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Simulating time evolution with fully optimized single-qubit gates on parametrized quantum circuits
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We propose a method to sequentially optimize arbitrary single-qubit gates in parametrized quantum circuits
for simulating real- and imaginary-time evolution. The method utilizes full degrees of freedom of single-qubit
gates and therefore can potentially obtain better performance. Specifically, it simultaneously optimizes both the
axis and the angle of a single-qubit gate, while the known methods either optimize the angle with the axis fixed,
or vice versa. It generalizes the known methods and utilizes sinusoidal cost functions parametrized by the axis
and angle of rotation. Furthermore, we demonstrate how it can be extended to optimize a set of parametrized
two-qubit gates with excitation-conservation constraints, which includes the HOP and the reconfigurable beam-
splitter gates. We perform numerical experiments showing the power of the proposed method to find ground
states of typical Hamiltonians with quantum imaginary-time evolution using parametrized quantum circuits.
In addition, we show the method can be applied to real-time evolution and discuss the tradeoff between its
simulation accuracy and hardware efficiency.
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I. INTRODUCTION

Quantum simulations of materials, which are becoming
popular as promising applications of quantum computing,
are practically useful in designing functional materials. In
fact, there have been a significant number of quantum and
quantum-classical hybrid algorithms developed for such sim-
ulations [1–5]. One can track the time evolution of a quantum
system by the real-time evolution (RTE) algorithm, which is
important to investigate, for example, the quantum dynamics
under the irradiation of laser [6,7]. In addition to the quantum
phase estimation (QPE) algorithm [8,9], and the variational
quantum eigensolver (VQE) [10–12], the imaginary-time evo-
lution (ITE) algorithm [13,14] might be applied to obtain the
ground-state energy and wave function. Although it is hard
to run the QPE on current noisy intermediate-scale quantum
devices, the VQE and ITE may be more realizable [10,15–
23]; actually, several experimental studies on small systems
have been reported [24,25].
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The basic ingredients for running quantum-classical hybrid
algorithms are first to set a parametrized quantum circuit
(PQC), sometimes called the trial wave function or simply
the ansatz, and then to iteratively update its parameters by
classical optimizers so that its final output state approximates
the target state. The approximation accuracy of the target state
achieved via quantum-classical hybrid algorithms heavily de-
pends on the choice of PQC and the classical optimization
strategy. Recent great efforts have revealed several essential
properties of the components of quantum-classical hybrid
algorithms [26–28]. Among those literature works, we find
interesting gradient-free optimizers that make full use of the
specific parametrization of standard PQCs.

More precisely, those optimizers can analytically optimize
a subset of the parameters at each iteration by exploiting
the special type of analytic form of the cost function. That
is, the parameters are locally optimized in a coordinate-wise
manner and updated deterministically. Specifically, Nakanishi
et al. [29] and Ostaszewski et al. [30] showed that the cost
of VQE becomes a sinusoidal function of a single-qubit rota-
tion, and thus we can determine the optimal rotational angle.
Ostaszewski et al. also proposed a sequential optimization
method for selecting the best rotational axes of qubits from
the x, y, or z rotations. Going further to relax the ansatz
dependency of VQE, a generalization of such gradient-free
optimizers called the free-axis selection (or, Fraxis) [31]
was proposed. The Fraxis algorithm analytically determines
the best rotational axis (not limited to the discrete set
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consisting of x, y, or z rotations) for each single-qubit
gate when the rotational angles are fixed. Note that these
gradient-free optimizers directly determine the local op-
tima and are different from the generic ones such as the
Nelder-Mead [32] or simultaneous perturbation stochastic ap-
proximation (SPSA) [33].

In this article, with a particular attention to the task of
simulating real- and imaginary-time evolution on a PQC, we
make a further progress of this gradient-free optimization
method. That is, for simulating time evolution we prove that
both the rotational axis and angle of each single-qubit gate in
the PQC can be analytically optimized in a coordinate-wise
manner. The set of rotational axes and angles of single-qubit
gates constitutes the parameters of the PQC, and hence we
have derived a fully optimized gradient-free optimizer for
simulating the time evolution. This means that the PQC now
acquires the ability for searching the quantum state in the
Hilbert space that best approximates the time evolution in
the coordinate-wise sense, and hence opening the new path
to efficiently approximate the target state being driven via
the time-evolving propagators. Moreover, we show that this
method can be applied to optimize some multiqubit gates, in-
cluding the excitation-conserving two-qubit gates which play
important roles in the quantum chemistry applications. We
conducted numerical simulations of ITE for one-dimensional
(1D) Heisenberg model and H2 molecule, and showed that
the proposed algorithm could approximate the target ground
state faster and better than some previous methods. In ad-
dition, we also conducted numerical simulations of RTE for
1D Ising model using the proposed algorithms, and con-
firmed the reproduction of more accurate dynamics in our
methods.

Here we provide a summary of some related works on
the quantum-computing approach for quantum simulations.
Note that some existing methods for RTE and ITE [13,34,35]
utilize McLachlan’s variational principle [36] to update the
parameters of PQC. The resultant updating rule requires, how-
ever, evaluating an inverse matrix of the size of parameters
dimension at each iteration step, which is computationally
demanding. Several approaches circumvent this issue. The
method proposed by Motta et al. [14] is to use a length-varying
quantum circuit where a local Hamiltonian approximating the
ITE can be efficiently optimized at each depth (corresponding
to the time step). The resultant quantum circuit achieves a
controllable accuracy, while the length inevitably becomes
large. Nishi et al. [37] extended this result and showed that a
nonlocal approximation of Hamiltonian could result in a shal-
lower circuit and applied the method to the MaxCut problem.
As for RTE, the algorithm proposed by Barison et al. [38]
utilizes a global optimization for parameters without matrix
inversion. However, it requires the direct implementation of
time-evolving propagators, and then the application is limited
to small quantum systems. Benedetti et al. [39] reported a
new algorithm that optimizes the parameters of a fixed-length
PQC in a coordinate-wise manner to approximate the RTE and
ITE, which is based on parametrization of each single-qubit
gate with one parameter as in [29,30,40,41] and therefore not
fully optimized. Although there was an attempt to optimize
a PQC whose some of single-qubit gates are constrained to
have the same rotational angle [29], we are not aware of previ-

ous methods that explicitly optimize parametrized multiqubit
gates similarly as ours.

This article is organized as follows. The problem formu-
lation and the proposed method are described Sec. II. Some
extension to optimize multiqubit gates is also shown there.
Section III is devoted to show the numerical simulations.
Finally, we conclude the paper in Sec. IV. Detailed derivation
of equations are given in the Appendixes.

II. METHODS

We first review the hardware-efficient objective function
for time-evolving simulation proposed by Benedetti et al. [39],
which focuses on the overlap between a target state and a trial
state, and introduce a measure of hardware efficiency of ob-
jective function. Then, we introduce free quaternion selection
for quantum simulation (abbreviated as FQS, where QS has
two meanings: quaternion selection and quantum simulation),
which can fully optimize an arbitrary single-qubit gate with
hardware efficiency. Next, we show that the FQS can be
extended to special multiqubit gates such as the excitation-
conserving gates.

A. Hardware-efficient quantum simulation of time evolution

Suppose a time-evolution simulation based on the Hamil-
tonian given as Ĥ = ∑K

k=1 hkÔk , where Ôk denotes a
tensor product of Pauli operators for m-qubit Ôk ∈ {σ0 =
I, σx, σy, σz}⊗m, hk is a real-valued coefficient, and K ∼
O[poly(m)]. The time-evolving propagator e−iĤt is approxi-
mated with the first-order Trotter decomposition as

e−iĤt = (e−iĤ�t )N � (e−ihK ÔK �t . . . e−ihk Ôk�t . . . e−ih1Ô1�t )N ,

(1)

where N is the number of time steps and �t ≡ t/N . Now a
propagator e−ihk Ôk�t is applied to an arbitrary state |ψk−1〉,
which results in a state |ψk〉 as

|ψk〉 = e−ihk Ôk�t |ψk−1〉 . (2)

Suppose an initial state |ψk−1〉 is approximated by a PQC as
U (�ϑ∗

[k−1]) |0〉, where �ϑ∗
[k−1] is an optimal parameter set, and

|0〉 is the computational basis state. Provided that a PQC has
sufficient expressibility, there exists an optimal parameter set
�ϑ∗

[k] such that |ψk〉 � U (�ϑ∗
[k] ) |0〉. Therefore, a time evolution

can be simulated if parameter sets that reproduce the time-
evolving propagator are somehow found. Hereafter, we focus
on a series of processes to determine the kth optimal parame-
ter set �ϑ∗

[k] from �ϑ∗
[k−1]. For readability, we write �ϑ∗

[k] and �ϑ∗
[k−1]

as �ϑ∗, �ϑ ′, respectively, when it is obvious from the context. To
determine the optimal parameter set �ϑ∗, Benedetti et al. [39]
proposed a recursive optimization using the objective function
M(�ϑ ) based on the Euclidean distance as

M(�ϑ ) ≡ ‖U (�ϑ ) |0〉 − e−ihÔ�tU (�ϑ ′) |0〉 ‖2

= 2 − 2 Re[〈0|U †(�ϑ ′)eihÔ�tU (�ϑ ) |0〉] (3)

and

�ϑ∗ ≡ argmin
�ϑ∈�

M(�ϑ ) = argmax
�ϑ∈�

F (�ϑ ), (4)
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where � is the parameter space, and F (�ϑ ) is defined as

F (�ϑ ) ≡ Re[〈0|U †(�ϑ ′)eihÔ�tU (�ϑ ) |0〉]. (5)

Now, we suppose a PQC U (�ϑ ) consists of D parametrized
single-qubit gates and arbitrary unitary gates without param-
eters such as controlled NOT (CNOT) gate. An element of
the parameter space � is given as �ϑ = (ϑ1, . . . , ϑD), where
ϑd represents the parameters for the dth parametrized gate.
Conventionally, ϑd is a scalar value, e.g., rotational angle
ϑ = θ ∈ R for a single-qubit axis-fixed rotation gate such as
Rx, but in this paper to deal with a general single-qubit gate
ϑd can be vector valued as detailed in the next section. To
evaluate M(�ϑ ), it is common to apply Hadamard tests with
controlled gates for different parameters between �ϑ and �ϑ ′.
Because all D elements in �ϑ usually differ from those in �ϑ ′,
the Hadamard test requires additional O(D) controlled gates
and ancilla qubits, it may be difficult for near-term quantum
devices when D is large.

