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Quantum walks exhibit properties without classical analogues. One of those is the phenomenon of asymptotic
trapping—there can be nonzero probability of the quantum walker being localized in a finite part of the
underlying graph indefinitely even though locally all directions of movement are assigned nonzero amplitudes
at each step. We study quantum walks with the flip-flop shift operator and the Grover coin, where this effect has
been identified previously. For the version of the walk further modified by a random dynamical disruption of the
graph (percolated quantum walks) we provide a recipe for the construction of a complete basis of the subspace
of trapped states allowing to determine the asymptotic probability of trapping for arbitrary finite connected
simple graphs, thus significantly generalizing the previously known result restricted to planar 3-regular graphs.
We show how the position of the source and sink together with the graph geometry and its modifications affect
the excitation transport. This gives us a deep insight into processes where elongation or addition of dead-end
subgraphs may surprisingly result in enhanced transport and we design graphs exhibiting this pronounced
behavior. In some cases this even provides closed-form formulas for the asymptotic transport probability in
dependence on some structure parameters of the graphs.
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I. INTRODUCTION

Quantum walks represent a simple but versatile models
exhibiting a multitude of effects resulting from quantum in-
terference [1,2]. Among other aspects like search [3–10] and
state transfer [11,12], recurrence [13–16], or topological phe-
nomena [17–19], the rate of spreading of quantum walks
across the underlying medium [20] (usually represented by a
graph) and their hitting times [21] were studied. It was discov-
ered that on one side quantum walks can provide a quadratic
[22] or in special cases even exponential [23] speedup in
propagation, but on the other side can also exhibit various
types of propagation inhibition including the Anderson local-
ization [24–29]. Even more striking was the further discovery
of trapped states [30]. Trapped states are eigenstates of the
dynamics with a strictly limited support in the position space
of the walk; their overlap with some parts of the position space
is purely zero. These states may induce permanent trapping of
the walker at the vicinity of the origin of an infinite graph with
nonzero probability [30–32]. The same mechanism allows the
quantum walker to indefinitely evade an absorbing sink in
a finite graph [33–36] representing another interesting and
potentially useful application. In quantum search, the trapped
state can cause imperfect detection [37,38].

Similar to other quantum phenomena, trapped eigenstates
are prone to being destroyed by external disturbances of the
quantum walk. With this respect, in a delicate intermediate po-
sition between pure unitary evolution and completely classical
behavior, we can find quantum walks with dynamical perco-
lation, where edges of the underlying graph, representing the
position space, are being made available or prohibited for the

walker randomly during the time evolution [39]. This kind of
external intervention or noise allows the walk to transition
asymptotically into a regime with significantly reduced dy-
namics. Some of the trapped states are removed in the process,
but other will remain present and the simplification of the
asymptotic dynamics reveals them and may allow their com-
plete classification. In addition, these surviving states offer
interesting information about the original unitary dynamics.

Being the result of degeneracy of the quantum coin op-
erator, trapped states are present in quantum walks with
particular coin operators in graphs with vertices of degree 3
or higher [32,40,41]. A genuine example of a quantum walk
with trapped states is the one with the flip-flop shift operator
and the Grover coin. The classification of the corresponding
trapped states in percolated Grover quantum walks was al-
ready carried out for simple connected planar 3-regular finite
graphs [36]. The present paper extends the results to all simple
connected finite graphs and identifies essential graph prop-
erties including positions of the source and the sink, whose
mutual interplay gives rise to intriguing transport features.
This level of generality allows to understand these effects
and also to construct tailored graphs or modify a given ones
with a predictable influence of the transport properties. We
also provide examples of graphs where analytical approach
provides closed-form formulas for the asymptotic transport
probabilities.

The present paper has the following structure. In Sec. II
we give the necessary definitions of flip-flop Grover quantum
walks both with and without percolation, introduce formally
the concept of trapped states and the asymptotic transport
probability, and also provide the recipe for construction of
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the subspace of trapped states in percolated Grover quantum
walks on arbitrary simple connected graphs. The technical
part of this section related to the proof of completeness of
trapped subspace is presented in the necessary details in
Appendix A. Section III uses results from Sec. II to investigate
the influence of different graph structures and choices of the
source and sink placements on the transport properties. A
summary and concluding remarks are left for Sec. IV.

II. QUANTUM WALK DEFINITION
AND TRAPPED STATES

We study coined (discrete time) quantum walks and in
particular we employ the definition presented in [36]. In short,
a quantum walk is based on an undirected graph G(V, E )
called the structure graph, with the set of vertices V and
the set of edges E . On top of the structure graph we define
the state graph G(V, E ) having the same set of vertices V ,
a pair of directed edges e1, e2 ∈ E going in opposite direc-
tions for every undirected edge ε ∈ E with the possibility to
add unpaired directed self-loops l ∈ L ⊂ E as needed. See
example graphs in Fig. 4. A tilde over a directed edge in a
pair denotes the directed edge going in the opposite direction,
so ẽ1 = e2, ẽ2 = e1, and for loops we also use l̃ = l . The
undirected edge ε associated with a pair of directed edges
is called a support edge: |e1| = |e2| = ε. The Hilbert space
of the walk is spanned by base states corresponding to the
directed edges in the state graph as H = span{|e〉 |e ∈ E}. We
further define a vertex subspace Hv for every vertex v ∈ V as
Hv = span{|e〉 |o(e) = v}, where o(e) is the origin vertex of
the edge e. In this work we study only finite graphs, so all the
sets of vertices and edges are finite as it is also the dimension
of the Hilbert space.

The time evolution proceeds in discrete steps realized by a
unitary operator U , which consists of the shift operator S and
the coin operator C as

|ψ (t + 1)〉 = U |ψ (t )〉 = SC |ψ (t )〉 .

In this work we focus on quantum walks with the flip-flop
(reflecting) shift operator S = R, which just swaps amplitudes
for pairs of edges e and ẽ. The Grover coin acts by application
of a Grover matrix of the corresponding dimension d in every
vertex subspace:

Gd = 2|φd〉〈φd | − Id ,

where |φd〉 = (|1〉 + |2〉 + · · · + |d〉)/
√

d . The flip-flop
Grover walk constitutes a natural choice as it is well
defined for an arbitrary graph with vertices of different
degrees. Moreover, since Grover matrices commute with
all permutation matrices, the ordering of base states and
associated amplitudes within vertices does not play a role and
thus can be arbitrary.

Following [36], we introduce so-called dynamical perco-
lation of the underlying graph; in every step some edges are
chosen randomly1 to be closed (and reopen for further steps)
not allowing the walker to pass. For a given configuration of

1Every edge has a probability π to be open and 1 − π to be closed
in every step independently of the others. The value of π is irrelevant

open edges K ⊂ E this results in a modification of the shift
operator to RK so that the closed edges are treated as unpaired
loops:

RK =
∑

e/∈L,|e|∈K

|ẽ〉 〈e| +
∑

e/∈L,|e|/∈K

|e〉 〈e| +
∑
l∈L

|l〉 〈l| .

