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We provide a proof that entanglement of any density matrix which is block diagonal in subspaces which
are disjoint in terms of the Hilbert space of one of the two potentially entangled subsystems can simply be
calculated as the weighted average of entanglement present within each block. This is especially useful for
thermal-equilibrium states which always inherit the symmetries present in the Hamiltonian, since block-diagonal
Hamiltonians are common, as are interactions which involve only a single degree of freedom of a greater system.
We exemplify our method on a simple Hamiltonian, showing the diversity in possible temperature dependences
of Gibbs state entanglement which can emerge in different parameter ranges.
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I. INTRODUCTION

The quantification of entanglement for mixed states is a
complicated problem, especially once the system under study
becomes larger. This is reflected in the number of entangle-
ment measures which have been proposed and are used to
date and the fact that no unique entanglement measure for
mixed states has been established [1]. Each comes with its
own set of problems, which can be broadly classified as either
the need of numerical optimization of complex functions over
a set of parameters which grows rapidly with system size
or the inability to detect certain types of entanglement. The
first is characteristic of measures such as distillable entan-
glement [2-5], entanglement cost [6], and all convex-roof
entanglement measures, such as entanglement of formation
(EoF) [2,7]. Negativity [8—10], on the other hand, is much
easier to compute, since it requires only diagonalization, but
it has no clear physical interpretation and it suffers from
the second drawback, since it cannot detect bound entangled
states [11-17]. Bound entangled states can occur only for
systems of product dimension larger than 6 in the case of
bipartite systems [18], so they are a small problem unless
systems are relatively large, but they have been found already
for very mixed states of two qutrits [11].

The quest to find efficiently computable entanglement
measures that have a clear physical interpretation contin-
ues [19-21], because entanglement remains an important
factor which predetermines the possibility of very quantum
and nonintuitive behavior of bipartite systems. One approach
is to sacrifice generality in order to obtain solvable scenar-
ios, which allows for the study of entanglement present in
density matrices generated by a certain class of Hamilto-
nians. This has been done for qubits interacting with large
environments via a Hamiltonian, which leads to qubit pure
decoherence [19,22,23], and then generalized to systems of
any size [24]. The result here was that increased understanding
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of this type of entanglement enabled schemes for its measure-
ment to be devised [25-27], which have been experimentally
tested [28].

We will be focusing on the class of convex-roof entan-
glement measures, which are easiest to understand on an
intuitive level, as they are defined by a direct extension of
a good pure-state entanglement measure (concave, additive
under a tensor product, and monotonic) to mixed states. They
come with a seemingly straightforward instruction for com-
putation: Calculate the mean entanglement of the state under
study decomposed into pure states and then minimize over
all possible decompositions. There even exists a way to find
the EoF directly from the density matrix for a system of two
qubits [29] and efficient minimization techniques for small
bipartite systems [30]. Nevertheless, for larger systems these
measures are usually not found directly using the instruc-
tion, because the number of minimization parameters grows
quadratically with system size and the task quickly becomes
numerically complex. Instead they are evaluated on the basis
of various techniques used to make minimization efficient
or to bypass it entirely. These include approximations of
the lower bounds of entanglement measures [31-33], direct
methods for states possessing additional symmetries [34-37],
variational approaches to minimization and conjugate gradi-
ent methods [30,38,39], and the minimization over pure-state
extensions of the state [40]. Another technique exchanges
minimization for random sampling of possible pure-state
decompositions [17,41,42]. The majority of the techniques
benefit greatly from a reduction of the size of the Hilbert space
of the system under study.

In our study we focus on a class of bipartite density ma-
trices which are block diagonal in subspaces of the Hilbert
space which are disjoint in terms of states of one of the
two subsystems. We show that for such density matrices the
convex-roof entanglement measure based on linear entropy
as the pure-state measure of entanglement can be found as
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the average of the amount of entanglement contained within
each block. Hence the minimization has only to be per-
formed within the disjoint subspaces separately, substantially
reducing the complexity of entanglement quantification. We
generalize this result to constructions based on other pure-
state entanglement measures such as entanglement entropy
for the special case when one subsystem is a qubit, be-
cause only then the measures are concave functions of the
purity. One consequence of this from a quantum informa-
tion perspective is that bound entanglement cannot transcend
between such blocks. This allows criteria which disqual-
ify the possibility of the appearance of bound entanglement
to be applied to the blocks separately, thus extending the
applicability of rank and system-size constraints to larger
systems.

A relevant question is whether the desired structure can
appear in physical systems. We mainly focus here on ther-
mal states due to renewed interest in the context of quantum
information [43—-47]. Thermal states have the advantage that
the symmetries within them are directly transferred from the
Hamiltonian; thus if a Hamiltonian is block diagonal, the
corresponding thermal state will also be block diagonal within
the same subspaces. The condition for the blocks to be dis-
joint in terms of one subsystem is commutation of the full
Hamiltonian with a nontrivial operator acting solely on this
part of the system. We provide examples of such Hamiltonians
stemming from solid-state physics. Incidentally, for this class
of Hamiltonians also time evolution can retain the block-
diagonal structure, but this requires additional restrictions to
be imposed on the initial state.

