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Nonreciprocal quantum correlations and dense coding
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We compute different quantifiers to analyze the spontaneous generation of entanglement for a unidirectional
(nonreciprocal) two-two level system. We illustrate this approach by deriving the Markovian master equation in
the Lindblad form. The numerical analysis of the unidirectional master equation enabled to obtain the steady-
state concurrence. We explore the quantum dense coding between two spatially separated dipoles taking into
account the collective damping effect. Our results reveal the sharp decline and then gradual increase in the dense
coding capacity to reach a stable value. This procedure opens the possibility to implement this scheme for further
applications in the field of quantum information theory.
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I. INTRODUCTION

Quantum information theory is an emerging field to study
a great variety of phenomenon such as fundamental quantum
science, communication, and computation [1]. An intriguing
aspect to understand the information processing is the phys-
ical entity qubit, a key feature to exhibit correlations that
cannot be accounted classically [2,3]. Last decade, the inves-
tigations suggest that entanglement is at the root of the power
of quantum computers [4,5]. Over recent years, a great deal
of attention has been devoted to measure the quantum corre-
lations using different quantifiers such as concurrence [6–8],
negativity [9], and discord [10–13].

Concurrence defined by Wootter [14] is regarded as the
most widely spread measure of entanglement. A signifi-
cant volume of literature has been devoted to the study of
entanglement dynamics following concurrence [6–8,15–18].
Furthermore, a recent novel approach of dark-soliton qudits
with Bose-Einstein condensates has been introduced to de-
termine the entanglement between long-lived dark soliton
qudits [6,15]. Another computable measure of the entangle-
ment is negativity [19], and can be regarded as a quantitative
version of Peres’ criterion for separability [20]. During last
decades, an enormous interested has devoted to another in-
teresting approach of quantum correlations called quantum
discord [11,12], where the geometrical measure is defined to
be trace distance discord [21]. This approach can also be used
to detect quantum phase transitions [22].

From the practical point of view, entanglement is a key
resource of two qubit quantum operations such as quantum
teleportation [23–25], quantum cryptography [1,26], quantum
dense coding [27], and quantum computing [28]. Over re-
cent years, considerable research efforts have been devoted
to analyze the quantum dense coding for transmitting clas-
sical information by sending an encoded quantum system
with the assistance of quantum entanglement [29–32]. The
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researches have investigated this aspect for spatially separated
two atoms in free space [33], Heisenberg XY Z model [34]
and spin model under external magnetic field [21]. Moti-
vated by the recent interest in nonreciprocal platforms, we
investigate the nonreciprocal entanglement between two spa-
tially separated two-two level atoms (dipoles) mediated by
the plasmonic surface. The scheme is similar to Refs. [35,36]
but restricted to unidirectional response. In what follows, we
solve the unidirectional master equation numerically to obtain
the steady-state concurrence and to explore the application
quantum dense coding.

The paper is organized as follows: In Sec. II, we present the
theoretical model of spatially separated two-two level atoms
(dipoles) placed at distance h from the plasmonic surface. We
also describe the nonreciprocal (unidirectional) master equa-
tion to obtain the explicit expressions of the density-matrix
evolution. Section III provides different measures to quantify
the nonreciprocal entanglement. In the following Sec. IV, we
numerically solve the master equation to obtain the steady-
state correlation dynamics. Section V contains the realization
of quantum dense coding and we present the conclusion in
Sec. VI.

II. THEORETICAL MODEL

We consider a spatially separated two-qubit system inter-
acting with a plasmonic surface placed at distance h (see
Fig. 1). The Hamiltonian corresponding to the total system
comprising the two dipole (two level) system and plasmonic
surface can be decomposed into three parts

Ĥtotal = Ĥd + Ĥp + Ĥint, (1)

where the term Ĥd = h̄ω0σ̂
i
z/2 denotes the Hamiltonian of the

ith two-level system with the transition frequency ω0 and the
inversion operator σ̂z = |e〉〈e| − |g〉〈g|. The second term Ĥp

represents the Hamiltonian of the plasmonic field given by

Ĥp =
∑
ωnk>0

h̄ωnk

2
(â†

nkânk + ânkâ†
nk ), (2)
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FIG. 1. Theoretical model describes the two dipoles separated by
distance d and placed at distance h from the plasmonic surface.