Due to lack of detailed control over the system, the time step
of a percolated coined quantum walk (PCQW)2 is a statistical
mixture over all possible configurations described by the so-
called random unitary operation

ρ(t + 1) =
∑
K⊂E

πKUKρ(t )U †
K = U (ρ(t )), (1)

where UK = RKC and πK denotes the probability of the con-
figuration K being chosen. A general approach for finding the
asymptotic regime of a system driven by a random unitary
operation was given in [42]. The asymptotic state is described
by

ρas(t ) =
∑
λ,i

λt Tr (ρ(0)X †
λ,i )Xλ,i, (2)

where limt→∞ ||ρ(t ) − ρas(t )|| = 0. Xλ,i are so called at-
tractors (eigenmatrices of the evolution operator U with
eigenvalues λ fulfilling |λ| = 1) forming a basis of the asymp-
totic subspace, distinguished by the eigenvalue λ and an index
i in case of a degeneracy. It is shown in [42] that the attractors
are exactly the common solutions of the following set of
equations:

UK XU †
K = λX, for all K ∈ 2E , (3)

where |λ| = 1. The search for attractors can be simplified with
the concept of p-attractors introduced in [43]. The p-attractors
are special attractors constructed with arbitrary coefficients
Aα,i

β, j as

Yλ =
∑

αβ∗=λ,i, j

Aα,i
β, j |φα,i〉 〈φβ, j | (4)

from so-called common eigenstates, vectors simultaneously
solving all equations

UK |φ〉 = α |φ〉 , for all K ⊂ 2E . (5)

For the case of quantum walks the set of equations (5) can
be converted to two conditions, which need to be fulfilled
simultaneously and can be stated in the following form: the
local coin condition

Gd |φ〉v = λ |φ〉v , for all v ∈ V, (6)

where |φ〉v is the restriction of the state |φ〉 to the vertex
subspace Hv of dimension d , and the shift condition

φe = φẽ, for all e ∈ E , (7)

for the asymptotic behavior as long as it is nonzero. It affects only
the rate of convergence [42].

2By CQW we always mean a coined quantum walk without perco-
lation.
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where φe is the element of |φ〉 corresponding to the directed
edge e. We use these conditions to construct the basis of
common eigenstates and, thereby, also the p-attractors. A
detailed construction of common eigenstates follows below
and for more details on derivation of the conditions (7) see
Appendix A.

The p-attractors form only a subspace in the asymptotic
subspace, but in some cases only a single non-p-attractor
(proportional to the identity matrix) needs to be added. It was
successfully demonstrated in [36] that this is the case for the
flip-flop Grover PCQWs on finite simple connected planar
structure graphs with maximal vertex degree 3 and 3-regular
state graphs. In the present paper we extend this result to
arbitrary finite simple3 connected structure graphs, where the
degrees can vary among vertices and the graphs do not need to
be planar. The absence of non-p-attractors different from the
identity operator is a crucial simplification of the search for
the asymptotic dynamics of a percolated quantum walk. We
leave the proof for the Appendix A for its length.

We aim to study transport and so we further introduce
sink into the quantum walk as detailed in [44]. We choose
some vertices to act as the sink and form a corresponding sink
subspace Hs and define the projector onto the sink subspace

Hs and the complement projector 
 = I − 
Hs . At the end
of each time step there is a projection of the walker’s state
on the complement of the sink subspace. The state of the
walker is described by a density matrix ρ(t ) and one step of
the PCQW with sink is realized as

ρ(t + 1) =
∑
K⊂E

πK
(UKρ(t )UK )
 = L(ρ(t )). (8)

Due to the sink, the operator L is not trace preserving. The
value Tr(ρ(t )) represents the probability of the walker still
avoiding the sink. While a classical random walker on a fi-
nite connected graph inevitably reaches the sink as the time
goes to infinity, the interference in quantum walks allows
for existence of attractors of the dynamics without overlap
with the sink. Indeed, attractors of the PCQW with sink are
simply attractors of the PCQW satisfying additional condition

X
 = X , i.e., attractors of U having no overlap with the
sink. Since in our studied case this excludes the only nontrivial
non-p-attractor of U proportional to the identity, the attractor
space of our PCQW with sink consists of p-attractors only,
which are constructed from common eigenstates of the map U
with zero overlap with the sink. We call common eigenstates
of U having limited support, i.e., having zero amplitudes
for some base states, as trapped states. If the trapped state
in addition has no overlap with the sink subspace, we call
it a sink-resistant trapped state (sr-trapped state). We define
the asymptotic trapping probability for the initial state ρ0

as p(ρ0) = limt→+∞ Tr(Lt (ρ0)) with Lt = L ◦ Lt−1, and the

3The requirement of simplicity of the structure graph is mostly
just for convenience. The presence of parallel edges (multiple edges
connecting the same pair of vertices) and undirected self-loops in the
structure graph mostly do not pose a principal problem, but make the
notation and terminology more complicated.

asymptotic transport probability (ATP)

q(ρ0) = 1 − p(ρ0). (9)

Thus, when the subspace of the sr-trapped states is available
with a projector to this subspace 
T , the ATP can be calcu-
lated as

q(ρ0) = 1 − Tr(
T ρ0). (10)

When we talk about transport by quantum walk, the initial
state is usually chosen to be localized in one or just several
vertices. We define an initial subspace, where the initial state
is allowed to have nonzero elements. The influence of the
initial state on the ATP is crucial. For a general consideration
of a particular walk it can be beneficial to calculate the average
ATP

q̄ = 1 − Tr(
T ρ ), (11)

where ρ is the maximally mixed state in the initial subspace.
For the study of transport, a basis of the trapped-states

subspace need to be found for a graph in question. Note that
they form a subset of eigenstates of nonpercolated CQWs
derived in [45], since the original structure graph represents
one of the possible configurations in (5). However, the com-
mon eigenstates have to fulfill (5) for all configurations of
open edges, which leads to stricter conditions (6) and (7).
Since the spectrum of the Grover matrix contains only two
eigenvalues 1 and −1, the coin condition (6) eliminates all
eigenstates of nonpercolated CQW corresponding to λ �= ±1.
As nontrivial results we show that, first, for λ = 1 there is
only one common eigenstate, which always overlaps with the
sink, and therefore all trapping is caused by trapped states
corresponding to λ = 1. Second, all the eigenstates for −1
present in the nonpercolated walk remain in the percolated
version.

In short, we use the spanning tree and fundamental cycles
of a graph to form states depicted in Fig. 13. These com-
prise A-type states formed using even fundamental cycles
and further other types of states that connect pairs of odd
fundamental cycles and/or unpaired loops. This is inspired by
[45], yet using an alternative construction. We provide a recipe
how to obtain a basis of these states systematically, but we
leave the details for Appendix B. Nevertheless, in contrast to
Appendix A, which presents only a proof of a simple state-
ment, even a reader not particularly interested in technical
details is encouraged to see Appendix B to better understand
the general considerations and the examples in the following
section.

In Appendix B, we search for only the trapped states and
we do not consider the role of the sink. In sr-trapped states,
all the amplitudes in the sink subspace must be zero. The
shift condition also forces the other edges in pairs with sink
edges to be zero. Otherwise, we are in the same situation as
before. We can again use an approach from [45]. We simply
repeat the above construction, now on a reduced structure
graph G0 = (V0, E0) with the sink vertices and their adjacent
edges removed and a state graph G0 = (V0, E0) reduced ac-
cordingly. The graphs may loose connectedness, so we just
apply the approach on each component separately. In this
way we construct a maximal subspace of the trapped states
subspace which is orthogonal to the sink subspace.
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While the constructed states form a basis of the asymp-
totic subspace, they are not mutually orthogonal in general.
Unfortunately, there is no general procedure available for
their analytical orthogonalization and numerics or special
approaches in particular cases [44,46] must be used. Neverthe-
less, knowledge of all trapped states provides a deep insight
allowing to construct graphs for quantum walks exhibiting
interesting transport properties. Numerical orthogonalization
of the trapped states can then be used easily for particular
graphs.