We provide exemplary dependences of entanglement on
temperature in Gibbs states for block-diagonal Hamiltonians,
where the disjoint blocks are small enough to allow for the
use of the Wootters formula [29] while the whole system is
very large. This allows us to demonstrate the efficiency of
the method and study the interplay of entanglement charac-
teristics of each block within the whole state. We find that
parameter changes in the Hamiltonian can lead to qualitative
changes in the behavior of entanglement, some dependent on
how entanglement within a given block reacts to temperature-
induced mixing of the state, but most related to how the
different blocks are mixed. Hence, the use of our simplified
formula allows us to draw conclusions about the physics of
entanglement.

The paper is organized as follows. In Sec. II we describe
the class of mixed states under study and in Sec. III we briefly
comment on convex-roof entanglement measures. Section IV
contains the proof that calculation of measures based on lin-
ear entropy for block-diagonal density matrices of the type
studied can be reduced to averaging of entanglement within
separate blocks and generalizes this to other pure-state entan-
glement measures for the special case when one subsystem
of the bipartite state is a qubit. In Sec. V we comment on
the consequences of this fact from a quantum information
perspective, while in Sec. VI we discuss the types of systems
which will yield the desired form of the state at thermal
equilibrium and during time evolution. In Sec. VI we provide
a simple example and study the temperature dependence of
entanglement in different parameter ranges. Section VII con-
cludes the paper.

II. ENTANGLEMENT IN DENSITY MATRICES BLOCK
DIAGONAL IN DISJOINT SUBSPACES

We are studying bipartite density matrices and for clarity
we will be calling one part the quantum system (QS) and the
other part the environment. This is because the density ma-
trices under consideration are asymmetric with respect to the
two subsystems and an easily made distinction is necessary.

The first assumption made about the form of the joint
QS-environment (QSE) density matrices under study is that
they are block diagonal in some separable QSE basis. Let
us denote this basis by {|s)} for the QS and {|e)} for the
environment, so the density matrix is block diagonal in the
basis {|se) = |s) ® |e)}. We will keep the notation with QS
states on the left and environmental states on the right of the
ket or tensor product throughout the paper. We further assume
that the block-diagonal form is the result of the properties of
the environment, so each block is built of QSE states in which
the whole range of QS states can be present, but the set of
environmental states in each block is orthogonal to the states
in any other block. Hence the class of density matrices under
study can be written as

i) = an,an’ (1)

where the index n distinguishes between the blocks, p, are
probabilities with )" p, =1, and p, are density matrices
occupying disjoint blocks in terms of environment subspaces.
These density matrices not only fulfill p,0,, = 0 for n # m,
but each can be written as

Pu= Y 3 I @ len) (e, @

ss' eqe,

where all states |e,) for a given n constitute a separate sub-
space of the environment so that (e,|e),) = O for all e and ¢’ if
n# m.

Let us exemplify this on the simplest possible nontrivial
density matrix, when the QS is a qubit with states |0) and
|1) while the environment is of dimension N = 4 with states
{10}, [1), |2}, |13)}. A mixed QSE state

o= i(lq’01)(‘l’01|+|q’01><¢01| + [Wa3) (o3| + [D23) (P23]),

3)
with Bell-like components
1
i) = —=(101) + [1/)), (4a)
J «/5 J
1
;) = —(|1i) +]0/)), (4b)
|Dij) ﬁl ) +10/)
can be written in matrix form as
1 1|0 0|0 0 0O
1 1J0O 0(0 000
0 0f1 1|10 00O
Ail 001 1)O0O 00 5
P=3|0000( 1]0 0 )
00O0O0[1 1)JO0O
00O0O0f0O
00O0O0O(0O
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The QSE basis here is separable and is arranged in the order
{100y, |11}, |01), |10), |02), |13}, |03), |[12)} to highlight the
block-diagonal form.

Two block structures are marked on the matrix (5). The
smaller blocks (marked in red) each encompass a subspace of
the Hilbert space characteristic of a single Bell-like state (4).
These blocks do not fulfill our requirements, since the same
environmental states can occur in different blocks, that is,
{10), |1)} in the two upper left blocks and {|2), |3)} in the
lower right blocks. We will be studying density matrices
where the block-diagonal form is of the type marked by the
larger (blue) blocks, which encompass different subsets of the
Hilbert space of the environment.

There is a fundamental difference in these two types of
blocks with respect to entanglement. In the exemplary state,
each smaller block encompasses a maximally entangled Bell-
like state, but the mixture of two states in each larger block is
separable [48], since

%(|‘I’ij>(‘1’ij| + @) {(Di;])
= ()N H @ [H)(+H + =)= @ [=}(=D, (6)

with |4) = 1/4/2(10)£|1)) on the QS and |+)=
1 /\/§(|i) 4 |j)) on the environment. Entanglement of the
whole density matrix (5) depends on the interplay of the
states contained in the small blocks, but it does not depend on
the interplay of the states encompassed by the large blocks,
since the separable form can be obtained in each of them
separately.