The Hadamard test can be replaced by direct measurements
as proposed by Mitarai et al. [42], which are often called
hardware efficient because they need less controlled gates
and ancilla qubits. However, the direct measurements require
more types of circuits, i.e., replacing D controlled gates with
direct measurements incur the cost of evaluating O(4D) types
of circuits. Here we see the tradeoff among different quantum
resources.

To reduce the required quantum resources, it is possible
to restrict the number of the gates to be updated in the ob-
jective function Eq. (5). On the other hand, such restricted
updates may not be sufficient to minimize the simulation
error M(�ϑ ) for e−ihÔ�t . To balance between the hardware
efficiency and simulation accuracy, we employ P ∈ N series
of updates procedure where parametrized gates are grouped
into P sets, and the respective sets are represented by �p (p =
1, 2, . . . , P). Here, �p consists of the gate indices as �p ⊆
{1, 2, . . . , D}. In the P series update, we divide the propagator
into P terms maintaining total �t time evolution. Although
the division of �t is not unique, we uniformly assign �t/P
similarly as [39]. Then, the original objective function in
Eq. (5) is replaced by a series of the following objective
functions:

F (p)({ϑd}) ≡ Re[〈0|U †(�ϑ (p−1))eihÔ�t/PU ({ϑd}; �ϑ (p−1)) |0〉],
d ∈ �p (6)

where �ϑ (p−1) denotes a parameter set whose ϑd (d ∈
∪p−1

q=1�q) have been updated from those in �ϑ (0) ≡ �ϑ ′. Here,

U ({ϑd}; �ϑ (p−1)), d ∈ �p, denotes a PQC in which the ele-
ments of �p are variable. �ϑ (p) is recursively obtained from
�ϑ (p−1) by solving the following problems:

{ϑ∗
d } = argmax

{ϑd }
F (p)({ϑd}), d ∈ �p for p = 1, 2, . . . , P,

(7)

where �ϑ (p) is defined by substituting {ϑ∗
d }, d ∈ �p, into

�ϑ (p−1). Eventually, we obtain the solution �ϑ∗ = �ϑ (P), which
approximates the state evolved by the propagator e−ihÔ�t from
the state with �ϑ ′. This update procedure is repeated for the

total K Trotterized time propagators to simulate time evolu-
tion of �t as in Eqs. (1) and (2). The optimization method for
Eq. (6) is not unique, and classical optimizers are convention-
ally employed, most of which update simultaneously multiple
parameters with the cost of Hadamard tests consisting of
multiple controlled gates and ancilla qubits. In this study,
instead, we employ coordinate-wise update, where parameters
are sequentially updated for respective single-qubit gates. The
procedure is summarized in Algorithm 1.

Because there are at most |�p| different parametrized gates
between U †(�ϑ (p−1)) and U ({ϑd}; �ϑ (p−1)), the evaluation of
the objective function Eq. (6) requires additional O(|�p|)
controlled gates and one ancilla qubit. Thus, the maximum
value of |�p| is a good measure of hardware efficiency for
an algorithm to simulate time evolution with Eq. (6) writ-
ten as |�| = maxp |�p|. The measure varies in the range of
1 � |�| � D; in case of the highest value |�| = D the ob-
jective function in Eq. (6) is regressed to the original form in
Eq. (5). On the other hand, in case of the lowest value |�| = 1,
namely, the most hardware-efficient one, the variables in each
objective function are parameters of one single-qubit gate.

Algorithm 1 Time evolution with sequential update of gate
parameters for divided time propagators

Input (1) Trotter-decomposed time propagators {e−ihk Ôk�t }K
k=1, (2)

a PQC U (�ϑ ) with D single-qubit gates, �ϑ = (ϑ1, . . . , ϑD ), (3) the
number of time step N , (4) gate sets �p ⊆ {1, 2, . . . , D},
(p = 1, 2, . . . , P)
Initialize Choose initial gate parameters �ϑ
repeat

for k = 1, 2, ..., K do
for p = 1, 2, ..., P do

Set �ϑtemporal ← �ϑ
for d in �p do

Set a PQC from U (ϑd ; �ϑtemporal )

Compute ϑ∗
d = argmax Re[〈0|U †(�ϑ )eihk Ôk�t/P

U (ϑd ; �ϑtemporal ) |0〉]
Set (�ϑtemporal )d ← ϑ∗

d

Set �ϑ ← �ϑtemporal

until N�τ time evolution
Output Gate parameters �ϑ

Note that the objective function in Eq. (6) does not pre-
scribe any optimization methods and PQC structures. In
general, it is important to employ a PQC with sufficient
expressibility to describe the state of interest. While it is
common to extend a quantum circuit by adding parametrized
gates, the correlation among parameters emerges as a new
obstacle for optimization upon increase of parameters. To
circumvent this problem, it is required to both (1) simul-
taneously update correlating parameters and (2) construct a
high-expressibility PQC with as fewer number of parameters
as possible. To this end, we propose an optimization method
for time-evolution simulation by generalizing the free-axis
selection (Fraxis) algorithm [31], which makes full use of
degree of freedom with respect to a single-qubit gate. It is
different from the previous work [39], where the objective
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function is analytically optimized for axis-fixed rotation gates
by the analog of the NFT(Rotosolve) method. Since a general
single-qubit gate with three parameters is decomposed into
Rz-Ry-Rz gates, the NFT can be applied to a general single-
qubit gates by sequential update of the three gates. However,
it may fail to consider the correlation among parameters of the
Rz-Ry-Rz gates.

In contrast, the optimization method can incorporate cor-
relation between all parameters of a single-qubit gate. The
three parameters of a single-qubit gate corresponds to a three-
dimensional rotation which is best captured by the selection
of quaternion system, and hence the name free quaternion
selection of our proposed method. It is also worth noting,
when |�| = 1, the full optimization of single-qubit gate by
FQS can be conducted with only seven types of direct mea-
surements without Hadamard test, which is smaller than
the types required for sequential optimization of a decom-
posed generalized single-qubit gate proposed in the previous
work [39].

In the next subsections, we first introduce the FQS formu-
lation based on imaginary-time evolution using the objective
function for the most hardware-efficient case, where real time
t is replaced by imaginary time τ as t → −iτ . More specifi-
cally, in imaginary-time evolution, a target state as in Eq. (2)
becomes

1√
N

e−hÔ�τU (�ϑ ′) |0〉 , (8)

where �τ ≡ τ/N , and N is a normalization factor as N =
‖e−hÔ�τU (�ϑ ′) |0〉 ‖2, which can be ignored in optimization
problem of the objective function Eq. (5). In Sec. III, we
demonstrate the applications of imaginary-time evolution for
finding the ground state of the 1D Heisenberg model and H2

molecule.
Although we supposed |�| = 1 and imaginary-time evo-

lution for simplicity in the following derivation, we em-
phasize that the FQS algorithm is neither limited to the
most hardware-efficient objective functions of |�| = 1 nor
imaginary-time evolution. Note that the FQS algorithm
with |�| > 1 is a simple extension of |�| = 1 by using a
coordinate-wise update for each general single-qubit gate in
the same �p as in Algorithm 1. In particular, we also demon-
strate the FQS application to simultaneous optimization for
an excitation-conserving gate consisting of two parametrized
single-qubit gates, and thus |�| = 2.

The appropriate hardware efficiency |�| should be deter-
mined from the tradeoff between the performance of quantum
devices and the required simulation accuracy. To demonstrate
this point, we also applied FQS to real-time evolution of the
1D Ising model with several hardware-efficiency levels.

B. Proposed method

1. Free quaternion selection for quantum simulation

A general single-qubit gate with parameters of a rotational
angle θ and a rotational axis n is written as

Rn(θ ) ≡ e−i θ
2 n·σ = cos

(
θ

2

)
σ0 − i sin

(
θ

2

)
n · σ, (9)

where σ0 is identity and σ = (σx, σy, σz ). Here, n =
(nx, ny, nz ) denotes a normalized vector corresponding to the
rotational axis. Suppose a PQC U (�ϑ ) consisting of D general
single-qubit gates. In the PQC, a parameter set ϑd of the dth
parametrized gate denotes

ϑd = (θd , nd ) = (θd , ndx, ndy, ndz ), (10)

where θd ∈ R and ‖nd‖ = 1. For simplicity, we suppose the
dth gate set �d contains only the dth parametrized gate (i.e.,
the most hardware-efficient case |�| = 1) and the total num-
ber of the gate sets is D. Then, the unitary operator with �d in
Eq. (6) is written as

U (ϑd ; �ϑ (d−1)) = V2Rnd (θd )V1, (11)

where V1 and V2 denote the unitary operators correspond-
ing to the partial circuits prior and posterior to the Rnd in
the PQC, respectively. Substituting Eq. (11) into Eq. (6) we
obtain

F (d )(θd , nd ) =
√

g2
0 + (nd · g)2

× sin

[
θd

2
+ arctan2(g0, nd · g)

]
, (12)

where g0 and g = (gx, gy, gz ) are defined as

gμ ≡ Re
[〈0|U †(�ϑ (d−1))e−hÔ�τ/DV2ςμV1 |0〉]

= cosh

(
�τ

D
h

)
Re

[
tr
(
ςμR†

n′
d
(θ ′

d )ρ ′
)]

− sinh

(
�τ

D
h

)
Re

[
tr
(

Ô′ςμR†
n′

d
(θ ′

d )ρ ′
)]

, (13)

where ϑ ′
d = (θ ′

d , n′
d ) is the dth component of �ϑ (d−1), and ςμ ∈

{σ0,−iσx,−iσy,−iσz} (see Appendixes A and B for detailed
derivation). Here, we used the following notations:

Ô′ ≡ V †
2 ÔV2, ρ ′ ≡ Rn′

d
(θ ′

d )V1 |0〉 〈0|V †
1 R†

n′
d
(θ ′

d ). (14)

Because the objective function Eq. (12) has sinusoidal form,
the optimal parameter ϑ∗

d = (θ∗
d , n∗

d ) is trivially obtained as

n∗
d = g

‖g‖ , θ∗
d = π − 2 arctan2(g0, ‖g‖) + 4lπ, (15)

where we choose l ∈ Z satisfying θ∗
d ∈ [0, 4π ]. Thus, the

optimal value of ϑ∗
d can be determined from gμ.