where the sum is taken over positive oscillation frequencies
ωnk, and â†

nk (ânk) denotes the creation (annihilation) opera-
tor of the bosonic field, satisfying the commutation relation
[ânk, â†

nk′ ] = δk,k′ . The term Ĥint. represents the interaction
Hamiltonian between the atom and the plasmonic field, de-
noted by

Ĥint = −
∑

j

(γ̃∗
j σ̂

j
+ + γ̃ j σ̂

j
−) · F̂(r j ), (3)

with

F̂(r j ) =
∑
ωnk>0

√
h̄ωnk

2
ânkFnk(r j ) + H.c., (4)

where Fnk(r) = fnk(z)eik·r denotes the electromagnetic modes
with the field fnk and p̂d = γ̃∗σ̂+ + γ̃ σ̂− represents the dipole
moment with a six-vector γ̃ = [γ 0]T , the dipole moment
element γ and the operator σ̂+ = |e〉〈g| (σ̂− = |g〉〈e|). To
characterize the nonreciprocal response, the system is biased
with a static magnetic field B0 for which the region z > 0
is filled by vacuum, and that the region z < 0 is filled with
a gyrotropic material with permittivity ε = ε0(εt It + εaŷŷ +
iεgŷ × I), where It = I − ŷŷ and εg determines the strength
of the nonreciprocal response. The permittivity elements for
the +y axis biased magnetic field are given by [37,38]

εa = 1 − ω2
p

ω(ω + i�)
, εt = 1 − ω2

p(1 + i�/ω)

(ω + i�)2 − ω2
c

,

εg = 1

ω

ωcω
2
p

ω2
c − (ω + i�)2 , (5)

where ωp denotes the plasma frequency and ωc = −qB0/m >

0 represents the cyclotron frequency with the electron charge
q = −e and the effective electron mass m. Therefore, the
communication between two qubits (dipoles), restricted to
nonreciprocal system (unidirectional), leads to

G(ri, r j ) = 1

8π2ε0

−→∇ r

(∫
d2k||R̃(kx, ky)

1

k||
eik||(r j−ri )e−k||(z j+zi )

)←−∇ r0 . (6)

with

R̃(kx, ky) = 
k

2

1

ωk − ω
+ 
−k

2

1

ω−k + ω
, (7)

and


±k = 8ω±kk||k̃||{
2k||k̃|| ± ∂ω(εtω)

(
k̃2
|| + k2

x

) ± ∂ω(εaω)k2
y + ∂ω(εgω)2kxk̃||

} . (8)

Here, 2ωk = ωccos(θ ) + {2ω2
p + ω2

c [1 + sin2(θ )]}1/2

with ωk = (ω− � ωθ � ω+) and ω± = ωθ=0,π are the
plasmon resonances for propagation along the ±x axis,
respectively [38]. Here, the function ωk depends only on the
wave-vector angle θ and does not depend on the magnitude
of the wave vector.

We follow the procedure outlined in Ref. [36] to derive the
Markovian master equation (see Appendix) for unidirectional
system [G(r1, r2) = 0 but G(r2, r1) 	= 0] in a way,

∂ρd (t )

∂t
= − i

h̄
[Hd , ρd (t )]

+
2∑

i=1

�ii

[
σ i

−ρd (t )σ i
+ − 1

2
{σ i

+σ i
−, ρd (t )}

]

+ λ21[σ 2
−ρd (t )σ 1

+ − ρd (t )σ 1
+σ 2

−]

+ λ∗
21[σ 1

−ρd (t )σ 2
+ − σ 2

+σ 1
−ρd (t )], (9)

where λ21 = (�21 + 2ig21)/2. Here �ii represents the sponta-
neous emission rate of ith dipole and

�21 = 2

h̄
Im{γ̃∗

i · G(r2, r1; ω0) · γ̃ j},

g21 = 1

h̄
Re{γ̃∗

i · G(r2, r1; ω0) · γ̃ j}, (10)

denotes the collective damping and dipole-dipole interaction,
respectively. Furthermore, both two level systems are assumed
to be identical and taking �11 = �22. It is pertinent to mention
here that the derived master equations satisfy the completely
positive trace preserving conditions in accordance with the
procedure outlined in Refs. [39,40].