As a central result of this paper, we will show that this
result is general for the convex-roof entanglement measure
defined using linear entropy of the reduced density matrix of
one subsystem as the measure of pure-state entanglement and
that the entanglement for any density matrix which is block
diagonal in disjoint subspaces (1) is given by

E®) =Y paE(pn). (7)
n
Here E(- - - ) denotes the convex-roof entanglement measure.

III. CONVEX-ROOF ENTANGLEMENT MEASURES

We will study convex-roof entanglement measures [1,49]
for bipartite mixed-state entanglement. They constitute an
extension of pure-state entanglement measures to mixed states
and the class of measures is defined as follows. Given a good
pure-state entanglement measure such as the entropy (this
can be von Neumann entropy, any of the Rényi entropies, or
linear entropy) of the reduced density matrix of one of the
potentially entangled subsystems, E(|1)), one can construct
a mixed-state measure. This is done by first providing a de-
composition of the density matrix into pure states

EDINAVAIAR ®)

where P, are probabilities and the states |y,,) do not have to be
orthogonal. Note that there is an infinite number of such de-
compositions if the state is not pure and a full parametrization
of the decompositions of a given mixed state quickly grows in
complexity (and the number of free parameters) with the size

of the system [50-52]. The average of pure-state entanglement

E®) =Y PE(Yn) ©)

is not enough to quantify entanglement of state (8), because
the quantity (9) can strongly depend on the decomposition.
Hence convex-roof entanglement measures are defined as the
average of pure-state entanglement minimized over all possi-
ble preparations of the state (decompositions),

E(p) = rrgnE(ﬁ), (10)

where « is the set of all ensembles {P,, |,) (¥,|} representing
the state p, as defined in Eq. (8).

IV. PROOF

We prove Eq. (7) for all density matrices of the form (1)
with Eq. (2) fulfilled in three stages. We first study a QS
composed of a single qubit and an environment with only two
subspaces. In Sec. IV B we generalize the results to QSs of any
size and in Sec. IV C we perform the simple generalization to
environments with any number of subspaces.

A. Qubit and environment with two subspaces

Here we study the density matrix of a qubit (the smallest
possible QS) and an environment, which has two blocks with
respect to the environment. The disjoint subspaces of the en-
vironment are labeled as £} and E, and their subspaces are of
dimensions N; and N,, respectively, with N; + N, = N, where
N is the dimension of the whole environment. The density
matrix can therefore be written as

P = p1p1 + p2p2, (11)

where p; are probabilities with p; + p, = 1 and p; are density
matrices of nontrivial dimension 2N;.

We assume that the pure-state decomposition of each block
that minimizes entanglement is known and we label the states
by |¢f‘), where i = 1, 2 distinguishes between the blocks, so
that

pi=y_d|ef)ef]. (12)
k

where g¥ are probabilities, with }_, g¢ = 1. Hence, entangle-
ment of a given block is given by

E(p) =) _4iE(|8)- (13)
k

We will show that there does not exist any pure-state de-
composition of p for which entanglement is smaller than the
weighed average of the entanglement present in each block,
o)

E(D) = pE(D1) + p2E(D2). (14)

To this end we will first study entanglement of any pure
state, here written as a superposition of states which belong to
the distinct blocks

V) = alyn) + Blvn). 15)
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These states can in turn be written as
i) = x:10) ® |@]) + yil1) ® |g})- (16)

Environmental states |¢?) and |§0i1> do not have to be orthogo-
nal when they belong to the same block, (¢?|p!) # 0,i = 1,2,
but they must be mutually orthogonal when they belong to
different blocks, ((p‘f|<pé’) =0,a,b=0,1.

Hence, if we rewrite the state (15) in a form which simpli-
fies the calculation of the reduced density matrix with respect
to the qubit,

[¥) = al0) ® [Ya) + bI1) @ [¥), a7

the parameters are given by

a= ol + BPx (18a)
b=y + Byl (18b)
while the normalized environmental states are
1
e = — (e |of) + B2 3)). (192)
1
i) = - (enilei) + Brales))- (19b)

The reduced density matrix of the environment is then given
by

PE = @*|Wa) (Wal + D 1Yb) (Wl (20)

and the normalized linear entropy of the reduced density
matrix, which we will use as our pure-state entanglement
measure, is given by

E(ly) =2(1 — Trpp) = 4a*b*(1 — [(Yal¥)»). (21

Since the states of the environment from different subspaces
have to be orthogonal to each other, we obtain a simplified
formula for the scalar product

1
a’b?

|Wal )P = —s [l Pyl + 1B y2{ed o)
(22)
We will now compare the result with the average of the
(normalized) linear entropy of the block-diagonal density ma-

trix
Pep = la [P [Y) (Y] + 1B 1Y) (Wal; (23)

the matrix is a counterpart to the pure state (15), but without
the interblock coherences. This is given by (the tilde signifies
that this quantity is not in fact an entanglement measure, since
it has not been minimized)

E(ppp) = laPE(1Y1) + IBIPE(1¥2)), (24)
with
E()) = 421 = |(¢0]e))P). (25)

The difference between the pure-state entanglement given
by Eq. (21) and the average (24) is given by

E(ly)) — E(pap) = 4laP1B1*[(1x1 1 — [x2[*)?