The first term in Eq. (13) can be determined by a pa-
rameter ϑ ′

d = (θ ′
d , n′

d ) without quantum computation as (see
Appendix B)

Re
[
tr
(
ςμR†

n′
d
(θ ′

d )ρ ′
)]

=
{

cos (θ ′
d/2), μ = 0

n′
dμ sin (θ ′

d/2), μ �= 0.
(16)

On the other hand, quantum computations are required for the
second term of Eq. (13). In general, the evaluation of the sec-
ond terms requires four types of measurements in total using
the Hadamard test with controlled operation on ςμR†

n′
d
(θ ′

d ).
For |�| = 1, however, we can replace the Hadamard test with
modest number of direct measurements.
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FIG. 1. The quantum circuits for computing the expected values Q±,μ, (μ = 0, x, y, z) as in Eq. (21) to update the parameter of the dth
single-qubit gate. Here, Rn′

d
(θ ′

d ) is the dth single-qubit gate with a parameter ϑ ′
d = (θ ′

d , n′
d ) obtained in the previous processes. Rμ(±π/2),

which is defined as e∓iσμπ/4, is inserted after the gate of interest. V1 is the subcircuit containing all parametrized single-qubit gates that
have been updated, V2 is that containing the rest of single-qubit gates to be updated, and Ô is that containing measurements related to the
Trotter-decomposition term (namely, the jth qubit is rotated by H or HS† before measured in the computational basis when Ô j is σx or σy,
respectively).

In the following part of this section, we describe the details
of the direct measurement protocol. First, we note ςμR†

n′
d
(θ ′

d )
in the second term of Eq. (13) can be transformed into single-
qubit gate as Rn̄μ

(ϕμ), where ϕμ and n̄μ are determined with
θ ′ and n′

d that are obtained in the previous processes as for
μ = 0,

ϕ0 = −θ ′
d , n̄0 = n′

d , (17)

and for μ �= 0,

ϕμ = 2 arctan2

[√
1 − n′

dμ
sin2

(
θ ′

d

2

)
, n′

dμ sin

(
θ ′

d

2

)]
,

n̄μt = 1√
1 − n′2

dμ sin2
( θ ′

d
2

)

×
[

cos

(
θ ′

d

2

)
δμt − sin

(
θ ′

d

2

) ∑
s=x,y,z

εμst n
′
ds

]
,

t = x, y, z (18)

where δμt and εμst denote the Kronecker delta and the
three-dimensional Levi-Civita symbol, respectively (see Ap-
pendix B for details). Next, we define a generator Gd as a
function of rotation angle θ and axis n:

Gd (θ, n) ≡ Re
[
tr
(
Ô′Rn(θ )ρ ′)]. (19)

Furthermore, the generator is transformed as

Gd (θ, n) = cos

(
θ

2

)
Q+,0+ sin

(
θ

2

) ∑
s=x,y,z

ns
(Q+,s − Q−,s)

2
,

(20)

where

Q±,ν ≡ tr
(
Ô′e∓iσνπ/4ρ ′e±iσνπ/4

)
, ν = 0, x, y, z. (21)

Algorithm 2 Imaginary-time evolution with free quaternion se-
lection for quantum simulation

Input (1) Trotter-decomposed time propagators {e−hk Ôk�τ }K
k=1, (2)

a PQC U (�ϑ ) with D general single-qubit gates, �ϑ = (ϑ1, . . . , ϑD ),
ϑd = (θd , nd ) ∈ R4, ‖nd‖ = 1, and (3) the number of time steps N
Initialize Choose initial gate parameters �ϑ
repeat

for k = 1, 2, ..., K do
for d = 1, 2, ..., D do

Determine Q+,0,Q±,x,Q±,y, Q±,z with
quantum computers [Eq. (21)]

Set a function Gd (θ, n) by Q+,0,Q±,x,Q±,y, Q±,z

for μ = 0, x, y, z do
Compute ϕμ, n̄μ [Eqs. (17) and (18)]
Compute gμ = (g0, g) from ϑd ,Gd (ϕμ, n̄μ) [Eq. (13)]

Set ϑd ← (θ∗
d , n∗

d ) = (π − 2 arctan2(g0, ‖g‖), g/‖g‖)
until N�τ time evolution
Output Gate parameters �ϑ

Note that Q±,ν is independent of (θ, n) and can be evalu-
ated by direct measurement with a PQC in Fig. 1, where
a single-qubit gate e∓iσμπ/4 is inserted after the gate of
interest. The generator agrees with the second term in
Eq. (13) when (ϕμ, n̄μ) is substituted into (θ, n). Hence,
once Q+,0,Q±,x,Q±,y,Q±,z are obtained for the dth gate, we
can evaluate the second term in Eq. (13) without additional
quantum computation as shown in Algorithm 2. Therefore,
the optimal values of single-qubit gate parameters can be
analytically determined with only seven types of expectation
values in the direct measurement scheme: no ancilla qubits,
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TABLE I. Examples of the special two-qubit gates in the form of ARn(θ )BR†
n(θ )C. The parametrized single-qubit gate Rn(θ ) is supposed

to act on the second qubit [more precisely, Rn(θ ) denotes I1 ⊗ Rn(θ )]. The arbitrary gates A, B, and C without parameters are represented by
Z2 (Pauli Z), X c

i, j (CNOT), Zc
i, j (CZ) gates, and their products, where the superscript c represents a controlled gate with the first (control) and

second (target) subscripts. In the rightmost column, the direct sum of matrices 1 ⊕ M ⊕ ±1 denotes the block-diagonal matrix diag(1, M, ±1).

Gate type A B C Rn(θ ) ARn(θ )BR†
n(θ )C

Excitation conservinga X c
2,1 Zc

1,2 X c
2,1

θ = π

n(ψ, φ)
1 ⊕

( − cos ψ eiφ sin ψ

e−iφ sin ψ cos ψ

)
⊕ 1

SWAP X c
2,1 X c

1,2 X c
2,1

θ

n = (0, 0, 1)
1 ⊕

(
0 eiθ

e−iθ 0

)
⊕ 1

HOP Z2X c
2,1 Zc

1,2 X c
2,1

θ = π

n(ψ, φ = 0)
1 ⊕

(
cos ψ − sin ψ

sin ψ cos ψ

)
⊕ −1

RBS X c
2,1 Zc

1,2 X c
2,1Z2Zc

1,2
θ = π

n(ψ, φ = 0)
1 ⊕

(
cos ψ sin ψ

− sin ψ cos ψ

)
⊕ 1

aExcitation-conserving gate with two parameters (ψ, φ) are represented by the polar coordinate of the rotational axis n such as n(ψ, φ) =
( sin (ψ/2) cos (φ), sin (ψ/2) sin (φ), cos (ψ/2)).

no additional CNOT gates, which is rather advantageous on
present real devices with limited qubit connectivity and sig-
nificant error from control operation. Therefore, we believe
the direct measurement scheme of FQS as the one of the most
hardware-efficient protocol for time-evolving simulation.

In the following, for simplicity we refer to the algorithm
described in this section as FQS(1q, 3p), where the 1q de-
notes its targeting parametrized single-qubit gates, and the
3p denotes the full parametrization of each gate: the (unit)
quaternion which can be identified with a set of rotational
angle and axis or direct parameters of a single-qubit gate [43].
We emphasize the fact that all parameters of a single-qubit
gate are simultaneously optimized in FQS(1q, 3p). Thus, the
time evolution is more accurately simulated by making full
use of expressibility of a target gate. Obviously, FQS can be
used to optimize the specific single-qubit gates such as rota-
tion gates with fixed axis (i.e., NFT [29] or Rotosolve [30])
and the Fraxis [31] gate, which is equivalent to Rn(π ). PQCs
consisting of fixed-axis rotation gates each with one param-
eter, or the Fraxis gates each with two parameters can be
optimized with FQS(1q, 1p) or FQS(1q, 2p), respectively. In
particular, the objective functions tailored to the specialized
FQS are shown in Eqs. (C1) and (C2). Although NFT [29]
and Fraxis [31] are mainly used for VQE, there are many sim-
ilarities with the specialized FQS in optimization procedure.
For simplicity, we also refer to FQS(1q, 1p) and FQS(1q, 2p)
as NFT and Fraxis, respectively.

2. Free quaternion selection for multiqubit gate

Here, we extend the FQS to special multiqubit gates that
can be decomposed as,

ARn(θ )BR†
n(θ )C, (22)

where A, B, and C denote arbitrary unitary gates without
parameters (such as the CNOT and Pauli gates), and R and
R† share the same parameter ϑ = (θ, n). Table I lists some
examples of the well-known gates in this class. They are
excitation-conserving, SWAP, HOP, and reconfigurable beam-
splitter (RBS) gates. Strictly speaking, they are all instances
of the excitation-conserving (or, particle-number-preserving)

gate set which can be implemented by the native gate set of
the fermionic simulation as in [44], but for convenience, we
name the gates as in Table I. A product of hop gates is known
to be universal with respect to real-valued probability ampli-
tudes of quantum states on fixed particle number, making the
gates attractive for quantum chemistry applications [20]. The
RBS gates have been proposed as building blocks of quantum
neural network [45].