III. KEY FACTORS FOR THE TRANSPORT EFFICIENCY
AND EXAMPLES

Equipped with the structure of trapped states of the flip-flop
Grover percolated quantum walk for any chosen graph we can
now discuss the role of individual ingredients in the transport
efficiency. The ATP is given as the overlap of the sr-trapped
states subspace with the initial state according to (10). The
structure graph and the added unpaired loops define the set
of trapped states, the placement of the sink selects a subset
of sr-trapped states, and the choice of the initial subspace
defines the scope of possible initial states with certain overlap
with the sr-trapped states. In the following, we investigate the
influence of the above choices and their mutual interplay on
the resulting ATP.

A. The initial subspace

The initial state plays a crucial role in transport. In partic-
ular, if we choose the initial state with the same elements for
all outgoing edges in one vertex, it is always fully transported
as it is by construction orthogonal to all trapped states. As
the other extreme, if the initial subspace can accommodate
an entire sr-trapped state (e.g., an initial vertex with two un-
paired loops), choosing it as the initial state leads to complete
trapping.

Let us now explore the extreme cases when focusing on the
average ATP given by (11). A state graph ensuring complete
transport case is again simple to design. Whenever G0 has no
even cycles and there is at most one termination element, the
walker is always fully transported as the graph does not admit
any sr-trapped states. The opposite task is in fact impossi-
ble. The common eigenstate for the eigenvalue 1 will always
overlap with the initial subspace and will, therefore, have a
nonzero contribution to the ATP. To minimize the average
ATP, an effective strategy is to add unpaired loops into the
initial subspace. This is seen in [44] where by removing a
dead-end branch of a Cayley tree, where the walker could
seemingly be trapped, the average ATP actually decreases.
That is because the branch is replaced by a loop in the initial
vertex, which causes more trapping than the trapped states
supported on the whole branch. For the simplest example of
a graph with only two connected vertices where one acts as
the sink and the other one represents the initial subspace as
shown in Fig. 1 we can even derive a closed-form expression
for the ATP in dependence on an increasing number of added
unpaired loops in the initial vertex. When the degree of the
initial vertex is n � 2 there are n − 1 unpaired loops and
we can simply form an orthogonal basis of the subspace of

FIG. 1. An example graph with multiple unpaired loops added
in the initial vertex. The sink vertex is depicted as a red square and
the initial vertex a green star. Three different orthogonalized trapped
states are shown in panels (a), (b), and (c).

sr-trapped states from n − 2 C-type states. An orthogonal
basis can be formed so that the kth state has the element 1
on the first k loops and the element −k the the next one. In
fact, for the calculation of the ATP we would not even need to
know the orthogonal form of the states. As they are entirely
contained inside the initial subspace, the overlap of each of
them with the maximally mixed state on the initial subspace
is simply 1/n. Therefore, the average ATP is

q = 1 − (n − 2)
1

n
= 2

n
, (12)

which approaches zero in the limit, but it is always positive.

B. No trapping along the way

When considered in terms of trapped states, it is a trivial
observation that there is no trapping if the sr-trapped subspace
does not overlap with the initial state. Nevertheless, in a classi-
cal view this may seem rather counterintuitive that the walker
can not be trapped even in situations where it is necessary
to pass through parts of the graph accommodating trapped
states to reach the sink. This situation is shown in Fig. 2.
The graph has one odd and one even cycle, which results in a
single A-type trapped state. This state does not overlap with
the initial state, so the ATP is equal to 1 for any initial state of
the four-dimensional initial subspace despite the fact that the
walker must traverse the inner square to reach the sink.

FIG. 2. An example graph, where the initial subspace (green star
vertices) has no overlap with the only sr-trapped state present. De-
spite that the walker must cross the the inner square accommodating
the trapped state to reach the sink (the red square vertex), there is zero
chance of trapping the walker along the way. Note that if the square
is replaced by an odd cycle, the situation changes. Indeed, from the
two odd cycles we form a B-type sr-trapped state partially supported
on the initial subspace.
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There is actually a reasoning for this behavior based on the
local properties of the walk. We call the vertices and edges
in fundamental cycles and on a possible connecting path for
some trapped state the support of this state. If the initial state
does not lie on the support of a trapped state, the walker must
enter the support by a crossing as in the vertex between the
square and the triangle in Fig. 2. When any amplitude enters
a crossing vertex, the Grover coin assigns the same resulting
amplitudes to all outgoing edges except the direction of the
incoming walker. Therefore, the two directions on the support
of a trapped state always receive exactly the same amplitudes.
As we know, such final state is always orthogonal to the
trapped state in question. Due to linearity, this holds even if
multiple different amplitudes are incoming into the crossing
vertex simultaneously.

It is good to note here that trapped states originally not
overlapping with the initial subspace can contribute to trap-
ping via overlap with other trapped states that do overlap with
the initial subspace. Therefore, these need to be considered in
orthogonalization of the basis of sr-trapped states.

C. Geometry modified by pure addition

Let us consider modifications of the graph geometry out-
side of the initial subspace, i.e., the initial subspace is now
left unchanged. We distinguish two basic types. The first one
is pure addition of graph elements. These are changes which
keep all previous vertices with their exact links and simply
add new vertices and/or edges. New undirected edges in
the structure graph (inducing new paired directed edges) can
either connect new vertices or just link some existing ones.
Unpaired loops can also be added in the state graph. Clearly,
pure addition can never increase the ATP or, in other words,
it never decreases trapping. This is a simple consequence of
the fact that all the fundamental cycles are retained and all the
sr-trapped states present before the addition are also present
after it. Also, the overlap of the original trapped states with
the initial subspace is unchanged. This is true even if we are
adding new sink vertices. Here we clearly mean truly adding
new vertices. If we just broaden the sink subspace to some
vertices of the present graph, the ATP can increase.

We can illustrate the effect of pure addition on a starlike
graph. Consider a root vertex of degree n � 3 accommodating
the initial subspace and n branches—chains of the same length
L attached to the root each being formed by L � 1 vertices of
degree 2 in the state graph with the last one on each branch
having one unpaired loop. Without the loops, no trapping
would be present. One of the chains is terminated by a sink
vertex. This example shown in Fig. 3 can be thought of as an
extension of the one presented in Fig. 1, but for demonstration
of pure addition we need to keep the initial subspace indepen-
dent of the number of branches. Only a single fixed directed
edge in the root (not on the sink branch) acts as the initial
subspace. There are n − 1 unpaired loops on the branches
not containing the sink giving rise to n − 2 C-type states. An
orthogonal basis of the subspace of sr-trapped states can also
be constructed as follows: For each base state the elements in
the root vertex are the same as in Fig. 1 and we just extend the
C-type states on the chains (same elements on unpaired loops
and alternating signs in vertices). The kth state is orthogonal

FIG. 3. The starlike graph for demonstration of the effect of pure
addition with L = 1 and (a) n = 3, (b) n = 4, and (c) n = 5. The
sink is represented by a red square vertex and red dashed arrows.
The initial subspace is spanned by a single base state represented by
a green dotted arrow in the central vertex.

to the mth (m < k) since the contributions to the scalar product
from the first m − 1 branches are exactly compensated by the
contribution from the mth branch. The normalization constant
for the kth state is Nk =

√
(2L + 1)(k + k2). Then the average

transport probability is

q = 1 −
n−2∑
k=1

1

N2
k

1

1
= 1 − 1

2L + 1

(
1 − 1

n − 1

)
. (13)

Looking at (13) we can see that by adding new branches
(increasing n) the average ATP decreases as predicted. In
contrast, lengthening of the branches (increasing L) increases
the ATP. This is possible since lengthening of branches is no
more a pure addition but insertion as will be discussed in the
next section.

We can also consider a situation where the initial subspace
is extended with every added branch to cover all states in
the root vertex. In fact, the transport properties remain qual-
itatively the same. In this setting the trapping probability is
just 1/(2L + 1) of the trapping for the graph in Fig. 1 due to
stretching of the trapped states on the branches. Explicitly, the
average ATP is

q = 1 −
n−2∑
k=1

k × 1 + 1 × k2

N2
k

1

n
= 1 − 1

2L + 1

(
1 − 2

n

)
.