+ [xv{el]el) — x3va{el]ed) ] > o.
(26)

This quantity is obviously always greater than or equal to zero,
which means that the entanglement present in a superposition
of states from the different blocks is always greater than the
average of the entanglement contained in each block sepa-
rately. Note that this result is only true because the different
blocks are disjoint in terms of the states of the environment.

Given the result (26), it is now straightforward to show that
entanglement present in a density matrix of the form (11) is
found using Eq. (14). Let us start with an arbitrary pure-state
decomposition of p [Eq. (8)], which we henceforth label with
the index A. If we rewrite each state |v,,) as a superposition of
states which belong to the distinct blocks as in Eq. (15) with
coefficients «, and B,, we get

p = Pl i) Wial + 3 PalBal2[W20) (V]

+ Z PnOln,B:hﬂln) (w2n| + ana:ﬂﬂw%)(wlnl-

27

Since the density matrix p is block diagonal with respect to
the different subspaces, the last two terms must be equal to
ZEero, SO

>

= pp =Y Puleal? W) (Wil + Y PalBul[W20) (Y|

(28)
is a different pure-state decomposition of the same density
matrix; we label this decomposition by B. The crucial differ-
ence between the two decompositions is that the latter does
not contain any states which encompass both subspaces, so
we can write the density matrix directly in the form given by
Eq. (11) with individual decompositions,

1 .
= > i) W, (29)

with qi = P,|on|?, q,zl = Pn|,8n|2, and p; = Zn qi,. These are
not necessarily the decompositions which minimize entangle-
ment in each block separately (12).

Using the property (26), we can show that the average of
the (normalized) linear entropy for decomposition A is always
greater than or equal to the average for decomposition B, since

E(pa) =) PE(Ya))

>3 Pl PE(Yia)) + Y PulBul*E (1Y)

= E(pp)- (30)

Hence, for every pure-state decomposition of the block-
diagonal density matrix p there exists a decomposition which
does not contain superposition states between the two sub-
spaces of the environment, for which the average of pure-state
entanglement is smaller or equal. The direct consequence of
this is that minimization of average entanglement over all
possible pure-state decompositions will yield the average of
entanglement minimized in each block separately, and mixed-
state entanglement is given by Eq. (14).
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B. Larger quantum system

The generalization of the result of the preceding section to
a larger QS is rather straightforward. The first step is to show
that pure-state entanglement is always larger than the average
entanglement of the counterpart block-diagonal density ma-
trix, meaning that the inequality

E(1¥)) — E(gp) = 0 €29

still holds. Since we are still studying the situation with
two subspaces, the relevant states are given by Egs. (15)
and (23), with the average linear entropy of state pgp defined
by Eq. (24). We show in the Appendix that the inequality
holds.

Once this is established, we can show that for any de-
composition (A) of the density matrix (8) there exists a
counterdecomposition (B) which only contains states limited
to either block, for which the average pure-state entanglement
is smaller or equal. This is shown as in the preceding section,
by writing each state in decomposition A as in Eq. (15) to
obtain Eq. (27) and then by noting that the off-diagonal terms
that connect the two subspaces must sum to zero, to obtain
decomposition B, given by Eq. (28). As the averaged entangle-
ment in the two decompositions can, as before, be connected
using the pure-state inequality (31) yielding E(p4) > E (pp),
it follows that any convex-roof entanglement measure of a
density matrix which is block diagonal in two blocks which
span different environmental subspaces is given by the aver-
age entanglement contained in each block (14) regardless of
QS size.

C. More subspaces

The generalization to more subspaces is even more
straightforward. Obviously, since entanglement can be found
by averaging the entanglement between two subspaces, if
there are M block-diagonal subspaces in terms of the envi-
ronment states, the entanglement of the whole density matrix
can be found by averaging entanglement between one sub-
space and the remaining M — 1, while the entanglement of
the M — 1 blocks can be found by averaging between one
of them and the remaining M — 2, and so on. Consequently
the entanglement in a matrix of M blocks can be found by
averaging over the entanglement of each block and hence is
given by Eq. (7).

D. Other measures of pure-state entanglement

The proof of Eq. (26) for when the QS is a qubit and
the generalization of this equation for a QS of any size pro-
vided in the Appendix rely on our use of linear entropy as
the base of the measure of pure-state entanglement. This is
because the calculation of linear entropy does not require the
knowledge of the eigenvalues of a density matrix and can
thus be calculated explicitly for arbitrary matrices, even when
diagonalization would require numerical evaluation.

