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Performance-tradeoff relation for locating two incoherent optical point sources

Jingjing Shao and Xiao-Ming Lu *

School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China

(Received 11 February 2022; accepted 19 May 2022; published 9 June 2022; corrected 23 December 2022)

The optimal quantum measurements for estimating individual parameters might be incompatible with each
other, so they cannot be jointly performed. The tradeoff between the estimation precisions for different param-
eters can be characterized by information regret: the difference between the Fisher information and its quantum
limit. We show that the information-regret-tradeoff relation can give us not only an intuitive picture of the
potential for improving the joint scheme for estimating the centroid and the separation but also some clues
to the optimal measurements for the sequential scheme. In particular, we show that, for two incoherent point
sources with a very small separation, the optimal measurement for the separation must extract little information
about the centroid and vice versa.
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I. INTRODUCTION

The resolution power of incoherent imaging plays an im-
portant role in astronomy observation and biological imaging.
The conventional criterion for resolving two incoherent point
sources—the Rayleigh criterion [1]—is not a rigorous ap-
proach and cannot be used to deal with the randomness from
quantum measurements [2]. A modern method of assessing
the resolution power utilizes statistical approaches like pa-
rameter estimation and hypothesis testing [3–9]. Combining
these statistical approaches with quantum mechanics, Tsang
et al. [7] recently revealed that the resolution power of inco-
herent imaging in principle can be significantly improved by
optimizing the quantum measurement performed on the far
field. Concretely, spatial mode demultiplexing (SPADE) has
a much better performance than direct imaging for resolving
two incoherent point sources [7]. Since then, many efforts
have been devoted to pursuing the superresolution of inco-
herent imaging, e.g., experimental implementations [10–22]
and some theoretic generalizations [23–34] (see Ref. [35] for
a recent review).

Remarkably, the SPADE measurement, which is designed
for estimating the separation between two point sources,
requires prior information about the centroid of two point
sources and the alignment of the device with the centroid [7].
The prior information about the centroid can be readily ob-
tained, as direct imaging is accurate at estimating the centroid.
Grace et al. proposed an adaptive two-stage detection scheme
that dynamically allocates the resources between the centroid
estimation and the separation estimation and showed that it
outperforms direct imaging [36]. de Almeida et al. investi-
gated the impact of the misalignment of the SPADE device
on separation estimation [37]. These works on the sequential
estimation of the centroid and the separation of two incoherent
point sources demonstrate the feasibility of SPADE.
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The centroid and separation of two incoherent point
sources can also be jointly estimated by repeating the same
quantum measurement on samples. The performance of a
quantum measurement for the joint estimation of multiple
parameters can be assessed by the Fisher information matrix.
However, present-day theoretic tools for studying the quantum
limit of the multiparameter estimation, mainly, the quantum
Cramér-Rao bounds [38–45], suffer from the incompatibility
issue of quantum measurements [46–52]. Chrostowski et al.
[53] showed that the optimal measurements for individually
estimating the centroid and the separation of two incoherent
point sources are incompatible. Parniak et al. [14] imple-
mented a joint estimation of the centroid and the separation of
two incoherent point sources near the quantum limit by using
collective measurements on two photons. What kind of trade-
off relation between the estimation precision of the centroid
and that of the separation should be obeyed when taking the
optimization over quantum measurements remains open.

Recently, Lu and Wang [46] introduced the concept of
information regret to characterize the performance of a quan-
tum measurement for estimating individual parameters and
established a tradeoff relation between the information regrets
for any two parameters of interest. This information-regret-
tradeoff relation (IRTR) supplies us with a useful theoretic
tool for investigating the multiparameter estimation problem
of locating two incoherent optical point sources. In this work,
we will show that the IRTR can give us an intuitive picture
of the possible improvements of quantum measurements for
not only the joint scheme but also the sequential scheme
of estimating the centroid and the separation. Moreover, for
the case of maximum incompatibility, the IRTR gives an
important clue to the optimal quantum measurement for one
individual parameter of interest, provided that plenty of prior
information about other parameters is available. Particularly,
we will show that, for two incoherent point sources with a very
small separation, the optimal measurement for the separation
must extract little information about the centroid and vice
versa.
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This paper is organized as follows. In Sec. II, we give
a brief introduction of the model for locating two incoher-
ent optical point sources, the method of quantum parameter
estimation, and the information-regret-tradeoff relation. In
Sec. III, we study the IRTR for the quantum estimation prob-
lem underlying the resolution of two incoherent optical point
sources. In Sec. IV, we use the IRTR to assess several quan-
tum measurements as well as randomly generated ones for
estimating the centroid and the separation of two sources. We
summarize our work in Sec. V and give the details of some
calculations in the Appendix.