(14)

In fact, we could even consider L = 0, which brings us di-
rectly to the graph with just loops in the initial vertex shown
Fig. 1, up to a sink issue: Clearly, reducing the sink branch
to length 0 and making the root vertex to be the sink vertex
would result in complete transport of any initial state. We just
have to keep the sink chain of length at least 1.4 Then Eq. (14)
also holds for L = 0 and we recover (12). We see that adding
branches still decreases the ATP. This can no more be rea-
soned beforehand as pure addition since the initial subspace
is modified. Nevertheless, it can be expected as the influence
of the absorbing branch with the sink is being diluted by the
increasing number of branches inducing trapping.

4We know that it actually does not matter how the sink branch looks
like as long as it does not contain any nonsink unpaired loops.
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D. Geometry modified by insertion

Importantly, the process of pure addition must be distin-
guished from the second type of graph modification which
is insertion of elements into a graph. In this case we add
elements that modify the previous structure of the graph. The
insertion is realized by breaking an existing edge, adding a
new vertex between the previously adjacent vertices and con-
necting the two original vertices with the new one by two new
edges. It is motivated by the previously studied lengthening
of a ladder graph presented in [44,46]. It was shown that
lengthening a ladder graph (terminated with unpaired loops
at the ends) surprisingly increases the ATP for transport from
an initial vertex at one end of the ladder to a sink vertex at the
other end. The effect was shown to be caused by “stretching”
of a C-type trapped state. Due to the insertion of vertices and
edges between the unpaired loops at the ends of the ladder,
a C-type trapped state connecting these loops gains more
elements and due to normalization looses overlap with the
initial subspace. More A-type states are added with the ex-
tension of the ladder, but their gradual contributions decrease
exponentially, while the overlap of the connecting C-type state
with the initial subspace decreases polynomially. This also
shows that adding cycles outside of the initial subspace is
substantially less effective in decreasing the ATP then adding
unpaired loops into the initial subspace.

Let us now discuss in more detail which graph geometries
tend to exhibit this effect. We have actually seen the same
effect of ATP increase by extension of a structure by inser-
tion for the starlike graph above—the ATP increases with the
length of branches L. For both the ladder and the starlike graph
some C-type states terminated by loops are being stretched.
For the ladder without loops at the ends the ATP actually just
decreases with length. One might get the impression that the
counter intuitive effect of the ATP increase is conditioned by
loops added as termination elements. This is not true since in
fact the effect can be caused by trapped states of any type.
This is best seen if we construct structure graphs so that they
only allow a single sr-trapped state. The simplest graphs for
each of these types are depicted in Fig. 4. In all of them the
corresponding unique sr-trapped state is stretched by inserting
vertices and edges into the graph.

As there is only one sr-trapped state in each of the graphs
in Fig. 4, there is no need for orthogonalization and the ATP
can be calculated directly. We denote the number of edges in
the connecting path as L. For Fig. 4(a) let L denote the number
of vertical edges minus one. Therefore, all graphs in Fig. 4 are
of length L = 2 and the minimal length is 0 in all cases. The
average ATP for each case is given just by the corresponding
normalization constant N of the trapped state, in particular

qa = 1 − 1

N2
a

(1 + 1)
1

2
= 1 − 1

8 + 4L
,

qb = 1 − 1

N2
b

(1 + 1)
1

2
= 1 − 1

12 + 8L
,

qc = 1 − 1

N2
c

(1 + 1)
1

2
= 1 − 1

2 + 2L
,

qd = 1 − 1

N2
d

(1 + 1)
1

2
= 1 − 1

10 + 8L
(15)

FIG. 4. Examples of minimalist structure graphs supporting the
presence of connecting trapped states: (a) a graph with an A-type
state, (b) a graph with a B-type state, (c) a graph with a C-type state,
and (d) a graph with a D-type state. The red square vertex indicates
the sink and the green star vertex indicates the initial subspace.

for graphs in Figs. 4(a), 4(b), 4(c), and 4(d), respectively. Note
that using this expression for qc with L = 0 means that we do
include both loops into the initial subspace and do not include
the edge going to the sink despite it belonging to the same
vertex subspace.

While, for example, for qb the increase of the ATP with
length has a quite low magnitude—it goes from 11/12 for L =
0 and asymptotically towards 1 for L → ∞, it is much more
prominent for qc ranging from 1/2 to 1. This is caused by
higher number of vector elements on the termination cycles in
Fig. 4(b) compared to the loops in the case Fig. 4(c).

The example graphs have been chosen to demonstrate, in
the most striking way, the discussed transport properties. They
are minimalistic in their structure but as crucial building block
could be found in, at first sight, more complicated structures.
The case of a more complex structure follows in the next
section.

E. Example: Prism graphs

We consider two versions of graphs, which can be viewed
as a prism. First, we consider a “hollow prism” [Fig. 5(a)]
which is composed of two n-cycles of the same length (the
bases) connected by n chains with H − 1 vertices and H
edges. Here H represents the height of the prism and we

FIG. 5. Examples of (a) a hollow prism and (b) a stacked prism,
both triangular (n = 3) and of height H = 2. Green star indicates the
initial vertex, and red square indicates the sink vertex.
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FIG. 6. Depiction of a hollow prism with (a) n = 4 and (b) n = 3,
both with H = 2 and without sink, in a planar representation. The
small square or triangle represents the bottom base, and the big
one represents the top base. Green star indicates the initial vertex.
Dotted edges are not present in the spanning tree, and, therefore,
each corresponds to one fundamental cycle depicted by dashed or
dot-and-dashed line cycles. Blue dashed lines indicate even cycles
with a directly corresponding A-type states, and magenta dot-and-
dashed lines indicate odd cycles.

assume H � 2. Second, we consider “stacked prism”
[Fig. 5(b)] which is similar, but also contains edges forming
the H − 1 inner cycles. One of the vertices not belonging to
any of bases is chosen to act as a sink. The initial subspace
is in one vertex in the base. For simplicity, let us fix a spatial
representation of the graphs in vertical position with the base
with the initial vertex at the bottom and the other base at the
top.

1. Hollow prism

Let us start with the hollow prism and for now without the
sink. The prism has n(H + 1) vertices and 2n + nH edges,
resulting in the need of n + 1 states in the basis for even
n (bipartite graph) or n states for odd n. We can create the
spanning tree by removing all edges of the top base and one
edge in the bottom base as seen in Fig. 6(a). For even n we
first form the A-type state on the bottom edge (number 1 in
the figure). Another n − 1 A-type states on the vertical faces
(numbers 2, 3, 4) can be constructed easily. For the last one,
we can use the edge recovered in the first state and make a
state on the single face just as all the others (number 5). As
was noted before, we are just using a linear combination of the
state obtained directly from the corresponding fundamental
cycle and the first constructed state (number 1). When n is
odd [Fig. 6(b)], there is an odd fundamental cycle on the
bottom face (number 6) which cannot be associated with an
A-type state. We form the n − 1 nonproblematic A-type states
on vertical faces (numbers 7, 8). Lastly, we add the final odd
cycle encircling one vertical face and the bottom base (number
9). By joining the two highly overlapping odd cycles (number
6 and 9) we obtain the last state (number 10). It is constructed
as a B-type state by connecting two odd cycles but at the end
it is just an A-type state on the remaining vertical face.5

5Note that we can alternatively replace one of the A-type states
by a linear combination of all n of them and obtain a B-type state
connecting the two odd cycles on the bases.