For linear entropy, Eq. (26), regardless of QS size, is equiv-
alent to the statement that the purity of pg [Eq. (20)] and the
average of in-block purities of pg; = Trg|v;) (¥, i = 1,2,
fulfill the inequality

Trpz < lal’Trdg, + B Trdg,. (32)

This means that any function which is a nonincreasing and
concave function of purity will obey

S(Tepz) = S(la*Trpz, + 1B Trpz,)
> |a|*S(Trpz,) + 1BI°S(Trdz,). (33)

In the case of a qubit, von Neumann and the Rényi en-
tropies are nonincreasing and concave functions of purity, so
one can substitute any entanglement measure based on those
entropies into Eq. (26) without any change in the inequality as
long as the QS is a qubit. Hence, the whole proof holds in this
case.

For larger systems the relation between purity and different
entropies is more complex and it is easy to find density matri-
ces with the same purity but different von Neumann entropies.
This means that there is no direct generalization of the re-
sult obtained for linear-entropy-based pure-state entanglement
measures in the situation when the QS is larger than a qubit.

V. CONSEQUENCES

In this section we discuss the consequences of the central
result of this paper, namely, that the convex-roof entangle-
ment measure based on linear entropy can be calculated using
Eq. (7) for density matrices which are block diagonal in dis-
joint subspaces, for the theory of mixed-state entanglement.
Outside the obvious simplification of calculation of the entan-
glement measure, since now minimization can be performed
separately over parts of the QSE Hilbert space, there are two
significant implications.

The first pertains to bound entanglement. Negativ-
ity [8—10], the only measure to quantify mixed-state entan-
glement for larger systems which can be found directly from
the density matrix, is defined as the absolute sum of the
negative eigenvalues of the density matrix after partial trans-
position with respect to one of the subsystems is performed.
In other words, it is a measure based on the Peres-Horodecki
criterion [53,54], which states that if the matrix after partial
transposition is not a density matrix (has negative eigenvalues)
then there is entanglement in the state. The drawback of the
measure and the criterion is that they do not detect certain
entangled states; such states are said to contain bound entan-
glement [11,12]. The existence of bound entanglement and
its experimental demonstration have received a great deal of
attention [13—17], but the exact limitations on when bound en-
tanglement can be expected are not known, with the exception
of small systems and states with additional symmetries.

For density matrices which are block diagonal with re-
spect to disjoint subspaces of the environment, negativity can
obviously be found in each block separately, since partial
transposition of the density matrix with respect to the environ-
ment does not mix the blocks and both the partial transposition
and the calculation of eigenstates can be done in each block
separately. The following question remains: Do bound entan-
gled states exist that transgress these blocks? Since we have
shown that this property translates to a convex-roof entangle-
ment measure, we have shown that bound entanglement will
not exist between separate blocks of this type, at least not such
that can be detected by a measure based on linear entropy. It
can only exist within a single block, hence imposing a new

062419-5



JEDRZEJEWSKI, KINASTOWSKI, AND ROSZAK

PHYSICAL REVIEW A 105, 062419 (2022)

limitation on states where we can expect this type of quantum
correlations.

Practically, this extends the set of states for which bound
entanglement is impossible to systems of any size as long as
individual disjoint blocks are not greater than 6 x 6 matrices.
Less trivially, it also pushes the boundary for the rank of
the studied bipartite state of dimension M x N required for
bound entanglement [18,55], since each block can be treated
separately. Hence if the dimension of the QS is M while
the environment is separated into n disjoint blocks, each of
dimension N;, with N = Zi N;, then the general criterion that
guarantees only free entanglement (not bound), namely, that
the rank of the density matrix has to be less than or equal to
max (M, N), is supplemented by criteria for each block, which
are easier to check because of the smaller size of the blocks.
For bound entanglement to be impossible in a given block, its
rank must be less than or equal to max(M, N;). Note that the
block criteria do not always directly imply the criterion for
the full density matrix, since the dimension of a given block
of the environment can be smaller than the dimension of the
QS.

The second implication pertains to the existence of bi-
partite mixed states which are classified by convex-roof
entanglement measures as containing maximum entangle-
ment. Such states were considered unlikely by the original
paper on the topic [56], but states of the required form were
found in Ref. [57]. It was later shown that the periodic
emergence of such states is possible in qubit-environment
evolutions driven by Hamiltonians that lead to pure dephasing
of the qubit [19] and are important for the emergence of
objectivity [58—64]. Here we find that the emergence of such
states is not limited to pure-dephasing evolutions and that they
can manifest in other classes of interactions. Since there is no
ambiguity between different bipartite pure-state entanglement
measures in classifying states as maximally entangled, this
consequence holds regardless of the measure used.