Because Rn(θ ) and R†
n(θ ) gates share the same parameters

in those multiqubit gates, these gates are simultaneously up-
dated with an optimization scheme similar to the FQS method.
In this case, each � includes two single-qubit gates making
the hardware-efficiency measure |�| � 2. Although in the
following, we suppose the simple case that each �p con-
sists of only two single-qubit gates, namely, |�p| = 2 (∀ p =
1, 2, . . . , P), with shared parameters which are written as
ϑp = (θp, np), it is straightforward to generalize it to |�| > 2
by using a coordinate-wise update with a multiqubit gate in
Eq. (22).

Given the excitation-conserving gate in Table I, the objec-
tive function for the pth gate set is rewritten by substituting
Eq. (22) and θ = π into Eq. (6) as

F (p)(π, np)

= Re
[〈0|U †(�ϑ (p−1))e−hÔ�τ/PV2ARnp (π )BR†

np
(π )CV1 |0〉]

=
∑

s,t=x,y,z

npsnpt Re
[ 〈0|U †(�ϑ (p−1))

× e−hÔ�τ/PV2Aσt BσsCV1 |0〉 ]
, (23)

where V1 and V2 denote the parts of the PQC as in the previous
subsection. By definition of a 3 × 3 asymmetric matrix G(p) as

G(p)
st ≡ Re

[〈0|U †(�ϑ (p−1))e−hÔ�τ/PV2Aσt BσsCV1 |0〉],
s, t ∈ {x, y, z} (24)

Eq. (23) is transformed in a quadratic form as

F (p)(π, np) = nT
p G(p)np, (25)

where superscript T denotes a transpose operation. The opti-
mal value can be computed from the symmetric matrix S(p),
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FIG. 2. A quantum circuit for Hadamard test to evaluate Eq. (28) with respect to the optimization of the pth gate set. |0〉a is the ancilla
qubit. W0, W1, and W2 are the components of the PQC defined in Eq. (29), where W0 includes the gates that have been updated, and W2

includes the rest of gates to be updated, and Rn̄1 (ϕ1), Rn̄2 (ϕ2) act on the same qubit as the dth gate. Using the circuits, we can evaluate the
expectations 〈Ẑa ⊗ Ô〉 and 〈Ẑa ⊗ Î〉, and the linear combination of them with their coefficients − sinh (�τh/P) and cosh (�τh/P) yields the
quantity Re[〈0|U †(�ϑ (p−1) )e−hÔ�τ/PW2Rn̄2 (ϕ2)W1Rn̄1 (ϕ1)W0 |0〉].

defined as

S(p) ≡ G(p) + (G(p) )T

2
, (26)

so that the optimal parameter becomes

n∗
p = argmax

np

nT
p S(p)np, (27)

where the eigenvector corresponding to the largest eigenvalue
of S(p) is the analytical solution. As for the objective func-
tion Eq. (6) with respect to SWAP, HOP, or RBS gates, we
also derive the analytical optimization form as described in
Appendix D.

To obtain a solution of Eq. (27), we need to evaluate the
elements of G(p) in Eq. (24), which can be written in a unified
expression similarly to the previous subsection, as

Re
[ 〈0|U †(�ϑ (p−1))e−hÔ�τ/P

× WARn̄2 (ϕ2)WBRn̄1 (ϕ1)WC |0〉 ]
, (28)

where WA, WB, and WC are defined as

WA = V2A, WB = Rn′
p
(θ ′

p)BR†
n′

p
(θ ′

p), WC = CV1. (29)

Note that (ϕ1, n̄1), (ϕ2, n̄2) are determined by each element
of G(p) as in the previous subsection. In addition, an ana-
lytical solution of the objective function for SWAP, HOP, or
RBS gates derived in Appendix D also requires quantities in
the same form as Eq. (28). In principle, these quantities in
Eq. (28) can be evaluated with Hadamard test with two control
operations on Rn̄2 (ϕ2) and Rn̄1 (ϕ1) as shown in Fig. 2. How-
ever, direct measurements without ancilla qubits and CNOT
gates are available similarly as proposed in literature [42]. It
should be also noted that in the case of excitation-conserving
gate, eight Hadamard tests are required because Gxy = −Gyx,

while four measurements for the HOP and RBS gates (see
Appendix D).

Here, we denote the FQS method for optimizing Eq. (27) as
FQS with u-qubit gates of two parameters; FQS(uq, 2p), where
u is the number of qubits subject to nontrivial action of A, B,
and C. On the other hand, the FQS method to optimize only
one degree of freedom out of three in ϑp = (θp, n(ψp, φp)) is
termed FQS with u-qubit gates of one parameter; FQS(uq, 1p),
which can be applied to HOP, RBS, SWAP, and the excitation-
conserving gate with one fixed degree of freedom.

In particular, as shown in Table I, FQS(2q, 2p) generalizes
the excitation-conserving gate, the HOP gate, and the RBS
gate. In contrast to the conventional excitation-conserving
gate where only rotational angle ψ is the optimization tar-
get, the FQS(2q, 2p) can simultaneously update not only
ψ but also φ, which seems to be advantageous to exhibit
higher expressibility and to avoid local minimum and saddle
points. To verify this feature, we also carry out controlled
experiments where the two parameters ψ, φ of an excitation-
conserving gate are sequentially and separately optimized. We
also note that because the total number of electrons has to
be preserved in quantum chemistry calculation, limiting the
parameter search space by taking into account the preservation
is essential to reduce the computational cost. The FQS(2q, *p)
methods are useful for such preservation constraints.

III. RESULTS AND DISCUSSION

In this section, we verify the performance of the proposed
FQS methods in real- and imaginary-time simulations of typ-
ical Hamiltonians. The ITE simulations were executed with
|�| = 1 to find the ground state of the 1D Heisenberg model
and H2 molecule. As for real-time evolution, we simulated
the 1D Ising model with various hardware efficiencies. All
simulations presented in the paper were carried out using
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FIG. 3. PQCs for result A and result C. The PQC (a) and (b) are
used for simulating imaginary-time evolution with a five-qubit 1D
Heisenberg model and real-time evolution with a four-qubit 1D Ising
model, respectively. The number of layers is represented by L (l =
1, . . . , L), and Ud is the dth single-qubit gate whose type is deter-
mined corresponding to the optimization method, e.g., Ud = Ry(θ )
for NFT, Ud = Rn(π ) for Fraxis, and Ud = Rn(θ ) for FQS in the first
part of result A.

state vector simulator of QISKIT [46]. The settings of each
experiments are detailed in Appendix F.

A. 1D Heisenberg model with FQS(1q, 3p)

Here, we consider a five-qubit 1D Heisenberg model under
the periodic boundary condition. The Hamiltonian is given as

H = J
∑

(i, j)∈E

(XiXj + YiYj + ZiZ j ) + h
∑
i∈V

Zi, (30)

where the coupling constant J and the external fields h satisfy
J = h = 1, and G = {V, E} is the undirected graph of the
lattice with five nodes. The imaginary-time propagators were
prepared under the first-order Trotter decomposition with
fixed time step �τ = 0.50. We carried out 21 independent
ITE simulations obtained with FQS in comparison with NFT,
Rotoselect, and Fraxis, where we consistently employed an
ansatz with ladderlike entangler shown in Fig. 3(a). In the
optimization of each parametrized gate with Rotoselect, we
evaluated the objective function with respect to Rx, Ry, or Rz

FIG. 4. Averaged trajectories of 21 independent simulations for
1D Heisenberg model using the PQC shown in Fig. 3(a) with two
layers. Dashed-dotted red, dashed orange, and dotted black lines
represent the results obtained with NFT, Rotoselect, and Fraxis, re-
spectively. In NFT and Rotoselect, the initial rotational angles around
the y axis are randomly selected. In Fraxis, the initial rotational axes
were randomly generated, while the rotational angles were fixed to
π . Blue solid line with circles and green solid line with triangles
represent the results with FQS, where the initial states are identical
to those of NFT/Rotoselect and Fraxis, respectively.

and adopted the rotational axis that maximized the objective
function as the optimal axis.

Since it is not possible to employ identical states as the
initial conditions consistently across NFT, Rotoselect, Fraxis,
and FQS, we separately compared FQS with Fraxis and
NFT/Rotoselect by preparing different initial conditions as
shown in Fig. 4. In comparison to NFT with Ry ansatz and
Rotoselect, the initial rotational axes in FQS were slightly
perturbed from the y axis while identical values were assigned
to the initial rotational angles, which were randomly selected.
Otherwise, the axes were not updated from the initial direction
keeping the state vector in real space. Although unvarying axis
is not trivial from Eq. (13), it seems to be reasonable because
a state expressed by Ry ansatz corresponds to a real vector,
and a resulting state by exact ITE based on the stationary
Hamiltonian initiating from a state in real vector space triv-
ially remains in real. This conjecture is consistent with the
result that the trajectory by Rotoselect was equivalent to that
by NFT where the y axis was constantly selected. In addition,
this unvaried selection of the rotational axes in Rotoselect was
also the case, even if the initial rotational axes were slightly
perturbed as in FQS. Note that the axis rearrangement from
the y axis is critical for the Heisenberg model because its
ground state cannot be expressed by the Ry ansatz. Indeed,
NFT based on the Ry ansatz did not sufficiently reach to the
ground state. Although the effect of the initial perturbation
was not pronounced in the beginning of the simulation, the
difference of ITE paths of FQS and NFT became distinct
around τ = 100 as seen in Fig. 4, which implies the complex
component gradually increased in the course of the simulation
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TABLE II. Simulation settings of imaginary-time evolution in Secs. III A and III B.