FIG. 7. Depiction of a hollow prism with (a) n = 4 and (b) n = 3,
both with H = 2 and with sink, in a planar representation. The
small square or triangle represents the bottom base, and the big
one represents the top base. Green star indicates the initial vertex,
and red square indicates the sink. Gray edges are not present in the
reduced graph G0. Dotted edges are not present in the spanning tree,
and, therefore, each corresponds to one fundamental cycle depicted
by dashed or dot-and-dashed line cycles. Blue dashed lines indicate
even cycles with a directly corresponding A-type states present in
the graph without sink and orange dot-and-dashed lines indicate even
cycles and the corresponding A-type trapped states modified by the
presence of the sink. For the triangular prism the elements of the two
trapped states also are presented.

Now consider the sink on one chain of vertices (“edge” of
the prism) as seen in Fig. 7. We choose the spanning tree so
that it contains both edges on the bottom base that are adjacent
to the chain with the sink. By considering G0 with the sink
vertex and adjacent edges removed, we must recover one edge
from the top base into the spanning tree. Now the whole con-
struction of the basis of trapped states is the same as without
the sink, but only one A-type state gets formed on the two
vertical faces of the prism that share the sink vertex. Overall,
we have n − 1 sr-trapped states on the vertical faces and one
additional sr-trapped state on the bottom base if n is even.
Hence, for the hollow prism, increasing the height H does not
create new sr-trapped states. However, the height determines
the length of the even cycles corresponding to the sr-trapped
states on vertical faces, which affects their normalization. For
the state corresponding to the cycle going around the sink
the normalization is N ′

H = 2
√

H + 2, and for the remaining
n − 2 states it is equal to NH = 2

√
H + 1. Our basis is not

orthogonal. Nevertheless, any orthogonal basis will be formed
by linear combinations of these states and with growing H
the trapping will be decreasing approximately as 1/H . (For
even n there is also the nondecreasing contribution to trapping
given by the state on the bottom base.) For the simplest case of
a triangular prism (n = 3), the only two sr-trapped states are
actually orthogonal and so we can easily calculate the average
transport probability as

q = 1 − 1

4 + 4H
(1 + 1)

1

3
− 1

8 + 4H
(1 + 1)

1

3

= 1 − 1

6

(
1

H + 1
+ 1

H + 2

)
.

We see that the counterintuitive effect of transport increas-
ing with the length of the structure can be present even in a
situation where there are no unpaired loops and the sink is
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placed directly in the main structure and not as an additional
vertex sticking out of it.

2. Stacked prism

For the stacked prism without sink we can actually use
the very same spanning tree as for the hollow prism—all the
horizontal connecting links are removed except n − 1 edges
in the bottom base and all the vertical links are kept. Now
the construction can be done in a similar way going from
the bottom face upwards creating n H A-type states on the
vertical faces and one more A-type state on the bottom base
for even n. With the sink, four edges are removed completely
when transitioning from G to G0, two of which belonged to the
spanning tree. One more edge has to be kept in the spanning
tree for its connectedness. Overall, four A-type states on the
faces adjacent to the sink vertex are replaced by a single
A-type state encircling the sink.

While for the hollow prism the extension in height can only
be achieved by the process of insertion, extending a stacked
prism above the sink can be thought of as pure addition.
Therefore, the ATP can only decrease in this situation as new
trapped states are simply added and no existing are modified.
In contrast, extension below the sink must be considered as
insertion between the sink and the initial vertex. Here, for the
prediction of transport properties, we utilize the fact that the
contribution of trapped states decreases with their increasing
distance from the initial position. This is clear as the limit
trapping for an infinite structure is bounded by 1.6 Inserting a
layer between the sink an the initial subspace therefore results
in more trapping as the states with lower contribution are
removed by the sink. Therefore, the ATP decreases with the
extension of a stacked prism regardless of whether we insert
layers below the sink or add layers above the sink.

Let us note a distinction between the hollow prism and the
stacked prism. When extending a hollow prism the number
of sr-trapped states remains constant, but the individual states
are modified—they cover a longer cycle. In contrast, for the
stacked prism the number of sr-trapped states increases with
the extension of the prism, however, the states do not change.
With the exception of the state surrounding the sink they can
be constructed on 4-cycles in the structure graph. This results
in fundamentally different transport properties of the hollow
and stacked prism.

F. Role of the sink position

Let us finally explore the role of the sink placement. The
situation described in [44] where the ATP actually grows with
the increasing distance separating the initial vertex and the
sink is very counterintuitive. It becomes more understand-
able when we realize, that there are in fact two independent
processes. The increase of the ATP is caused by stretching
of the C-type connecting state. Simultaneously, the sink is
being moved away from the initial point. Nevertheless, the

6It was actually shown numerically for the ladder in [44] and carbon
nanotube structures in [47], and actually confirmed analytically for
the ladder graph in [46] that the contribution drops exponentially fast
in these cases.

FIG. 8. Examples for placement of the sink depicted by a red
square vertex. The initial subspace is in the green star vertex. In all
three cases the ATP is the same as there is only one sr-trapped state,
and it does not overlap with the sink.

only thing that matters is that the sink does not remove the
connecting sr-trapped state. It can, therefore, be placed any-
where in the graph and its distance from the initial point is
irrelevant for the investigated effect of the increase of ATP.
Figure 8 shows a simplified situation of graphs with a single
B-type sr-trapped state with varying position of the sink. ATP
is the same in all three cases, but the distance of the sink vertex
(red) and the initial vertices (green) differs and also changes
differently with extension of the graph.

In the prism example, the position of the sink on a chain
of vertices of a hollow prism is irrelevant for the ATP as long
as the sink is not placed to any of the bases. In contrast, the
vertical position of the sink in a stacked prism influences the
set of sr-trapped states and, therefore, modifies the ATP.

We give one more example related to the placement of the
sink. We imagine a network with a single source and mul-
tiple potential receivers. In our formalism, we represent the
situation as a percolated reflecting Grover quantum walk on a
graph with a localized initial subspace and multiple possible
sink vertices. In every realization of a quantum walk initiated
in the source (representing the transmission of a signal), only
one vertex is chosen to act as a sink. The others act just as
regular vertices. With our results, we can, for example, see that
if each of the receivers is realized just as a degree-one vertex
attached to the graph as in Fig. 8, the choice of the receiver
has no influence on the set of sr-trapped states. Therefore, the
probability of an asymptotic transfer is the same regardless
of the receiver chosen. This holds for all initial states. The
initial state does influence the transfer probability, but always
in the same way. In contrast, would the receivers be realized
as vertices of higher degrees included in fundamental cycles
of the graph or as vertices with unpaired loops or would
the nonactive receivers be replaced by unpaired loops instead
of staying as degree-one vertices, the choice of the receiver
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would influence the ATP through the change of the set of
sr-trapped states.

IV. CONCLUSIONS

Quantum walks, as generic models of quantum transport,
allow for several peculiarities not seen in classical walks.
Among such is trapping found for a number of walk “ge-
ometries” represented by a corresponding graphs defining the
essentials of the walkers’ motion. In this work we address the
phenomenon of asymptotic trapping in coined flip-flop Grover
quantum walks, which allows the walker to indefinitely evade
a sink placed in the underlying graph with nonzero probabil-
ity. For the version of a quantum walk disrupted by dynamical
percolation of edges we prove that the asymptotic trapping
is given solely by trapped eigenstates of a walk and pro-
vide a complete and general recipe for the construction of
their basis for a walk on arbitrary finite simple connected
graph. Supplemented with (numerical, when other methods
are not available) orthogonalization, this allows to determine
the asymptotic transport probability for arbitrary initial states
of the walk. Using these results for a very general class of
graphs (in contrast to previous restriction to planar 3-regular
graphs) we reveal the principal properties of graphs deter-
mining asymptotic transport properties of induced percolated
flip-flop Grover quantum walks. We also show how changes of
additional structure parameters of the graphs (e.g., the height
of a prism) influence the asymptotic transport.