VI. RELEVANCE

The relevance of the presented proof is based on the answer
to the question of whether there exist physical QSE states
which have the form (1). The answer is yes and we will dis-
cuss some situations when this is the case with particular focus
on thermal QSE states. In fact, the requirement for a density
matrix describing a state at thermal equilibrium corresponding
to temperature T, pr = exp(—BH)/Z, with = 1/kgT and Z
the partition function, is that the Hamiltonian has the required
form.

We will be taking into account the standard form of
a Hamiltonian describing two interacting systems, so H =
Hos + Hg + Hgse, where the first term describes the free
Hamiltonian of the QS, the second of the environment, and the
third term their interaction. We require the full Hamiltonian to
be block diagonal in terms of the states of the environment.
The form of the QS part is therefore arbitrary, yet the interplay
of the interaction and free Hamiltonian of the environment is
crucial.

There is a plethora of systems (which would here constitute
the environment) for which the Hamiltonian commutes with
at least one nontrivial observable A, [Hg, A] = 0. In nontrivial

situations (when the eigenstates of the observable A are degen-
erate in the full Hilbert space of Ay or, physically speaking,
the observable describes only one degree of freedom, such as
spin, of a more complex system) this yields a Hamiltonian
which is block diagonal in subspaces corresponding to a single
eigenvalue of A.

A good example here is the Hubbard model [65-69] as
it commutes with three different operators, each reducing
the dimension of the blocks. First, the Hubbard Hamiltonian
commutes with the number operator, meaning that each sub-
space of the Hilbert space where the states describe an equal
number of particles constitutes a separate block. Furthermore,
the Hamiltonian commutes with the total spin S, component,
so within each block there is a smaller block-diagonal struc-
ture, which differentiates between states with different spin
symmetry. Finally, it also commutes with the parity operator,
yielding even smaller nontrivial blocks. Such symmetries are
common in many-body systems and are seen in, e.g., the
Heisenberg, Bose-Hubbard, 7-J, or Holstein models [65,70—
73].

Obviously, the block-diagonal form of Ay is not sufficient
for the full Hamiltonian to demonstrate block-diagonality
with respect to environmental subspaces. To this end the in-
teraction term must possess the same symmetries as those
that yield the structure of I-?E, namely, if the Hamiltonian of
the environment commutes with the observable A, then also
the interaction term must commute with it, [Hi,, A] = 0. This
means that during the interaction the quantum system would
be susceptible to the effect of the environment with respect
to some degree of freedom while another (described by the
observable A) would not affect it.

If the Hamiltonian has the specific block-diagonal struc-
ture, not only will thermal equilibrium states retain it, but it
will be kept during time evolution as long as the initial QSE
state is a mixture of states contained within single blocks. The
most natural situation when this is obtained is when the initial
QSE state is of product form with the initial environmental
state being a thermal equilibrium state of block-diagonal Hy.
There are then no limitations on the initial states of the QS.

The initial QSE state can also be used to guarantee that
the block-diagonal form of the full density matrix with dis-
joint subspaces is kept throughout an evolution governed by a
Hamiltonian where the subspaces of the blocks partially over-
lap. An example of such a (full) Hamiltonian is one describing
a spin interacting with an environment of spins via the hyper-
fine interaction in the box model approximation [74—78]. Such
a Hamiltonian is block diagonal in disjoint subspaces with
respect to the total spin operator of the environment, but the
block-diagonality which is present in subspaces governed by
the projection of the total spin operator overlaps. By choosing
an initial environmental state which is a mixture of states
contained within these smaller subspaces, but skipping some
spin quantum numbers, one could guarantee that the QSE
density matrix would have the required form throughout the
evolution.

VII. EXAMPLES

As an example we will study a Hamiltonian describing a
qubit interacting with an environment, where the Hamiltonian
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FIG. 1. Entanglement at thermal equilibrium as a function of temperature for the Hamiltonian formed from blocks given by Eq. (34).
Entanglement of formation is shown for (a) finite eigenenergies E,, and nonzero magnetic field 2 = 1, (b) finite eigenenergies E,, and zero
magnetic field 2 = 0, and (c) infinite eigenenergies E,, = oo and nonzero magnetic field 2 = 1. The three curves correspond to different sizes
of the environment: K = 1, blue solid line; K = 10, red dashed line; and K = 100, black dotted line. (d)—(f) Corresponding components of
entanglement for different blocks p,E (p,) for K = 10 with m = —10, blue solid line; m = —8, red dashed line; m = —35, black dotted line;

and m = 0, green dashed line.

is block diagonal in terms of 4 x 4 blocks, where each block
is composed of the same | 1), |{) qubit states and of a different
set of the environmental states |m;) and |m,). Hence each
block is given in the QSE basis {|tm,), [tma), |{my), |[{m2)}
and the different blocks are distinguished by quantum number
m. We limit the size of the blocks so that we can use the
Wootters formula for two qubits to quantify the entanglement
of formation [29] in each block while studying the different
possible thermal behaviors of the entanglement of the whole
state. Since the QS is a qubit, we can use entanglement of
formation even though it is based of von Neumann entropy, as
shown in Sec. IV D.