Figure 2 shows the collective damping [Fig. 2(a)] and
dipole-dipole interaction [Fig. 2(b)] as a function of dipole-
dipole separation d . It is shown that, for large separations,
i.e., d 
 h, both parameters are very small (�12 ≈ g12 ≈ 0).
When the atom transition frequency is tuned to the SPP
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FIG. 2. Panels (a) and (b) explore the collective damping �21 and qubit-qubit interaction g21, respectively for nonreciprocal system as
a function of the dipole-dipole separation d , where ωc = 0.4ωp, ω0 = 0.1ωp, � = 0.1ωp, and 2ωk = −ωc + (ω2

c + 2ω2
p)1/2. Panels (c) and

(d) depict the variation of �21 and g21 as a function of transition frequency ω0, where �0 = |γ̃ 2|/4πε0 h̄d3 and the remaining parameters are
the same as those for panels (a) and (b).

resonance (ω0 � ωsp), the function �12 is maximum and g12

is negligibly small.

III. MEASURES OF QUANTUM CORRELATION

The basic peculiarity between classical and quantum
dynamics is the entanglement and how to quantify it is
the central topic within quantum information theory. To
compute the entanglement dynamics, we are considering
the Dicke bases (|e〉 = |e1, e2〉, |g〉 = |g1, g2〉, and |±〉 =
|(e1, g2 ± g1, e2)/

√
2〉) [41] for which the density-matrix ele-

ments of the nonreciprocal master equation (9) for the initial
state (|+〉 + |−〉)/

√
2 are given by

ρ±±(t ) = 1
2 e−�11t (∓1 + λ21t )(∓1 + λ∗

21t ),

ρ±∓(t ) = 1
2 e−�11t (±1 + λ21t )(∓1 + λ∗

21t ),

ρgg(t ) = e−�11t (−1 + e�11t − λ21λ
∗
21t2), (11)

where all remaining elements are zero. To compute the de-
gree of correlations, we present three different entanglement
measures.

A. Concurrence

A most widely spread measure defined by Wootter [14] is
the concurrence,

Cnr (t ) = 2
√

λ21λ
∗
21te−�11t . (12)

By defining the parameter λ21 = γReikd in close analogy to
Ref. [36], we can modify Eq. (12) to describe the chiral
route concurrence Cc(t ) = 2γRte−�11t , which determines the
independence of concurrence from the qubit separation d .
The transient evolution of concurrence for an initial state
(|+〉 + |−〉)/

√
2 is shown in Fig. 3. The concurrence exhibits

the fast increase followed by a slow decay and reaches to
subradiant state |−〉.

−− (t)

++ (t)

C(t)

0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

11 t

C
(t)
,S
ta
te
P
o
p
.

FIG. 3. Time evolution of transient concurrence C(t ), the popu-
lation of symmetric state |+〉 and antisymmetric state |−〉 between
two dipoles, polarized along horizontal axis (γ̃ = γ x̂) and separated
by distance d � h/2. The other parameters are same as in Fig. 2.
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Controlling light-matter interaction is the basis for diverse
applications ranging from light technology to quantum-
information processing. The directional exchange of me-
diating particle between emitters offers interesting novel
perspective for many-body quantum dynamics. Chiral quan-
tum optics is a new paradigm to investigate the light matter
interaction, where the light propagates differently in the
forward or backward direction and can be unidirectional (non-
reciprocal) in the most extreme cases [42]. The researchers
have investigated this theory in the context of emitters
chirally coupled to waveguides, theoretically and experimen-
tally [43,44]. For example, consider the spontaneous emission
of an ensemble of two-level emitters. Due to the collective
character of the bath, the emission differs strongly from that of
independent emitters [16], an effect referred to as subradiance
and superradiance [41]. One of the main differences between
the concurrence in the reciprocal [6–8] and nonreciprocal [16]
case is the presence of the sinusoidal term (due to qubit-qubit
interaction g21) in the reciprocal medium, causes oscillations
in the transient concurrence (recycled mediating particle with
a period corresponds to the round trip time of the coupled
qubits), which does not occur in nonreciprocal case. The other
advantage of the unidirectional case is that the qubit position-
ing is unimportant [45], and the qubits can be anywhere in the
coherent or dissipative regimes, which is a practical advantage
of the unidirectional systems.