There are several important points to be listed. We show
the crucial importance of the initial state, where some initial
states can lead to complete transport while others to significant
trapping. We note that the walker can only be trapped by
states directly overlapping (after orthogonalization) with the
initial state and the walker can not be trapped along the way.
We clarify the difference between modification of a graph by
pure addition and insertion of elements. While pure addition
can only decrease transport, insertion can actually lead to
transport improvement despite increasing the distance of the
initial position and the observed terminal position represented
by a sink. We discuss the influence of sink placement, where
only the overlap with trapped states matters and, e.g., the
distance between the sink and the initial state is irrelevant
for the asymptotic transport probability. We demonstrate the
above arguments on examples of graphs accommodating a
single trapped state, a starlike graph and graphs of a hollow
prism and stacked prism.

In a number of the investigated examples we derived ex-
plicit analytical forms of averaged ATP. In all these cases
we found, that if the average ATP increases with the size of
the system this growth is roughly proportional to the inverse
size of the system. These cases confirm that whenever trapped
eigenstates are modified by extension of the graph but no new
are added the ATP may only increase. However, in the general
situation new trapped states can be created. These are two
effects which compete against each other and the concrete
change of the ATP depends significantly on the details of the
arrangement.

Our results will be certainly useful for studies of transport
phenomena on quite general graphs. The possibility to trap
or release an excitation, a walker, to the sink is of relevance

to several problems of solid state physics especially the prop-
agation of excitation along macromolecular fibers with side
branches. However, we should keep in mind that our studies
assume the possibility to manipulate, design or engineer the
corresponding underlying graph.
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APPENDIX A: EXCLUSION OF MIXED STATES
IN THE ASYMPTOTIC SUBSPACE

We prove that the asymptotic subspace of the PCQW with
the flip-flop shift operator and the Grover coin on a general
structure graph is spanned by pure states and one additional
mixed state proportional to the identity operator. Here we do
not consider sinks in the graph. (For a quantum walk with
sink we need to subsequently find its subspace orthogonal
to the sink subspace.) We follow closely the procedure
used in [36].

The time evolution of our system is given by a so called
random unitary operation as (1). The starting point of our
search for the asymptotic subspace is the attractor equa-
tion (3), which we recapitulate here for convenience

UK XλU †
K = λXλ, for all K ∈ 2E , (A1)

where |λ| = 1. An approach tailored for the case of quantum
walks was given in [39],7 where the splitting of the evolution
operator into the shift operation and the coin operation is used
to decompose the solution into the coin condition

CXC† = λX (A2)

and the shift condition

RK XR†
K = RLXR†

L, for all K, L ∈ 2E . (A3)

The shift condition can be cast into an element-wise form [36].
Let e ∈ E and f ∈ E be directed edges in the state graph and
tilde represents the other edge in a pair sharing the same undi-
rected support edge. (The tilde operation maps the unpaired
loops to themselves.) We denote the matrix elements of the
attractor as X e

f = 〈e|X | f 〉. For f �= e and f �= ẽ we obtain the

7Note that having chosen the reflecting shift operator we do need
to worry about the order of the shift operator and the coin operator in
U as discussed in [36].
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shift condition

X e
f = X ẽ

f = X e
f̃ = X ẽ

f̃ , (A4)

for f = e the shift condition reduces to

X e
e = X ẽ

ẽ

and for f = ẽ to

X e
ẽ = X ẽ

e .

The shift condition originates from the percolation and the
relaxation of the shift condition for cases f = e and f = ẽ
originates from the fact that a single undirected support edge
can not be open and closed simultaneously in one configura-
tion of the percolation graph.

As introduced in the main text we utilize the concept from
[43] where p-attractors are constructed by (4) from the com-
mon eigenstates—solutions of Eq. (5), which we also repeat
here for convenience

UK |φ〉 = α |φ〉 , for all K ⊂ 2E . (A5)

Also the set of equations (A5) can be split into the coin
condition

C |φ〉 = α |φ〉 (A6)

and the shift condition

RK |φ〉 = RL |φ〉 , for all K, L ∈ 2E . (A7)

The shift condition for common eigenstates can be written
elementwise in the vector form as

φe = φẽ, for all e ∈ E , (A8)

where φe is the element of |φ〉 corresponding to the directed
edge e. It simply requires the elements for the two edges in
a pair to be equal. Importantly, it is a stronger condition than
the one for general attractors and in the attractor form it is
just (A4) even in cases f = e and f = ẽ. Therefore, the equal-
ity

X e
e = X e

ẽ (A9)

holds for all directed edges e in the state graph for every
p-attractor, but it is not required for general attractors. We
use this fact to show that for the type of quantum walk of
our interest the whole asymptotic subspace is spanned by

p-attractors and the trivial non-p-attractor proportional to the
identity operator.

The coin condition (A2) can be split into local conditions
in vertices

Gm�u
vG†

n = λ�u
v, (A10)

where �u
v represents a m × n matrix block for a row vertex

u (of degree m) and column vertex v (of degree n) in the
whole attractor matrix and Gm and Gn are m-dimensional and
n-dimensional Grover matrices.

The shift condition is then used to combine these blocks
into a whole attractor. There are always four matrix blocks,
which are bound together by the shift condition if there is an
edge between corresponding vertices. For a pair of vertices
u, v ∈ V we denote those as �u

u, �u
v , �v

u and �v
v . In vertex

u the coin is Gm and in v it is Gn. If m �= n the blocks have
different sizes and �u

v and �v
u are rectangular, not square

matrices.
Equation (A10) can be cast into a standard eigenvalue

problem

(Gm) ⊗ (Gn)∗ |�〉 = λ |�〉 ,

where the asterisk denotes complex conjugation and |�〉 rep-
resents an attractor block in a vector form, so 〈a|�|b〉 =
〈a, b|�〉.

If |ψ1〉 and |ψ2〉 are eigenvectors of Gm and Gn respec-
tively, then |ψ1〉 ⊗ |ψ2〉∗ is an eigenvector of (Gm) ⊗ (Gn)∗
and therefore |ψ1〉 〈ψ2| is a solution of (A10). Therefore, we
can build the whole basis of solutions of (A10) formed by
m × n matrices by combining eigenvectors of Gm and Gn,
which are described in the main text. The construction is
illustrated in Fig. 9 for the example of m = 4 and n = 3.

Let us start with the subspace corresponding to the eigen-
value −1. Here we have 2(m − 1) base blocks for �u

u, (m −
1) + (n − 1) base blocks for each of �u

v and �v
u, and 2(n − 1)

blocks for �v
v . The final attractor block (e.g., �u

u) is a linear
combination the base blocks [the 2(m − 1) blocks for �u

u].
We denote coefficients in this linear combination for the base
block as indicated in Fig. 10. Further, we denote the sums over
all admissible indices∑

j

β j = B,
∑

i

γi = ,

where the appropriate vertex indices need to be added when
used.

The general form of the block for the eigenvalue −1 (gen-
eral linear combination of the base blocks) is

� =

⎡
⎢⎢⎢⎢⎢⎣

B +   − β1 . . .  − β j . . .  − βν

B − γ1 −β1 − γ1 . . . −β j − γ1 . . . −βν − γ1

. . . . . . . . . . . . . . . . . .

B − γi −β1 − γi . . . −β j − γi . . . −βν − γi

. . . . . . . . . . . . . . . . . .