We study a Hamiltonian that is composed of blocks given
by

Eml 0 0 Mm
N 0 E, O 0
" , (34)
0 0 E, 0
M* 0 0 En

so the full Hamiltonian is H = 3", H™. The blocks are inten-
tionally chosen in such a way that they have two entangled
eigenstates and two separable ones. The Hamiltonian param-
eters are

( Q
E,=0|m+ —

)

(35a)

Q
Enp = —a <m +14 5>, (35b)

M,, = a/K(K + 1) —m(m + 1), (35¢)
mimicking spin systems, with m =0, +1,+2,..., K,
where K = max(m) is an integer. The parameter o =
1/+/K eV is responsible for the strength of the QSE inter-
action. The scaling with +/K is responsible for the interaction
with the whole environment being equivalent regardless of K
for large values of K, which is in accordance with the scaling
prevalent for quantum-dot spin qubits [76,78]. The parameter
Q plays the role of the magnetic field. The E,, denote the
energies of the separable eigenstates.

In Figs. 1(a)-1(c) we plot the EoF between the qubit and
the environment at thermal equilibrium as a function of tem-
perature for the Hamiltonian. The figures correspond to three
sets of Hamiltonian parameters which lead to qualitatively
different behavior of entanglement. Figures 1(a) and 1(b)
have separable eigenenergy specified as E,,, = %(Eml +Ey,),
meaning that within a single block the entangled eigenstates
constitute the ground state and the state with the highest
energy. For Fig. 1(a) the magnetic-field parameter Q2 = 1 is
nonzero, lifting the degeneracy between the blocks, while for
Fig. 1(b) @2 = 0, which leads to degenerate eigenstates (all
four eigenstates within a given block have no m dependence).
In Fig. 1(c) we have 2 = 1 as in Fig. 1(a), but the separable
eigenstates are much higher in energy, E,, = 0o, which means
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that the Hamiltonian effectively has two-dimensional blocks.
The three curves on each plot correspond to K = 1 with 3
blocks (blue solid line), K = 10 with 21 blocks (red dashed
line), and K = 100 with 201 blocks (black dotted line).

Figure 1(a) shows a fast growth of entanglement followed
by slower decay which is cut short by sudden death [79-82]
and beyond a certain temperature there is no entanglement.
The rate of the growth strongly depends on the number of
blocks, so the difference between the K = 10 and K = 100
curves is obvious only on the low-temperature side. There
is no entanglement at zero temperature; this is easy to un-
derstand since the ground state of the whole Hamiltonian is
the lowest-energy state of the m = K block, which is sep-
arable, since Mx = 0. Figure 1(d) contains the temperature
dependence of a choice of components which correspond
to different blocks in the whole EoF curve for K = 10 [the
probability of a given block times the EoF within the block as
in Eq. (7)]. It is interesting to note that sudden death occurs at
different temperatures for different components, which should
yield points in the corresponding full entanglement curve
which are not smooth. These points are not visible because the
sudden death resulting from the rising mixedness of the Gibbs
state with temperature occurs much more gently (although un-
deniably it is present) than seen typically in evolution [81,83—
86].

Figures 1(b) and 1(e) correspond to a situation where there
is a degenerate ground state showing entanglement of the
full state and its components, respectively. The lowest-energy
state of each block is also the ground state of the Hamiltonian;
since these states are entangled (with the exception of the
m = K state), the zero-temperature state is a mixture of entan-
gled states from different blocks and is itself entangled. With
rising temperature we only observe a decay of entanglement
corresponding to the state of an individual block becoming
mixed. The decay is again not exponential due to sudden death
which occurs at some finite temperature.

Note that the striking qualitative difference between the
temperature dependences of entanglement in Figs. 1(a)
and 1(b) is not a result of different entanglement behavior
within the blocks. In fact, the blocks in both cases behave
qualitatively the same, but the probabilities with which the
entanglement of a given block contributes to overall entan-
glement are very different in the two cases. The results of
Fig. 1(a) show a tradeoff between the rising probability of a
given block to occur within the Gibbs state versus entangle-
ment becoming smaller when the state becomes more mixed,
while in the results of Fig. 1(b) the diminishing of entangle-
ment closely follows the decay of entanglement within the
blocks.

This changes in Figs. 1(c) and 1(f), where the blocks
of the Hamiltonian are effectively two dimensional, which
leads to sudden-death—type behavior being impossible due to
the geometry of separable states [83,87,88]. The situation is
equivalent to that of Fig. 1(a) with the exception that only
two eigenstates within each block, the entangled ones, are
parts of the Gibbs state. This leads to no sudden death in the
components and therefore no sudden death in the entangle-
ment of the full state, so actual separability is reached only at
infinite temperature. There is also an obvious effect visible in
the maximum entanglement which can be present at thermal

EoF
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FIG. 2. Entanglement of formation as a function of temperature
T for finite eigenenergies E, and nonzero magnetic field Q =1,
considering only nonpositive values of m. The parameters for (a) and
(b) are the same as in Figs. 1(a)-1(c) and 1(d)-1(f), respectively.

equilibrium, which is much smaller. This is because mixing
of two orthogonal entangled states which are confined to the
same two-dimensional subspace is much more detrimental to
entanglement than the admixture of separable states. Hence
here, although the probabilities with which the blocks are
mixed behave very similarly to that in Fig. 1(a), it is the
different temperature dependence in individual blocks that
leads to qualitatively different results.