Simulation setting A B C D E F

Hamiltonian Ĥ 1D Heisenberg model H2 molecule
No. of qubits 5 4
No. of Trotter terms K 20 15
Time step Δτ 0.50 1.0
Ansatz structure Fig. 3(a) Fig. 6
Simulation method FQS(1q, 3p) FQS(1q, 1p) FQS(2q, 1p) FQS(2q, 2p) FQS(2q, 1p)
Gate type General RzRyRz φ = π Excitation- Fig. 7

one-qubit conserving
No. of parametrized gates D 15 45 10 20
No. of gate sets P 15 45 5 10
Hardware efficiency � 1 2

and became dominant at this point. In this case, obviously,
FQS is advantageous with respect to expressibility for the
ground state.

As confirmed in the previous study [31], the ansatz shown
in Fig. 3(a) with the Fraxis gates can express states with
lower energy than the Ry ansatz. FQS, however, made distinct
difference in comparison with Fraxis as in Fig. 4, where we
employed the identical initial states whose rotational axes
were randomly selected. Since in conventional optimization
rotational axes of single-qubit gates are fixed, the initial choice
of the axes, namely, ansatz design, plays critical roles. In
contrast, because the rotational axes are adaptively switched
during simulation in circuit structure optimization such as
Rotoselect [30] and Fraxis [31], they alleviate circuit design
dependency achieving higher expressibility. While the axis
selection is limited to x, y, and z axes in Rotoselect, Fraxis
can find better axes under the condition of fixed rotational
angle θ = π . Nevertheless, due to the fixed rotational angles,
Fraxis may not be sufficient to reproduce accurate states on
ITE path. Indeed, Fig. 4 shows that the ITE path reproduced
by FQS is more accurate than the one by Fraxis. This shows
that the full expressibility of single-qubit gates in FQS brings
large improvement in ITE simulations. In addition to higher
expressibility, the advantage of FQS is its simultaneous opti-
mization of multiparameters. Similar to NFT and Fraxis, FQS
can analytically obtain the exact landscape of cost function.
While the number of parameters to be updated at each iter-
ation is limited to one in NFT and two in Fraxis, FQS can
update at most three parameters which fully parametrize a
single-qubit gate. To confirm it, we carried out additional ITE
simulations for the 1D Heisenberg model in Eq. (30) with the
ansatz in Fig. 3(a).

For fair comparison, we prepared two settings such that
two simulations were performed on PQC with equivalent
expressibility. In the first condition (setting A), all D = 15
single-qubit gates Ud (ϑ ) in the ansatz with two layers were
treated by FQS(1q, 3p) as shown in Table II. On the other
hand, in the second condition (setting B), these 15 gates
were decomposed into 15 Ry and 30 Rz gates (D = 45) as
U (ϑ ) = Rz(φ)Ry(ψ )Rz(λ), and the 45 gates were sequentially
optimized with NFT.

We carried out 30 independent simulations with differ-
ent initial parameters that were shared by the two settings,

where the initial rotational axes were determined randomly,
and the initial rotational angles were fixed to π . Figure 5
shows the cumulative distributions of the fidelity between
the ground state and the resulting state at 40, 80, 160, and
320 time steps. Since it is less likely to be trapped at local
minimum for ITE, the fidelity in both simulations became
gradually larger with the time steps. Note that because the
total number of gates in NFT simulation is larger than that
in FQS, actions of the respective ITE propagators in NFT are
scaled down more than FQS for better reproduction even with
the coordinate-wise update. Nevertheless, it is obvious that
FQS reproduced ITE paths more accurately than NFT, which
shows the importance to simultaneously optimize multiple
parameters.

FIG. 5. Cumulative distributions of the fidelity between the
ground state and the imaginary-time evolved state in 1D Heisenberg
model using the PQC shown in Fig. 3(a) with two layers. Dashed
orange and solid blue lines represent the cumulative distributions of
NFT and FQS(1q, 3p), respectively.
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FIG. 6. The excitation-conserving PQC for H2 molecule with
Jordan-Wigner mapping.

It should be also noted that NFT and FQS(1q, 3p) require
three and seven types of measurements per gate update, re-
spectively (see Sec. II B). NFT was originally proposed for
variational quantum eigensolver (VQE), where the number of
required measurement types can be reduced to two except
for the first optimization step because the cost function is
equivalent to the observable (expectation value of energy),
and thus the estimated value of the cost function in the prior
optimization can be reused in the following optimization. In
contrast, because in this time-evolution simulation the objec-
tive function in Eq. (5) differs from the observable in Eq. (21),
it is not possible to reduce the number of measurement types
in each optimization step. As a result, the NFT optimization
of a general single-qubit gate requires nine measurement types
because the gate is decomposed into three fixed-axis rotation
gates, e.g., one Ry and two Rz gates. Therefore, the compu-
tational cost for a general single-qubit gate by FQS(1q, 3p),
which requires seven measurement types, is actually smaller
than that of NFT while achieving higher accuracy due to
taking into account correlation among parameters.

B. H2 molecule with FQS(2q, 2p)

As described in Sec. II, the FQS can be applied to the
set of two-qubit gate decomposable as in Eq. (22). In this
section, we confirm performance of the FQS for excitation-
conserving gates useful for quantum chemical calculation.
We chose H2 molecule with the atomic distance of 0.74 Å
as a benchmark system, where the molecular Hamiltonian
obtained by Hartree-Fock method with STO-3G basis was
mapped to four-qubit Hamiltonian by Jordan-Wigner trans-
formation. The imaginary-time propagators were prepared as
well as in the previous section with fixed time step �τ = 1.0.
In this section, we employed an ansatz with the structure
shown in Fig. 6.

When compared to the HOP and RBS gates, the excitation-
conserving gate has an additional degree of freedom, which
allows to express relative phase in complex space. Although
the advantage of FQS(2q, 2p) is the simultaneous update of
two parameters taking the correlation into account, the ad-
vantage is not unveiled trivially in treatment of the molecular
Hamiltonian. This is because the eigenstates can be repre-
sented by vectors in real space. To confirm this point, we
compared two ITE simulations, where ψ and φ are variable
for FQS(2q, 2p), while φ = π for FQS(2q, 1p). Here, we
refer the simulation conditions for FQS(2q, 1p) and FQS(2q,
2p) as setting C and -D, respectively (see Table I). In both
settings, the gate set �p consists of the single-qubit gates in
pth excitation-conserving gate.

FIG. 7. Decomposition of the excitation-conserving gate
N (ψ, φ) using Ry and Rz gates.

Given φ = π as an initial condition, FQS(2q, 2p) yielded
the same trajectory as FQS(2q, 1p) with φ = π (data are not
shown). The unvarying behavior of φ is not trivial, but seems
to be reasonable because a state represented by a real vector
remains in real space by ITE with molecular Hamiltonian.
Hence, for FQS(2q, 2p) simulations we randomly chose the
initial value of φ. On the other hand, FQS(2q, 1p) and FQS(2q,
2p) shared the same initial values of ψ , which were randomly
generated.

Figure 8(a) shows all simulations started from the sim-
ilar energy level, which implies the initial states contain
the ground state with amplitude in the same scale. Note
that FQS(2q, 1p) with φ = π reached to the chemical accu-
racy (�E = 10−3 a.u.) in the best case, which implies the
excitation-conserving ansatz restricted to φ = π can suffi-
ciently cover the ground state. However, in the worst case of
FQS(2q, 1p), the energy was not improved from the HF level,
which implies that the expressibility for the ground state does
not necessarily guarantee sufficient expressibility to reproduce
accurate ITE path. In contrast, FQS(2q, 2p) initiating from a
state in complex space outperformed FQS(2q, 1p) with φ =
π . This is presumably because FQS initiating from complex
vector can make use of larger Hilbert space which includes not
only complex space represented by φ �= π , but also extended
real space caused by the phase cancellation among φ’s in
excitation-conserving gates. Thus, the time evolution in FQS
can possibly be described better with φ �= π .

Next, we evaluated the correlation of two parameters
(ψ, φ) in each excitation-conserving gate. To this end, we de-
composed an excitation-conserving gate into Ry and Rz gates
as Fig. 7 according to [47]. Then, we sequentially updated
ψ and φ with FQS(2q, 1p) in different gate sets (setting F).
Since these multiple Ry and Rz gates share the parameters
ψ and φ, respectively, the required controlled operations still
remain two for one excitation-conserving gate, even after the
gate decomposition. On the other hand, the number of opti-
mizations are doubled as P = 10, that is effective time step
is scale down, according to increase of the total number of
parametrized gates D, which can lead to overestimation of
its performance through the scaling effect of the propagator
e−ihÔ�t/P in Eq. (6). Hence, for fair comparison with FQS(2q,
1p) and FQS(2q, 2p), we carried out a twice sweep update for
each optimization of Eq. (6) in the FQS(2q, 2p) method, where
we employed P = 10 allowing overlap of � (see Appendix F).
We refer this simulation condition as setting E in Table II.

For statistical accuracy, we independently conducted 20
ITE simulations by using randomly generated common initial
states for both FQS(2p, 1p) and FQS(2q, 2p) methods. Fig-
ure 8 showed a box plot of the energy in course of simulation
time, which exhibits distinct difference where FQS(2q, 2p)
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FIG. 8. Comparison of (top) FQS(2q, 2p) and FQS(2q, 1p) with
fixed φ = π (bottom) simultaneous by FQS(2q, 2p) and sequential
updates by FQS(2q, 1p) of θ, φ with respect to energy in the course
of simulation steps N with �τ = 1. Black dashed and red solid
lines correspond to the results of FQS(2q, 1p) and FQS(2q, 2p),
respectively. Box and whisker plot denote quantiles obtained from
the ITE simulation results with 20 different initial parameter sets.
Horizontal dashed line represents the HF energy level.

reached to lower-energy states when compared to FQS(2q,
1p). This discrepancy implies the importance of taking into
account correlation between ψ and φ.