B − γμ −β1 − γμ . . . −β j − γμ . . . −βν − γμ

⎤
⎥⎥⎥⎥⎥⎦

,

where each of ν and μ equals either m − 1 or n − 1 depending
on vertex indices, which are omitted in the above expression.

(For example, for �u
v the top-left element should be written as

Bu
v + u

v and μ = m − 1 and ν = n − 1.)
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FIG. 9. Schematic representation of the basis of attractor blocks for the choice m = 4 and n = 3. Red (felt-right shaded) background
represents the value 1, blue (not shaded) represents −1 and white represents zero. Gray border line indicates correspondence to the eigenvalue
1 and black to the eigenvalue −1. On the top and left are the eigenvectors of G4 and G3. The figure shows blocks for all �u

u, �u
v , �v

u, and �v
v

separated by long lines.

Any attractor must simultaneously satisfy the shift con-
dition. Let us assume that vertices u and v are connected
by an edge and we denote the direction of this edge in
both of these vertices as d1. (Shuffling labels of the base
states has no effect, since the action of the Grover coin
is independent of the labeling.) Then the shift condition for
corresponding matrix elements of the possible attractor X
yields

X ud1
ud1

= X vd1
vd1

, X ud1
vd1

= X vd1
ud1

(A11)

and

X ud1
udi

= X vd1
udi

, X ud1
vdi

= X vd1
vdi

,

X udi
ud1

= X udi
vd1

, X vdi
ud1

= X vdi
vd1

, (A12)

where di represents arbitrary direction di �= d1. The shift con-
dition is illustrated in Fig. 11.

The condition (A11) can be written in the form of coeffi-
cients as

Bu
u + u

u = Bv
v + v

v , Bu
v + u

v = Bv
u + v

u . (A13)

Next we sum all the shift conditions from (A12) over di �=
d1 (horizontally and vertically in the illustration in Fig. 11),
which results in

(m − 1)Bu
u − u

u = (m − 1)Bu
v − u

v ,

(m − 1)u
u − Bu

u = (m − 1)v
u − Bv

u,

(n − 1)Bv
v − v

v = (n − 1)Bv
u − v

u ,

(n − 1)v
v − Bv

v = (n − 1)u
v − Bu

v. (A14)

When we multiply Eqs. (A13) by m(n − 2) and −(mn −
m − n) respectively and Eqs. (A14) by n, n, m, and m,
respectively, and sum them all we obtain

2(mn − m − n)
(
Bu

u + u
u

) = 2(mn − m − n)
(
Bu

v + u
v

)
,

(A15)
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FIG. 10. Coefficients of basis blocks shown on the example of
basis for the block �u

v with d (u) = m = 4 and d (v) = n = 3.

which means

X ud1
ud1

= X ud1
vd1

, (A16)

as mn − m − n �= 0 for all positive integers m, n. The equality
(A16) represents (A9), which has to be broken for an attractor
to be a non-p-attractor. Therefore, for the eigenvalue −1 there
are only p-attractors for the investigated walks.

Let us move to the subspace corresponding to the eigen-
value 1. Here we have 1 + m2 base blocks for �u

u, 1 + m × n

FIG. 11. Schematic representation of the shift condition. Arrows
represent equalities of elements enforced by the shift condition, and
colors and shadings indicate sets of equalities which are summed
together in our method.

base blocks for each of �u
v and �v

u, and 1 + n2 for �v
v . These

have their coefficients in the linear combination denoted as α

and δi, j (also with indices for the vertices), where i and j go
from 1 to either m − 1 or n − 1 depending on the vertices. We
denote the sums over all admissible indices (again dropping
the vertex indices) as∑

i, j

δi, j = �,
∑

i

δi, j = �•, j,
∑

j

δi, j = �i,•.

The general form of the block for the eigenvalue 1 is

� =

⎡
⎢⎢⎢⎢⎢⎣

α+� α−�•,1 . . . α−�•, j . . . α−�•,ν
α−δ1,• α+δ1,1 . . . α+δ1, j . . . α + δ1,ν

. . . . . . . . . . . . . . . . . .

α−δi,• α+δi,1 . . . α+δi, j . . . α + δi,ν

. . . . . . . . . . . . . . . . . .

α−δμ,• α+δμ,1 . . . α + δμ, j . . . α+δμ,ν

⎤
⎥⎥⎥⎥⎥⎦

.

Let us assume that vertices u and v are connected by an
edge, and we denote the direction of this edge in both of
these vertices as d1. Assume that v is also connected to w

(with subspace of dimension o) by an edge and we denote the
direction of this edge in both of these vertices as d2. (Again,
shuffling labels of the base states has no effect for the Grover
coin.) Then the shift condition for the corresponding matrix
elements of a possible attractor X requires

X ud1
ud1

= X vd1
vd1

, X ud1
vd1

= X vd1
ud1

,

X vd2
vd2

= X wd2
wd2

, X vd2
wd2

= X wd2
vd2

, (A17)

and

X ud1
udi

= X vd1
udi

, X ud1
vdi

= X vd1
vdi

,

X udi
ud1

= X udi
vd1

, X vdi
ud1

= X vdi
vd1

,

X vd2
vd j

= X wd2
vd j

, X vd2
wd j

= X wd2
wd j

,

X
vd j

vd2
= X

vd j

wd2
, X

wd j

vd2
= X

wd j

wd2
, (A18)

where di and d j represent arbitrary directions with di �= d1 and
d j �= d2. Nevertheless, there are further conditions relating
elements for u and w directly:

X ud1
wdk

= X vd1
wdk

, X wdk
ud1

= X wdk
vd1

,

X vd2
udk

= X wd2
udk

, X udk
vd2

= X udk
wd2

, (A19)

where dk represents arbitrary direction. The shift condition is
illustrated in Fig. 12.

In this case, we know that there is at least the non-p-
attractor proportional to the identity matrix since it trivially
fulfills the attractor equation (A1). Therefore, we know that
the conditions

X ud1
ud1

= X ud1
vd1

and

X vd2
vd2

= X vd2
wd2

representing (A9) are not enforced directly by the combina-
tion of coin conditions and shift conditions. Instead, we start
by proving

X ud1
ud1

= X ud1
vd1

⇒ X vd2
vd2

= X vd2
wd2

. (A20)
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FIG. 12. Schematic representation of the shift condition for three
vertices. Arrows represent equalities of elements enforced by the
shift condition, and colors and shadings indicate sets of equalities
which are summed together. Conditions from (A19) are represented
by dotted arrows.

The equalities (A17) can be written as

αu
u + �u

u = αv
v + �v

v,

αu
v + �u

v = αv
u + �v

u,

αv
v + δv

v,1,1 = αw
w + δw

w,1,1,

αv
w + δv

w,1,1 = αw
v + δw

v,1,1. (A21)

With the assumption of the implication that we are to prove
we have

αu
u + �u

u = αv
v + �v

v = αu
v + �u

v = αv
u + �v

u. (A22)

By summing the equations for red (left-right shaded) ele-
ments in Fig. 12 and using (A22) we get

(n − 1)αv
u − �v

u = (n − 1)αv
v − �v

v,

nαv
u − (

αv
u + �v

u

) = nαv
v − (

αv
v + �v

v

)
,

αv
u = αv

v . (A23)

By further summing the equations for green (cross shaded)
elements we obtain

oαw
u = oαw

v , αw
u = αw

v (A24)

and by summing the equations for yellow (circle shaded)
elements

mαv
u = mαw

u , αv
u = αw

u . (A25)

Finally, summing the equations for blue (top-bottom shaded)
elements and using the four previous result allows us to derive