In Fig. 2 we show the same situation as in Fig. 1(a), but
where only blocks with nonpositive values of m have been
taken into account. This eliminates the block with m = K,
which has only separable eigenstates and also contains the
ground state of the whole Hamiltonian. Now the ground state
is also entangled, which leads to a more complicated tradeoff
situation between the components shown in Fig. 2(b) starting
with an entangled Gibbs state at zero temperature. The cor-
responding component of entanglement decays very rapidly
with temperature, while all other components start to grow,
which leads to a plateau at small temperatures for larger K
and an initial growth of entanglement for K = 1.

We have shown that the temperature dependence of entan-
glement can be very diverse even in the case of the simple
Hamiltonian which has been studied. This fact is obvious in
terms of possible behavior within a given block of the density
matrix, but our study shows that the interplay of probabilities
pertaining to each block can be just as important. By changing
the way that temperature mixes the different blocks in the
Gibbs state, we have obtained three qualitatively different
scenarios, varying not only in zero-temperature entanglement,
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but also in monotonicity for different temperature regimes.
It is important to note that the curves were obtained by
qualitatively the same Hamiltonian, and a larger change was
necessary only to modify the behavior of entanglement within
a single block.

VIII. CONCLUSION

We have supplied a proof that the convex-roof entangle-
ment measure based on linear entropy is the average over
entanglement within a given block of a density matrix which
is block diagonal in such a way that individual blocks are
contained within different subspaces of one of two potentially
entangled subsystems (say, the environment). Although this
may seem to be an overly specific regime of application, there
are many Hamiltonians which possess this quality. For such
Hamiltonians, any thermal-equilibrium state will inherit the
same quality and the simplification of resulting calculation of
entanglement can be immense. If an initial bipartite state is
also block diagonal in such a way, then the evolution driven by
the Hamiltonian will yield a state which retains the necessary
form at any given time.

We have used the method to find the temperature depen-
dence of entanglement in a Gibbs state of a large system, the
Hamiltonian of which is composed of a multitude of small
blocks. This allowed us to show four very different behav-
iors of entanglement which can occur in different parameter
ranges. These behaviors can depend on how entanglement
reacts to the temperature change within each block and on
the way that different blocks are mixed. We have shown that
the interplay of probabilities can yield striking differences in
the trends of entanglement, both in terms of entanglement at
zero temperature and whether it is ascending or descending
in a given temperature range. Temperature-driven sudden-
death—type behavior is the singular property which requires
sudden-death behavior to occur within each block separately.

On the more quantum-theoretical side, our proof allows
us to infer that bound entanglement cannot traverse multiple
blocks; it is possible only within a single block. This has con-
sequences for the calculation of measures such as negativity,
which cannot detect bound entanglement, making them more
reliable.
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APPENDIX: QUDIT AND ENVIRONMENT WITH
TWO SUBSPACES

Here we will show that entanglement of any pure state that
contains coherences between subspaces of the environment

[Eq. (15)] is greater than or equal to the average entangle-
ment in its block-diagonal counterpart [Eq. (23)] regardless
of the size of the QS. Since we are now dealing with a
qudit, a system of dimension K, the states (16) have to be
replaced by

) = x1s) ® |g5), (AD)
where the summation over s spans the qudit Hilbert space and
the states |s) are a set of basis states on the QS; i = 1, 2 still
differentiates between the subspaces of the environment. This
yields the qudit version of Eq. (17),

=Y als) ®1v), (A2)

with
as = \/|a|2|x;'|2 + 18125 (A3)

and
) = als(‘”f @1} + Bx3]93)).- (A4)

The reduced density matrix of the environment is given by

e =Y @ ly) (sl (A5)

and the normalized linear entropy of the reduced density ma-
trix is

E(y) =4 alaz(1 — |(Yys)").

s#s'

(A6)

Since the states of the environment from different subspaces
have to be orthogonal to each other, the simplified formula for
the scalar product is still valid and we have

1 Sk S s REI s\|2
(sl | = s — [lelPxix (i) + 1812035 {ws s )|
' (A7)
The average of the linear entropy of the block-diagonal
density matrix (23) is still given by Eq. (24), but with

(A8)

EQyin =4y [P (1 = [le]ef)[)-

s#s'

Since the formulas in both cases only differ by an identical
sum over different qudit basis states, it follows that the for-
mula (14) holds for a QS of any size.
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