B. Logarithmic negativity

Another computable measure of entanglement is the loga-
rithmic entropy defined by [9]

Nnr (t ) = Max
{
0, log2

[
1 − ρgg +

√
ρ2

gg + |α|2]}, (13)

with |α|2 = (ρ++ − ρ−−)2 − (ρ+− − ρ−+)2. An analytical
expression of the logarithmic negativity can be determined by
substituting Eq. (11) into Eq. (13).

C. Trace distance discord

Third measure to analyze the entanglement between two-
two level system is the trace distance discord given by [21]

Dnr (t ) =
√

ν2
1λmax − ν2

2λmin

ν2
1 − ν2

2 + λmax − λmin
, (14)

where ν1 = (α + 2|ρeg|), ν2 = (α − 2|ρeg|), λmin =
min{ν2

1 , ν2
2 }, and λmax = max{ν2

3 , ν2
2 + �2}, with ν3 =

1 − 2(ρ++ + ρ−−) and � = 2(ρgg + ρ++) − 1. Using
density-matrix elements of Eq. (11) and simplifying Eq. (14),
we obtained the analytical expression of the trace distance
discord, i.e.,

Dnr (t ) = 2
√

λ21λ
∗
21te−�11t = Cnr (t ). (15)

Figure 4 depicts the time evolution of the entanglement quan-
tifiers [Cnr (t ), Nnr (t ), Dnr (t )] for an initial superposition of
super-radiant |+〉 and subradiant |−〉 states. It is observed that
the concurrence Cnr (t ) and the trace distance discord Dnr (t )
have the same behavior in accordance with Eq. (15). However,
the entropy Nnr (t ) takes smaller values and decays faster than
the concurrence.

FIG. 4. Time evolution of quantum correlations with concur-
rence (red), trace distance discord (dotted black) and the logarithmic
negativity (dashed blue).

IV. STEADY-STATE CONCURRENCE

In what follows Sec. II, we now turn to analyze the
steady-state entanglement by using the Wootter’s criteria [14],
described by the Hamiltonian

Hd = h̄
2∑

j=1


 j
[
σ

( j)
+ + σ

( j)
−

]
(16)

for both dipoles externally pumped by a laser with Rabi
frequency 
 j ( j = 1, 2), respectively. We solve the master
equation (9) including the driven Hamiltonian (16) nu-
merically to extract the steady-state concurrence. Figure 5
demonstrates that unequal pumping leads to larger steady-
state concurrence, achieved after a long time (�11t = 8).

V. QUANTUM DENSE CODING

In this section, we realize the dense coding in de-
tail between two spatially separated two-two level systems,
which describes the transmission of two classical bits of
information by sending one qubit with the assistance of

1 = 0.4, 2 = 0.1

1 = −0.4, 2 = 0.1

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

11 t

C
s(t

)

FIG. 5. Steady-state concurrence with the pumping intensities of
two qubits at distance d � h/3 (dashed red) and d � 3h/2 (dotted
black). The other parameters are the same as in Fig. 2.
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FIG. 6. Transient evolution of superdense coding χ with the
parameter α at d = h/2.

entanglement [27]. This work has experienced an extraor-
dinary renaissance, theoretically [46–48] and experimen-
tally [45,49]. To obtain the information capacity, the quantum
system sent through an arbitrary quantum channel must
be encoded by the unitary operators with the shared en-
tangled state between the sender (Alice) and the receiver
(Bob). The set of U00|m〉 → |m〉, U01|m〉 → |m + 1(mod2)〉,
U10|m〉 → eiπm|m〉, and U11|m〉 → eiπm|m + 1(mod2)〉 (with
|m〉 = |0〉, |1〉) denotes the single qubit computational basis)
are performed to obtain the evolution of dense coding capac-
ity. Here

U00 =
(

1 0
0 1

)
, U10 =

(
1 0
0 −1

)
,

U01 =
(

0 1
1 0

)
, U11 =

(
0 1

−1 0

)
. (17)

A dense coding capacity can be written as

χ = S(ρ̄∗) − S(ρ), (18)

where S(ρ) = −Tr(ρlog2ρ) with

ρ̄∗ = 1

4

3∑
i=0

(Ui ⊗ Id )ρ(Id ⊗ U †
i ), (19)

χ > log2[2] = 1. To characterize the optimal dense coding
capacity, the dipoles are chosen to be initially prepared in
a maximally entangled state of the form |�〉 = √