(n − 1)αv
v − δv

v,1,1 = (n − 1)αw
v − δw

v,1,1,

nαv
v − (

αv
v + δv

v,1,1

) = nαw
v − (

αw
v + δw

v,1,1

)
,

nαv
v − (

αv
v + δv

v,1,1

) = nαw
u − (

αw
v + δw

v,1,1

)
,

nαv
v − (

αv
v + δv

v,1,1

) = nαv
u − (

αw
v + δw

v,1,1

)
,

αv
v + δv

v,1,1 = αw
v + δw

v,1,1, (A26)

and therefore after using the last equality from (A17) we have

X vd2
vd2

= X vd2
wd2

,

so the implication (A20) is proven. Now we just directly apply
the reasoning from [36]. We consider an arbitrary attractor X
corresponding to the eigenvalue 1 and choose two vertices
u and v connected by an edge in direction d . We define
a new attractor Y = X + zI , with z = X ud

vd − X ud
ud , so Y ud

ud =
X ud

ud + z = X ud
vd + 0 = Y ud

vd . From (A20) and the symmetry of
the Grover coin it follows that since Y ud

ud = Y ud
vd , it also holds

Y u′d ′
u′d ′ = Y u′d ′

v′d ′ for arbitrary vertices u′ and v′ connected by an
edge in direction d ′, implying that Y is a p-attractor. Hence,
an arbitrary attractor is a linear combination of the trivial
non-p-attractor and a p-attractor. We conclude, that there are
no other linearly independent non-p-attractors apart from the
trivial one proportional to the identity operator.

APPENDIX B: SEARCH FOR THE TRAPPED STATES

Here we search for the common eigenstates, which allow
the construction of the projector to the subspace of sr-trapped
states and the calculation of the ATP for given initial states.

We start with the coin condition (6), which implies that
locally at each vertex v the common eigenstate reduces to an
eigenvector of the Grover matrix corresponding to the same
eigenvalue (or a zero vector, but it has to be nonvanishing for
some v). The eigenvector of the Grover matrix associated with
the eigenvalue 1 has all the elements the same

|φ1〉v =
⎡
⎣1

...

1

⎤
⎦. (B1)

The whole remaining subspace orthogonal to the vector |φ1〉v ,
i.e., vectors with the sum of all elements equal to zero, is
formed by eigenvectors corresponding to the eigenvalue −1.
The common eigenstates are formed from the single-vertex
blocks by applying the shift condition (7)—the elements cor-
responding to every pair of directed edges on the same support
edge must be the same. For the eigenvalue 1 the one vertex
form (B1) combined with the shift condition directly implies
that there is just one common eigenstate: a vector with all
elements equal. Clearly, this state overlaps with the sink re-
gardless of the position of the sink and so it is not an sr-trapped
state.

The common eigenstates corresponding to the eigenvalue
−1 form the only part relevant for the ATP (9). Interestingly,
as we show, the common eigenstates for the eigenvalue −1
derived below are exactly the eigenstates for the eigenvalue
−1 for the nonpercolated version of the walk presented in
[45], so none of the states is removed by percolation. Here
we reuse the key idea of utilizing fundamental cycles of a
graph to construct these states as in [45] but we approach the
construction in an alternative way.

First we determine the dimension of the subspace of com-
mon eigenstates associated with the eigenvalue −1, and then
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FIG. 13. The four basic types of possible eigenstates for the
eigenvalue −1: (a) an A-type state with alternating +1 and −1
elements on one even cycle and (b) B-type, (c) C-type, and (d) D-
type states each with nonzero elements on two termination elements
(odd cycles or unpaired loops) and a connecting path. Dashed lines
represent an arbitrary continuation of the graph where all the corre-
sponding vector components of the given state are 0. All the states
clearly follow both the coin condition and the shift condition. For
a detailed construction of the states and assignment of particular
elements see [36].

we construct the required number of linearly independent
common eigenstates. The whole Hilbert space has dimension∑

v∈V d (v) = 2|E | + |L|, where d (v) is the degree of the ver-
tex v and | • | stands for the number of elements in the given
set. The coin condition (6) gives |V | equations reducing the
dimension of the subspace of common eigenstates (the sum
of elements of the common eigenstate must be zero in each
vertex). The shift condition gives |E | equations. By directly
following the derivation in [36], one can show that also for
general graphs all the equations from the coin condition and
the shift condition are independent except for the case of a
bipartite structure graph with a state graph without unpaired
loops. In that case one condition is dependent. We, therefore,
search for either N = 2|E | + |L| − |V | − |E | = |E | − |V | +
|L| or N + 1 = |E | − |V | + 1 linearly independent common
eigenstates respectively for the two cases. Note that this ex-
actly coincides with the dimension of the −1 subspace for the
nonpercolated version of the walk [45].

Let us explain in detail how these eigenstates can be sys-
tematically constructed using the fundamental cycles. From
any connected graph we can construct a spanning tree, a sub-
graph obtained by removing some edges which is a connected
tree and still contains all the vertices from the original graph.
Note that a spanning tree is not unique and a different choice
may lead to a different basis of common eigenstates. If we
recover any one of the removed edges, we obtain a graph with
exactly one cycle—a fundamental cycle corresponding to the
recovered edge. The spanning tree has |V | vertices and, as it is
a tree, it has |V | − 1 edges. Therefore, there are |E | − |V | + 1

edges in the original graph not present in the spanning tree and
we can construct the same number of fundamental cycles. The
fundamental cycles and unpaired loops are used to construct
common eigenstates as exemplified in Fig. 13. There are four
types of common eigenstates. A-type states simply correspond
to even fundamental cycles. The remaining three types consist
of a connecting path on the spanning tree terminated on its
both sides either by an unpaired loop or an odd fundamental
cycle, which we collectively call termination elements. The
magnitudes and signs of the elements in different parts of
the states are easily seen in Fig. 13. Here we stress that the
length of the connecting path can be zero and terminating
fundamental odd cycles can even share one or more edges in
the case of B-type states. In such a case, coefficients of shared
edges are equal to zero and we basically obtain an A-type
state.8

In the following we show that the above described com-
mon eigenstates associated with eigenvalue −1 allow us to
construct basis with the required number of vectors. We de-
note the numbers of even and odd fundamental cycles as
|FCe| and |FCo| respectively. An undirected graph is bi-
partite if and only if it has no odd cycles. Therefore, we
need to construct N + 1 = |E | − |V | + 1 states only in cases
when |FCo| = 0 and |L| = 0. We simply use |FCe| = |E | −
|V | + 1 A-type states. In all other cases we need N = |E | −
|V | + |L| states and we have a nonzero number of termi-
nation elements. We again use |FCe| A-type states and add
|FCo| + |L| − 1 states of other types following two rules:
each new state uses a termination element not used before
and the connecting paths are restricted to the spanning tree.
In total, we have |FCe| + |FCo| + |L| − 1 = |E | − |V | + 1 +
|L| − 1 = N states as needed. In all cases, linear indepen-
dence of our set of states is trivially seen as every state has
some nonzero elements, which have zero values in all the
others. It is either on the recovered edges in fundamental
cycles or on the unpaired loops.

This construction is suitable for any graph in question and
provides a basis of the trapped states by a straightforward
algorithm when a spanning tree of the graph is chosen. Never-
theless, in some cases a different approach is more convenient.
When a state is added into the basis, we can use the edge
recovered for this state in the construction of the other states
instead of only using the edges on the spanning tree. This
is equivalent to replacing the new state constructed on the
recovered edge and the spanning tree by its linear combination
with one or more states already present in the basis. This is
particularly useful in graphs with many adjacent even cycles
as is demonstrated by the prism graphs example in Sec. III E.

8By joining two such odd cycles and eliminating the shared edges
we obtain an even cycle.
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