FQS(2q, 2p) requires eight-type measurements to evaluate
Eq. (28) because Gxy = −Gyx holds for the excitation-
conserving gate. On the other hand, four-type measurements
are required in FQS(2q, 1p) for the respective gates. There-
fore, the number of required measurements for a single
excitation-conserving gate in Eq. (22) with FQS(2q, 2p) is
equivalent to that in separate optimization with FQS(2q, 1p).

Considering the twice sweep, FQS(2q, 2p) simulation in
Fig. 8(b) is twice as expensive with respect to the measure-
ment cost. To evaluate the simulation accuracy with consistent
measurement cost, FQS(2p, 1p) with setting F should be com-
pared with FQS(2q, 2p) with setting D where all parameters

FIG. 9. Total magnetization per site (top) and infidelity (bottom)
from the exact state obtained from dynamics simulations for four-
qubit 1D Ising model from the initial states |0〉⊗4. The gate set in one
optimization problem in Eq. (7) consists of all parametrized gates in
the two-layer PQC with a linear entangler as shown in Fig. 3(b).

are updated once per a propagator. Eight types of measure-
ments are required in both simulations.

As shown in Fig. 8, notably, the performance of FQS(2q,
2p) (setting D) was almost retained in this case when com-
pared to the twice-sweep simulation (setting E) in Fig. 8(b),
although the worst case in single sweep resulted in slightly
larger energy. Altogether, the FQS(2q, 2p) application to
the excitation-conserving gate realizes incorporation of the
parameter correlation without any additional cost when com-
pared to FQS(2q, 1p), which remarkably outweighs the time
scaling of the propagator according to the number of the
parametrized gates.

C. Real-time evolution for 1D Ising model with FQS(1q, 3p)

We applied the FQS algorithm to real-time evolution of a
four-qubit 1D Ising model with transverse field under the open
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boundary condition. The Hamiltonian is given as

H = −J
N−2∑
i=0

ZiZi+1 − h
N−1∑
i=0

Xi, (31)

where J = h = 1. We employed the ground state |0〉⊗4 of
the Hamiltonian without transverse field as the initial state
at t = 0. The time propagators were prepared using the first-
order Trotter decomposition with fixed-time step �t = 0.01.
We used the two-layer PQC with a linear entangler as shown
in Fig. 3(b), where the single-qubit gate Ud represents a
general single-qubit gate in FQS, Rz-Ry-Rz gates in NFT, a
Fraxis gate Rn(π ) in Fraxis, and Rx, Ry or Rz gate in Ro-
toselect. FQS and NFT simulations were performed on the
PQC with equivalent expressibility as in the previous sec-
tion. In Rotoselect, we selected the optimal rotation gate
from the discrete set {Rx, Ry, Rz} at every optimization as in
result A.

In order to demonstrate the tradeoff between simulation
accuracy and hardware efficiency, we prepared several sim-
ulation settings with different values of |�|. In the respective
optimizations with |�| > 1, we conducted the FQS algorithm
|�| times in coordinate-wise fashion. Because in the case of
|�| > 1, more than one parametrized gate is different be-
tween two PQCs U †(�ϑ (p−1)) and U ({ϑd}; �ϑ (p−1)), d ∈ �p,
we employed the Hadamard test with an ancilla qubit and
at most O(|�p|) controlled gates instead of direct measure-
ments. In Fig. 9, we show the results of |�| = D, where all
parametrized gates are sequentially updated to approximate
the action of one propagator e−ihk Ôk�t . We leave the results
with |�| < D, which are more hardware-efficient cases, in
Appendix E.

Figure 9 shows total magnetization per site 〈N−1 ∑
i Zi〉

and infidelity at each time step, where the infidelity is defined
as

1 − ‖ 〈ψFQS(t )| e−iHt |0〉⊗4 ‖2. (32)

The impact of optimization method seems to be more dis-
tinct in real-time simulation than that in imaginary time. The
NFT method failed to reproduce the dynamics of the total
magnetization, where the magnetization remained the initial
value, while the other methods were able to reproduce the
evolution to some extent. For different initial conditions and
different |�|, FQS still outperformed NFT for all cases (see
Appendix E). Considering equivalent expressibility of PQC
between NFT and FQS, the results imply parameter corre-
lations within a single gate (intragate correlation) are more
important in real-time dynamics than in imaginary-time evo-
lution. In addition, the comparison between Rotoselect and
Fraxis is also insightful. Fraxis can take into account more
correlation of single-gate parameters (see Appendix E). In
reality, however, Fraxis did not necessarily lead to better dy-
namics than Rotoselect as in Fig. 9. We suppose this reflects
the inability of Fraxis to describe a certain gate subset in-
cluding the identity gate which Rotoselect covers, which may
be required in better description of real-time evolution. Since
FQS retains both advantages of Fraxis and Rotoselect, it is
reasonable that FQS always led to the most realistic dynamics
in the comparison.

IV. CONCLUSION

In this paper, we proposed a method called FQS for time-
evolution simulation with full optimization of a single-qubit
gate with respect to its rotational angle and axis. The time evo-
lution is reproduced by sequential optimization of Euclidean
norm between target and trial states, instead of the conven-
tional gradient-based approach. Because FQS can incorporate
correlation among parameters into optimization, it can achieve
more accurate simulation. We extended FQS to the excitation-
conserving gates that have been widely employed in quantum
chemical applications. To verify the performance of the pro-
posed method, we applied it to quantum imaginary-time
evolution for 1D Heisenberg model and H2 molecule and
confirmed that it effectively led to quantum states that were
closer to the true ground states. We also applied FQS to
real-time evolution of 1D Ising model. Unlike imaginary-time
evolution, the most hardware-efficient setting with FQS did
not reproduce the dynamics with satisfactory accuracy in real-
time evolution, although the advantage of FQS over other
methods was significant. However, its dynamics accuracy was
drastically improved when the hardware-efficient condition
was relaxed with the use of O(m) controlled gates, where m is
the number of qubits.

Although in this work the gate updating order is fixed from
left to right (from the one closest to the input qubits to that
closest to the output qubits) of the quantum circuit assuming
generality of ansatz and Hamiltonian, the order may not be
optimal and there remains room for improvement. One way
to determine the order is based on the support of the time
propagator. These technical improvements may allow the use
of FQS in real applications implemented on a bigger size
circuit; for instance, calculation of broad vibrational absorp-
tion spectra of floppy molecules [48], simulation of short-time
molecular dynamics observed by femtosecond time-resolved
spectroscopy [49]. Lastly note that, other than time-evolution
simulation, FQS is applicable to general optimization prob-
lems whose objective functions are given by Euclidean norm
between a target state and a trial state of a PQC. Therefore,
an improved FQS may also be potentially applicable to such
optimization problems in a practical level.
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APPENDIX A: DERIVATION OF FREE QUATERNION
SELECTION FOR QUANTUM SIMULATION

In this Appendix, we derive the objective function of
|�| = 1 (|�p| = 1, ∀ p) tailored to a general single-qubit
gate Rn(θ ). Let the parameters of the dth parametrized gate
be ϑd = (θd , nd ) = (θd , ndx, ndy, ndz ). Using a parameter set
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�ϑ = (ϑ1, ϑ2, . . . , ϑD), an arbitrary PQC is written as U (�ϑ ).
For simplicity, we suppose the dth gate set �d contains only
the dth parametrized gate and the total number of the gate sets
is D. Focusing on �d , the PQC is decomposed as

U (ϑd ; �ϑ (d−1)) = V2Rnd (θd )V1, (A1)

where V1 and V2 are the partial circuits prior and posterior to
the dth gate Rnd (θd ), respectively. By substituting Eq. (A1)
into the objective function F (d )(ϑd ),

F (d )(ϑd ) ≡ Re
[ 〈

ψ
(d−1)
�τ/D

∣∣U (ϑd ; �ϑ (d−1)) |0〉 ]
= Re

[〈
ψ

(d−1)
�τ/D

∣∣V2V1 |0〉] cos

(
θd

2

)

+ Im
[〈
ψ

(d−1)
�τ/D

∣∣V2nd · σV1 |0〉] sin

(
θd

2

)

= Re
[〈
ψ

(d−1)
�τ/D

∣∣V2V1 |0〉] cos

(
θd

2

)

+
∑

s=x,y,z

ndsIm
[〈
ψ

(d−1)
�τ/D

∣∣V2σsV1 |0〉] sin

(
θd

2

)
,

(A2)

where |0〉 ≡ |0〉⊗m and

|ψ (d−1)
ξ 〉 ≡ e−hÔξU (�ϑ (d−1)) |0〉 . (A3)

Here, we introduce a convenient notation aμ ≡ (a0, a), where
aμ (μ = 0, x, y, z) denotes the μth component of a set

(a0, a) = (a0, ax, ay, az ). Using this notation, we define ςμ

and gμ as follows:

ςμ ∈ {σ0,−iσ} ≡ {σ0,−iσx,−iσy,−iσz}, (A4)

gμ ∈ {g0, g} ≡ {g0, gx, gy, gz}, (A5)

where σ0 denotes identity, and each component of gμ is

gμ = Re
[〈ψ (d−1)

�τ/D |V2ςμV1 |0〉], μ = 0, x, y, z. (A6)

Substituting Eq. (A6) into (A2), we obtain

F (d )(ϑd ) = g0 cos

(
θd

2

)
+ nd · g sin

(
θd

2

)

=
√

g2
0 + (nd · g)2 sin

[
θd

2
+ arctan2(g0, nd · g)

]
.

(A7)

The exact solution for maximization of F (d )(ϑd ) is trivially
given as

n∗
d = g

‖g‖ , θ∗
d = π − 2 arctan2(g0, ‖g‖) + 4lπ, (A8)

where l ∈ Z is chosen such that θ∗
d ∈ [0, 4π ]. The sign of n∗

d
does not affect the expectation values while it changes the
global phase.

