spatial target detection. The result is nontrivial since
gravitational effects usually destroy quantum correlation such
as entanglement [43–47], and gravity reduces the fidelity of
teleportation [15] in relativistic quantum information. Unlike
the dynamic of a quantum system near the event horizon of a
black hole [48], the present model has nothing to do with the
creation of particles.

We now proceed to give a physical interpretation of this
phenomenon. The photon wave-packet between the reference
F (A)

�A,0
and the satellite observer F (B)

�B,0
are the same in the case

of flat spacetime (R = 0). If the QI performs in the curved
spacetime (R > 0), the propagation of wave-packets will pass
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FIG. 3. The bounds on the target detection error probability as
a function of the copies of transmitted modes M (each with NS =
0.01 photons on average and NB = 20) in the curved spacetime (R =
0.33 m).

through a lossy channel. Therefore the relationship between
the operator âS for the signal photons and the operator âB

for the thermal photons has been changed under the influence
of the curved spacetime. The gravitational effects on the en-
tangled signal âS can cancel each other out because of the
gravitational red-shift (in upwards process) and the gravita-
tional blue-shift (in downwards process). However, for the
thermal signal âB returned from the background spacetime,
it is changed by the gravitational effects of the Earth before
it reaches the receiving end. Comparing our final state with
the flat space case [2], it is easy to find that the original B is
replaced with 1 − 
2 + 
2B in our model. It is shown that
the contribution of the thermal signal returned in the curved
spacetime is always less than that in flat. That is to say, the
spacetime curvature of the Earth can decrease the contribution
of thermal noise to the received signal, and the reduction of
the thermal signal enables greater efficiency of the target de-
tection. Due to the existence of wave-packets overlap 
 	= 1,
the distinguishability of �

(0)
IR and �

(1)
IR increases in this case,

while the error probability of target detection in the spacetime
region decrease.

In Fig. 3, we show the bounds of space target detection
strategies for the fixed range R = 0.33m. When the range is
0.33 m, we can experimentally observe the time expansion

caused by the Earth’s spacetime curvature in the laboratory
[42]. The green and red dotted curves are the upper and lower
bounds for the coherent-state strategy, and the blue curve
is the upper bound for the QI strategy. It can be seen that
for a given M value, the error probability of the entangled
state is lower than that of the coherent-state light strategy in
near-Earth curved spacetime. In other words, the QI with the
entangled state is more efficient than its coherent-state coun-
terpart. The classical-state system [2] with the same energy
constraint enables lower error probability than the coherent-
state system, which guarantees a better role of the entangled
transmitter in spatial target detection. And it behooves us to
find a physical explanation for the performance gain provided
by QI. In our view, the entangled state with a double-mode
structure accounts for this, thus more modes are available for
target detection programs. In other words, more probe states
should be used in coherent-state target detection to improve
the distinction between states ρ (0) and ρ (1).

IV. CONCLUSIONS

In this paper, we presented the QI transmitter under the
background of near-Earth curved spacetime and investigated
the impact of spacetime curvature on the coherent-state strat-
egy and QI strategy. The respective effects resulting from the
gravitational redshift and blueshift on the entangled signal
would cancel each other, while the gravity always affects
the spatial thermal mode. In this perspective, either for the
QI system or the coherent-state system, the detection error
probability in the near-Earth curved spacetime is always lower
than that in the flat spacetime case. We compared the perfor-
mance of both kinds of illumination, and it is found that the
spatial quantum target detection with the entangled state is
more efficient than its coherent-state counterpart in the near-
Earth spacetime. In conclusion, the spacetime curvature of the
Earth promotes the detection sensitivity for low-reflectivity
target detection by reducing the thermal signal in the returned
mode. This model can be technically applied to microwave
frequencies like Refs. [12,13].
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