α|e〉 +√
1 − α|g〉 for which the density-matrix elements are given

by

ρee(t ) = αe−2�11t , ρeg(t ) =
√

α(1 − α)e−�11t ,

ρ±±(t ) = 1

2�2
11

e−2�11t
{ − 2α[2λ21λ

∗
21 + �11(�11 ± �21)]

+αe�11t
[{λ21λ

∗
21(−2 + �11t ) ∓ �11�21}

× (−2 + �11t ) + 2�2
11

]}
,

ρ±∓(t ) = 1

2�2
11

e−2�11t {4α(λ21λ
∗
21 ± ig21�11) − αe�11t

× (−2 + �11t )[λ21λ
∗
21(−2 + �11t ) ∓ 2ig21�11]},

(20)

tc

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

11 t

FIG. 7. Transient evolution of superdense coding χ for maxi-
mally entangled state (|e〉 + |g〉)/

√
2 (solid red) and pure state |e〉

(dashed blue), where α = 1/2.

with ρgg(t ) = 1 − ρee(t ) − ρ++(t ) − ρ−−(t ) and ρi j (t ) =
ρ∗

ji(t ). For the pure state |e〉 (α = 1), the density-matrix el-
ements ρeg(t ) = ρge(t ) of Eq. (20) are zero and the remaining
elements are reduced by a factor of two. Figure 6 depicts the
transient evolution of optimal dense coding with the parameter
α. The optimal dense coding is not permissible for α = 0
because |�〉 = |g〉. Note that the increase in parameter α

generates the maximally entangled state (α = 1/2) for which
the dense coding capacity χ will always have the maximum
optimal value of 2 at �11t = 0. It is also depicted that the op-
timal dense coding exists for t < tc, where χ > 1 (see Fig. 7).
Furthermore, the region t > tc (χ < 1) determines that the
optimal coding is not permissible for this quantum channel.

VI. CONCLUSION

To conclude, we have explored the entanglement between
two-two level systems for nonreciprocal plasmonics. In what
follows, we derive the Markovian master equation to extract
the collective damping and dipole-dipole interaction functions
which modify the entanglement dynamics significantly. Dif-
ferent quantifiers are used to measure the entanglement and,
to obtain the analytical expression of concurrence and trace
distance discord. The numerical analysis of the unidirectional
master equation enabled to obtain the steady-state concur-
rence. This creates the opportunity to realize the quantum
dense coding scheme between two-two level systems. The
obtained results confirm the sharp decline and then gradual
increase in the dense coding capacity to reach a stable value.
This work paved the way to explore a possible important
applications in quantum information theory.

APPENDIX: DERIVATION OF BORN-MARKOV
MASTER EQUATION

The Liouville–von Neumann equation by writing the
global density matrix ρQP is found to be

dρQP

dt
= − i

h̄
[H0 + Hint, ρQP], (A1)
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where H0 = Hd + Hp. It is convenient to write Eq. (A1) in the
interaction picture of H0, for which we define

Hint (t ) = e
i
h̄ H0t Hinte

− i
h̄ H0t , (A2)

and

ρ(t ) = e− i
h̄ H0tρQPe

i
h̄ H0t . (A3)

With the new definition of the Hamiltonian and density oper-
ator, we can decompose Eq. (A1) as

ρ(t ) = ρ(t0) − i

h̄

∫ t

t0

[H (τ ), ρ(τ )]dτ. (A4)

Using Eq. (A4) in Eq. (A1), we get

∂tρ = − i

h̄
[Hint (t ), ρ(t0)]

+ 1

h̄2

[
Hint (t ),

∫ t

t0

[Hint (τ ), ρ(τ )]dτ

]
. (A5)

With the Markov approximation and letting t0 → −∞, it is
possible to write

∂tρ = i

h̄
[ρ(t0), Hint (t )]

− 1

h̄2

∫ ∞

0
[[ρ(t ), Hint (t − τ )], Hint (t )]dτ. (A6)

Let assume that the density matrix is of the form ρ =∑
n pn|n(t ), E0〉〈n(t ), E0| at all times, so that the degrees of

freedom of the environment are to a first approximation un-
affected by the dynamics of the atom (Born approximation).
Thus, defining ρs = ∑

E 1s ⊗ 〈E |ρI 1s ⊗ |E〉 = trEρI (t ), it
follows that trE ([ρ(t0), Hint (t )]) = 0,