APPENDIX B: EVALUATION OF gμ WITHOUT HADAMARD TEST

Here, we clarify that gμ in Eq. (A6) can be estimated by evaluation of several expectation values. To this end, we transform
gμ as

gμ = Re
[〈
ψ

(d−1)
�τ/D

∣∣V2ςμV1 |0〉]
= cosh

(
�τ

D
h

)
Re

[〈
ψ

(d−1)
0

∣∣V2ςμV1 |0〉] − sinh

(
�τ

D
h

)
Re

[〈ψ (d−1)
0 | ÔV2ςμV1 |0〉]

= cosh

(
�τ

D
h

)
Re

[
〈0|V †

1 R†
n′

d
(θ ′

d )ςμV1 |0〉
]

− sinh

(
�τ

D
h

)
Re

[
〈0|V †

1 R†
n′

d
(θ ′

d )V †
2 ÔV2ςμV1 |0〉

]

= cosh

(
�τ

D
h

)
Re

[
tr
(
ςμR†

n′
d
(θ ′

d )ρ ′
)]

− sinh

(
�τ

D
h

)
Re

[
tr
(

Ô′ςμR†
n′

d
(θ ′

d )ρ ′
)]

, (B1)

where we employed the condition that U (ϑd ; �ϑ (d−1)) differs from U (�ϑ (d−1)) with respect to only the dth gate in the third equality.
ϑ ′

d = (θ ′
d , n′

d ) denotes the dth component of �ϑ (d−1), and ρ ′, Ô′ are defined as

ρ ′ ≡ Rn′
d
(θ ′

d )V1 |0〉 〈0|V †
1 R†

n′
d
(θ ′

d ), (B2)

Ô′ ≡ V †
2 ÔV2. (B3)

Note that the first term in Eq. (B1) is transformed as

Re
[
tr
(
ςμR†

n′
d
(θ ′

d )ρ ′)] =
{

cos (θ ′
d/2), μ = 0

n′
dμ sin (θ ′

d/2), μ �= 0.
(B4)

Proof. For μ = 0,

Re
[
tr
(
ςμR†

n′
d
(θ ′

d )ρ ′)] = Re
[
tr
(
R†

n′
d
(θ ′

d )ρ ′)] = Re

{
tr

[
cos

(
θ ′

d

2

)
ρ ′ + i sin

(
θ ′

d

2

)
n′

d · σ ρ ′
]}

= cos

(
θ ′

d

2

)
.

062421-13



KAITO WADA et al. PHYSICAL REVIEW A 105, 062421 (2022)

For μ �= 0,

Re[tr(ςμR†
n′

d
(θ ′

d )ρ ′)] = Re
[
tr
(

(−iσμ)R†
n′

d
(θ ′

d )ρ ′
)]

= Im

{
tr

[
cos

(
θ ′

d

2

)
σμρ + i sin

(
θ ′

d

2

)
σμn′

d · σ ρ ′
]}

= sin

(
θ ′

d

2

) ∑
p=x,y,z

Im
[
tr(in′

d pσμσpρ
′)
]

= sin

(
θ ′

d

2

) ∑
p=x,y,z

Im

[
tr

(
in′

d p

{
δμpI +

∑
q=x,y,z

iεμpqσq

}
ρ ′

)]

= n′
dμ sin

(
θ ′

d

2

)
.

To obtain the above, we used a relation σaσb = δabI + ∑
c=x,y,z iεabcσc, where δab and εabc denote the Kronecker delta and the

three-dimensional Levi-Civita symbol, respectively. �
Because a parameter ϑ ′

d = (θ ′
d , n′

d ) is already known, the first term in Eq. (B1) can be calculated without quantum circuits.
Thus, to obtain gμ, only the following quantities in the second term in Eq. (B1) are required:

Re[tr(Ô′ςμR†
n′

d
(θ ′

d )ρ ′)], μ = 0, x, y, z. (B5)

Here, we introduce a real value αμ and a real unit vector βμ = (βμx, βμy, βμz ) such that

Rβμ
(αμ) = ςμR†

n′
d
(θ ′

d ). (B6)

It is straightforward to prove the existence of the αμ and βμ as follows.
Proof. For μ = 0, α0 and β0 are trivially given as

α0 = −θ ′
d , β0 = n′

d . (B7)

For μ �= 0, ςμR†
n′

d
(θ ′

d ) can be transformed as

ςμR†
n′

d
(θ ′

d ) = −i cos

(
θ ′

d

2

)
σμ + sin

(
θ ′

d

2

) ∑
p=x,y,z

n′
d pσμσp

= −i cos

(
θ ′

d

2

)
σμ + sin

(
θ ′

d

2

) ∑
p=x,y,z

n′
d p

(
δμpI +

∑
q=x,y,z

iεμpqσq

)

= −i cos

(
θ ′

d

2

)
σμ + sin

(
θ ′

d

2

) ∑
p=x,y,z

(
n′

d pδμpI +
∑

q=x,y,z

iεμpqn′
d pσq

)

= −i cos

(
θ ′

d

2

)
σμ + n′

dμ sin

(
θ ′

d

2

)
I + i sin

(
θ ′

d

2

) ∑
p,q=x,y,z

εμpqn′
d pσq

= n′
dμ sin

(
θ ′

d

2

)
I − i cos

(
θ ′

d

2

) ∑
q=x,y,z

δμqσq + i sin

(
θ ′

d

2

) ∑
p,q=x,y,z

εμpqn′
d pσq

= n′
dμ sin

(
θ ′

d

2

)
I − i

∑
q=x,y,z

[
cos

(
θ ′

d

2

)
δμq − sin

(
θ ′

d

2

) ∑
p=x,y,z

εμpqn′
d p

]
σq

= n′
dμ sin

(
θ ′

d

2

)
I − i

√
1 − n′2

dμ sin2

(
θ ′

d

2

) ∑
q=x,y,z

[
cos

( θ ′
d
2

)
δμq − sin

( θ ′
d
2

) ∑
p=x,y,z εμpqn′

d p

]
√

1 − n′2
dμ sin2

( θ ′
d
2

) σq. (B8)
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Thus, one can always find αμ and βμ, (μ �= 0) as follows:

αμ = 2 arctan2

(√
1 − n′

dμ
sin2

(
θ ′

d

2

)
, n′

dμ sin

(
θ ′

d

2

))
, (B9)

βμq = 1√
1 − n′2

dμ sin2
( θ ′

d
2

)
(

cos

(
θ ′

d

2

)
δμq − sin

(
θ ′

d

2

) ∑
p=x,y,z

εμpqn′
d p

)
, q = x, y, z. (B10)

�
We can evaluate all the required quantities, i.e., gμ via the generator G(θ, n) defined as

G(θ, n) ≡ Re[tr(Ô′Rn(θ )ρ ′)] = cos

(
θ

2

)
tr
(
Ô′ρ ′) + sin

(
θ

2

) ∑
p=x,y,z

npIm[tr(Ô′σpρ
′)]. (B11)

Here, let Q±,ν be an expectation value of Ô′ defined as

Q±,ν ≡ tr(Ô′e∓iσνπ/4ρ ′e±iσνπ/4), ν = 0, x, y, z (B12)

where σν ≡ (I, σ ). Then, simply Eq. (B11) is written as

G(θ, n) = cos

(
θ

2

)
Q+,0 + sin

(
θ

2

) ∑
p=x,y,z

np

2
(Q+,p − Q−,p). (B13)

Therefore, Eq. (B5) is evaluated with seven types of measurements Q+,0,Q±,x,Q±,y,Q±,z and classical computation for
Eq. (B6).

APPENDIX C: RELATIONSHIP OF FQS WITH NFT AND FRAXIS

In this Appendix, we derive FQS(1q, 2p) (Fraxis) and FQS(1q, 1p) (NFT) from FQS(1q, 3p). First, in a Fraxis gate the
rotational angle θ in a general single-qubit expression Rn(θ ) is fixed to π while the rotation axis n is arbitrary. Substituting
θd = π and ϑd = nd into Eq. (A2), we obtain the objective function for Fraxis:

F (d )
Fraxis(nd ) =

∑
s=x,y,z

ndsIm
[〈
ψ

(d−1)
�τ/D

∣∣V2σsV1 |0〉] = nd · g. (C1)

Note that g0 in Eq. (A6) does not appear in this objective function. Thus, the optimal n∗
d that maximizes the objective function is

trivially n∗
d = g/‖g‖ as in Eq. (A8). The same procedure as for FQS(1q, 3p) can be used for evaluation of g, and thus FQS(1q,

2p) requires only six types of measurements Q±,x,Q±,y,Q±,z.
In NFT method a single-qubit gate Rn(θ ) has a fixed axis ñ such as Rx(θ ). From Eq. (A2), the objective function for NFT is

given as

F (d )
NFT(θd ) = Re

[〈
ψ

(d−1)
�τ/D

∣∣V2V1 |0〉] cos

(
θd

2

)
+ Im

[〈
ψ

(d−1)
�τ/D

∣∣V2ñd · σV1 |0〉] sin

(
θd

2

)

= g0 cos

(
θd

2

)
+ gd sin

(
θd

2

)

=
√

g2
0 + g2

d sin

[
θ

2
+ arctan 2(g0, gd )

]
, (C2)

where gd ≡ ñd · g. Then, we only evaluate g0 and gd for executing FQS(1q, 1p). More specifically, the following quantities
corresponding to the second term in Eq. (B1) are required:

Re[tr(Ô′R†
ñd

(θ ′
d )ρ ′)], (C3)∑

p=x,y,z

ñd pRe[tr(Ô′ςpR†
ñd

(θ ′
d )ρ ′)] = Re[tr(Ô′ñd · (−iσ)R†

ñd
(θ ′

d )ρ ′)] = Re[tr(Ô′R†
ñd

(−π )R†
ñd

(θ ′
d )ρ ′)] = Re[tr(Ô′R†

ñd
(θ ′

d − π )ρ ′)].

(C4)

Defining α0 and αd as −θ ′
d and −θ ′

d + π , respectively, we rewrite Eqs. (C3) and (C4) all together in the form of a generator
GNFT(θ ) defined as

GNFT(θ ) ≡ Re[tr(Ô′Rñd (θ )ρ ′)] = cos

(
θ

2

)
Re[tr(Ô′ρ ′)] + sin

(
θ

2

)
Im[tr(Ô′ñd · σρ ′)]

= cos

(
θ

2

)
Q+,0 + sin

(
θ

2

)
(Q+,d − Q−,d )

2
, (C5)
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where the expectations Q+,0,Q±,d are defined as

Q+,0 ≡ tr
(
Ô′ρ ′), Q±,d ≡ tr

(
Ô′e∓in̄d ·σπ/4ρ ′e±in̄d ·σπ/4

)
. (C6)

Then, we can evaluate Eqs. (C3) and (C4) in the same way as FQS(1q, 3p), and the number of types of required measurements
is three for FQS(1q, 1p).

APPENDIX D: FQS FOR HOP, RBS, AND SWAP GATES

Considering the case |�| = 2 (|�p| = 2, ∀ p = 1, 2, . . . , P), we derive the analytical optimization for the objective function
in Eq. (6) with specific multiqubit gates. Here we suppose the pth gate set includes only two single-qubit gates with shared
parameters ϑp = (θp, np) as in Eq. (22). Given the SWAP gate in Table I where the rotational axis is fixed to ñ = (0, 0, 1), the
objective function F (p)(ϑp) is rewritten as

F (p)(θp, ñp) = Re
[〈
ψ

(p−1)
�τ/P

∣∣V2ARñp (θp)BR†
ñp

(θp)CV1 |0〉]
= Re

[〈
ψ

(p−1)
�τ/P

∣∣V2ABCV1 |0〉] cos2 θp

2
+ Im

[〈
ψ

(p−1)
�τ/P

∣∣V2Añp · σBCV1 |0〉] cos
θp

2
sin

θp

2

− Im
[〈
ψ

(p−1)
�τ/P

∣∣V2ABñp · σCV1 |0〉] sin
θp

2
cos

θp

2
+ Re

[〈
ψ

(p−1)
�τ/P

∣∣V2Añp · σBñp · σCV1 |0〉] sin2 θp

2

= h0 cos2 θp

2
+ h1 cos

θp

2
sin

θp

2
+ h2 sin

θp

2
cos

θp

2
+ h3 sin2 θp

2

=
√(

h1 + h2

2

)2

+
(

h0 − h3

2

)2

sin [θp + arctan2(h0 − h3, h1 + h2)] + h0 + h3

2
, (D1)

where h0, h1, h2, and h3 are defined as

h0 ≡ Re
[〈
ψ

(p−1)
�τ/P

∣∣V2ABCV1 |0〉], (D2)

h1 ≡ Im
[〈
ψ

(p−1)
�τ/P

∣∣V2Añp · σBCV1 |0〉], (D3)

h2 ≡ −Im
[〈
ψ

(p−1)
�τ/P

∣∣V2ABñp · σCV1 |0〉], (D4)

h3 ≡ Re
[〈
ψ

(p−1)
�τ/P

∣∣V2Añp · σBñp · σCV1 |0〉]. (D5)

Then, the optimal value of θ∗
p for the optimization problem (D1) is given as

θ∗
p = π

2
− arctan2(h0 − h3, h1 + h2) + 2lπ, (D6)

where we choose l ∈ Z satisfying θ∗
p ∈ [0, 2π ].

For the cases of the HOP and RBS gates in Table I, the rotational angle θ is fixed to π and the rotational axis n is restricted
in the XZ plane. Thus, n can be expressed with one parameter ψ as n(ψ ) = ( sin (ψ/2), 0, cos (ψ/2)). Expanding Eq. (25) with
np(ψp) as a function of ψp, we obtain the the objective function that has the same form as Eq. (D1), where h0, h1, h2, h3, and
θp are replaced by G33, G31, G13, G11, and ψp, respectively. Altogether, for any gate types in Table I only Eq. (28) is required
for estimation of the optimal parameter.

APPENDIX E: ADDITIONAL EXPERIMENTS

We provide additional results for real-time evolution with a
four-qubit 1D Ising model in several simulation settings with
different values of |�|. The Hamiltonian, the initial state, the
time propagators, and the PQC were prepared as well as in
the result C. In the most hardware-efficient case (|�| = 1), a
propagator is divided by the total number of single-qubit gates
D, and the respective single-qubit gates are updated according
to Eq. (6) with respect to a divided propagator e−ihk Ôk�t/D,
where D = 12 in FQS-Fraxis-Rotoselect and D = 36 in NFT.
As the next hardware-efficient case, we employed a group up-
date for a propagator of e−ihk Ôk�t/P with the objective function
in Eq. (6). Here, the respective gate sets �p (p = 1, . . . , P)

consist of single-qubit gates in identical layers as in Fig. 3(b)
(i.e., |�| = m, where m is the number of qubits).

Figure 10 shows total magnetization per site and infidelity
at each time step. The NFT method failed to reproduce dy-
namics of the total magnetization for both cases. Although
NFT improved with the use of different initial state as in
Fig. 11, FQS still outperformed NFT. In addition, although the
performance of FQS with |�| = 1 was not necessarily satis-
factory, it was drastically improved with group update in FQS
with |�| = m and D (in result C). The improvement was due
to incorporation of the correlations between multiple gates in
one group (intergate correlation) that are assigned to one di-
vided propagator. In FQS (|�| = 1), the divided propagators
are uniformly assigned to all parametrized gates. However,
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FIG. 10. Dynamics of (left) total magnetization per site and (right) the infidelity of simulation for four-qubit 1D Ising model, where the
initial states were |0〉⊗4. We employed different levels of hardware efficiency (top) “|�| = 1” and (bottom) “layer.”

although the error with respect to one divided propagator can
be suppressed by fine-grained time steps, the action of each
divided propagator may not be sufficiently represented by a
single gate update. On the other hands, in FQS with |�| = m
and D, the action of one propagator was reproduced better
by multigate update in one optimization. Indeed, higher accu-
racy was achieved in FQS with |�| > 1 where the respective
propagators were assigned to more parametrized gates in one
optimization.

APPENDIX F: EXPERIMENTAL DETAILS

1. 1D Heisenberg model

Setting A. The PQC contains 15 parametrized single-qubit
gates, and the gates in an identical layer are indexed from as-
cending order of corresponding qubits (D = 15). We used 15
gate sets in total (P = 15) where �p = {p} (p = 1, . . . , 15).
In the optimization for the respective gate sets �p, the gate
parameters of each gate set were updated once in ascending
order of gate indices.

Setting B. The 15 general single-qubit gates in the FQS
simulation in setting A were decomposed into 15 Ry and 30

Rz gates as U (ϑ ) = Rz(φ)Ry(ψ )Rz(λ) (D = 45). Then, the 45
gate sets are prepared as �p = {p} (p = 1, . . . , 45) (P = 45).
The three gates obtained by decomposition are assigned a
series of indices from the front of the circuit and separately
updated with the NFT method in ascending order of the gate
set index.

Figure 4. In the case of NFT and Fraxis, the single-qubit
gates in Fig. 3(a) were replaced by Ry and Rn(π ) gates, re-
spectively, where indices of the parametrized gates are also
shown in Fig. 3(a). As for Rotoselect, the optimal rotations
were selected among Rx, Ry, and Rz at each optimization. We
consistently employed the following conditions setting A for
all methods.

Figure 5. In the FQS simulation, the general single-qubit
gates were updated in setting A. On the other hand, in the NFT
simulation, the decomposed single-qubit gates were updated
in setting B.

2. H2 molecules

For imaginary-time evolution of H2 molecular Hamilto-
nian, we employed a PQC shown in Fig. 6, which contains five
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FIG. 11. Dynamics of (left) total magnetization per site and (right) the infidelity of simulation for four-qubit 1D Ising model, where the
initial states were randomly generated. “Layer” and “all” denote the level of hardware efficiency. While FQS also outperformed NFT in the
case of |�| = 1, both FQS and NFT were not sufficient to simulate the dynamics, and we omitted the results for visibility.

excitation-conserving gates. An index of single-qubit gates in
pth excitation-conserving gate is assigned from the front of
the circuit such as 2p − 1, 2p.

Settings C and D. Since the excitation-conserving gate
consists of two parametrized single-qubit gates as in Eq. (22),
the optimization gate set in the FQS(2q, *p) simulation are
|�| = 2M (M ∈ N). Here, we employed the minimum gate
set as |�| = 2 and prepared five gate sets (P = 5, D = 10),
and thus �p = {2p − 1, 2p} (p = 1, . . . , 5). The simulations
were conducted with use of two controlled operations.

Setting E. While we use the same ansatz as settings C and
D, we carried out twice sweep update for each optimization
of Eq. (6) in the FQS(2q, 2p) method, where �p = �p+5 =
{2p − 1, 2p} (p = 1, · · · , 5) and thus the total number of gate
sets P = 10.

Setting F. The dth excitation-conserving gates are decom-
posed into multiple Ry and Rz gates as in Fig. 7, where the

parameters (ψ, φ) in excitation-conserving gates are shared
by two Rz gates and two Ry gates, respectively. Then ψ and
φ are separately and sequentially updated once for 10 opti-
mizations in the order of φ1 → ψ1 → φ2 → ψ2 . . . φ5 → ψ5

by using FQS(2q, 1p).

3. Real-time evolution for 1D Ising model

Based on gate indices of the parametrized gates in the
ansatz for four qubits shown in Fig. 3(b), we prepared three
types of the gate sets: (1) �p = {p} (p = 1, · · · , 12), (2)
�p = {4p − 3, . . . , 4p} (p = 1, · · · , 3), (3) � = {1, . . . , 12}.
For convenience, we refer the second and the third settings as
FQS(layer) and FQS(all), respectively. In the FQS(layer) and
FQS(all) simulations, gate parameters ϑ in a single gate set
� are sequentially updated for action of one propagator in
ascending order of the gate index in �.
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