∂tρs = − 1

h̄2

∫ ∞

0
trE [[ρ(t ), Hint (t − τ )], Hint (t )]dτ, (A7)

where

Hint = −
∑

j

(γ̃ ∗
j σ

j
+eiω0, j t + γ̃ jσ

j
−e−iω0, j t ) · F̂ (r j, t )

F̂ (r, t ) =
∑

ωnk>0

√
h̄ωnk

2

[
ânke−iωnkt Fnk (r)

] + H.c. (A8)

Equation (A7) is the Born-Markov master equation. To pro-
ceed, we assume that the environment is in the ground state
for which we define the parameter

Ai j
ω = 1

h̄2

∑
ωnk>0

ε0,ωnk

1

i(ωnk − ω − i0+)
F ∗

nk (ri )F
∗

nk (r j ), (A9)

where ε0,ωnk = h̄|ωnk|/2. Hereafter, we introduce a frequency
domain Green’s function G = G+ + G− + M−1

∞ δ(r − r0)/iω,
where G± = −iωḠ± denotes the positive and negative fre-
quency parts of the Green’s function,

G+ =
∑

ωnk>0

ωnk

2

1

ωnk − ω
Fnk (ri ) ⊗ F ∗

nk (r j ),

G− =
∑

ωnk>0

ωnk

2

1

ωnk + ω
F ∗

nk (ri ) ⊗ Fnk (r j ), (A10)

corresponds to the poles on the positive and negative real fre-
quency axes, respectively. Therefore, Eq. (A9) can be written
as

Ai j
ω = 1

ih̄
(−iωḠ+)(ri, r j ; ω − i0+). (A11)

Using ([−iωḠ+(ri, r j, ω)]|−ω = [−iωḠ−(ri, r j, ω)]∗|ω∗ , we
introduce

g±
i j = 1

h̄
Re{γ̃ ∗

i · G±(ri, r j ; ω0) · γ̃ j},

�±
i j = 2

h̄
Im{γ̃ ∗

i · G±(ri, r j ; ω0) · γ̃ j}. (A12)

Therefore, Eq. (A7) can be written as

∂tρs(t ) =
∑
i, j

(
�+

i j

2
+ ig+

i j

)
[σ i

−ρs(t )σ j
+ − ρs(t )σ j

+σ i
−]

+
∑
i, j

(
�+

i j

2
− ig+

i j

)
[σ j

−ρs(t )σ i
+ − σ i

+σ
j

−ρs(t )]

+
∑
i, j

(
�−

i j

2
+ ig−

i j

)
[σ i

−σ
j

+ρs(t ) − σ
j

+ρs(t )σ i
−]

+
∑
i, j

(
�−

i j

2
− ig−

i j

)
[ρs(t )σ j

−σ i
+ − σ i

+ρs(t )σ j
−].

(A13)

By employing the series expansion, it is easy to verify for
the nonresonant part (−) of the Green’s function that �−

ii = 0,
�−

i j = −�−
ji , and g−

i j = g−
ji. Using the relations σ̂z = 2σ̂+σ̂− −

1, σ̂−σ̂+ = 1 − σ̂+σ̂− and again transforming Eq. (A13) to the
Schrödinger picture, we obtain

∂tρs(t ) = − i

2

∑
i

(ω0 + g−
ii − g+

ii )
[
σ i

z , ρs(t )
]

−
∑
i, j

�i j

2
[σ i

+σ
j

−ρs(t ) + ρs(t )σ j
+σ i

− − σ
j

−ρs(t )σ i
+

− σ i
−ρs(t )σ j

+] +
∑
i 	= j

igi j[σ
i
+σ

j
−ρs(t )

− σ
j

−ρs(t )σ i
+] + H.c., (A14)

where

�i j = 2

h̄
Im{γ̃ ∗

i · G(ri, r j, ω0) · γ̃ j},

gi j = 1

h̄
Re{γ̃ ∗

i G · (ri, r j, ω0) · γ̃ j}. (A15)

Equation (A14) determines the Markovian master equa-
tion, valid for both reciprocal and nonreciprocal systems
[putting G(r1, r2) = 0] and used to obtain elegant descrip-
tion of physics involved in the dynamics of interacting
atoms. Equation (A14) is consistent with the results of
Refs. [8,16].
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