II. PARAMETER ESTIMATION FOR TWO
INCOHERENT POINT SOURCES

A. Model

Focusing on the spatial resolution, we follow Ref. [7] to
consider an imaging system with quasimonochromatic scalar
paraxial waves, one spatial dimension, and two equally bright
incoherent point sources. Assuming that the sources are weak,
the one-photon state of the optical field on the image plane
provides the dominant information for locating the positions
of the sources. The density operator describing the one-photon
state with a diffraction-limited imaging system can be written
as [7]

ρ = 1
2 (|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), (2.1)

|ψ j〉 =
∫

dx ψ j (x)|x〉, j = 1, 2, (2.2)

where x is the image-plane coordinate, |x〉 denotes the image-
plane position eigenket for a photon, and ψ j (x) represents the
image-plane wave function of a photon from the jth source.
Furthermore, we assume that the imaging system is spatially
invariant such that

ψ j (x) = ψ (x − Xj ), (2.3)

where ψ (x) is the normalized point-spread function of the
imaging system and Xj is the unknown position of each
source. The resolutions of the two optical point sources can
be treated as a problem of estimating the parameters X1 and
X2.

B. Parameter estimation theory

We now briefly review the quantum multiparameter esti-
mation theory. Suppose that the density operator ρ depends on
an unknown vector parameter θ = (θ1, θ2, . . . , θn). We denote
by θ̂ j an estimator for θ j , which represents the data processing
and maps the observation data to the estimates. The estimation
error can be characterized by the error-covariance matrix E
defined by

E jk := Eθ [(θ̂ j − θ j )(θ̂k − θk )], (2.4)

where the expectation Eθ [·] is taken with respect to the
probability distribution of the observation data. A quantum
measurement is described by a positive-operator-valued mea-
sure (POVM): M = {Mw | Mw � 0,

∑
w Mw = 1}, with w

denoting the outcome and 1 denoting the identity operator.
The probability of obtaining an outcome ω is given by p(w) =

tr(Mwρ) according to Born’s rule in quantum mechanics. For
all unbiased estimators, the error-covariance matrix obeys the
Cramér-Rao bound (CRB) [54,55]:

E � ν−1F (M )−1, (2.5)

where ν is the number of experimental repetitions and F (M )
is the Fisher information matrix (FIM) [56] under a quantum
measurement M. The entries of the FIM are defined as

F (M ) jk :=
∑
w

1

p(w)

∂ p(w)

∂θ j

∂ p(w)

∂θk
. (2.6)

Note that Eq. (2.5) is a matrix inequality and should be in-
terpreted in the sense of the Loewer order; that is, for two
matrices A and B, we say that A � B if A − B is positive
semidefinite. The CRB can be asymptotically attained by the
maximum-likelihood estimator, whose probability tends to be
normal, with the covariance matrix being ν−1F (M )−1. There-
fore, the FIM characterizes the performance of a quantum
measurement for estimating multiple parameters.

Quantum parameter estimation aims at the optimization
of estimation precision over quantum measurements. For any
quantum measurement, the FIM is bounded as [57,58]

F (M ) � F , (2.7)

where F is the quantum Fisher information matrix (QFIM)
[38–40,44,59], defined as

F jk := Re tr(LjLkρ), (2.8)

and Lj , called the symmetric logarithmic derivative (SLD) op-
erator about θ j , is the bounded Hermitian operator satisfying

∂ρ

∂θ j
= 1

2
(Ljρ + ρLj ). (2.9)

However, the elements of the FIM in general cannot be
maximized simultaneously, which is known as the incom-
patibility problem of quantum multiparameter estimation
[46–48,50,60–65].

C. Regret of Fisher information

The efficiency of a quantum measurement for multiparam-
eter estimation can be characterized by the information-regret
matrix introduced in Ref. [66], that is,

R(M ) = F − F (M ). (2.10)

The information-regret matrix is always positive semidefinite
according to Eq. (2.7). We henceforth call the jth diagonal
element of R(M ) the information regret for the parameter θ j .
It will be convenient to use the normalized-square-root (NSR)
information regret, which is defined as

� j :=
√

Rj j

F j j
=

√
F j j − Fj j

F j j
, (2.11)

to express the tradeoff relation between the information re-
grets for different parameters. Note that the NSR information
regret � j must take values in the interval [0,1].

The information regrets for different parameters in general
cannot simultaneously be diminished to zero by optimizing
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over quantum measurements. They obey an IRTR [46]:

�2
1 + �2

2 + 2
√

1 − c̃2�1�2 � c̃2, (2.12)

where c̃ is a real coefficient defined as

c̃ = tr|√ρ[L1, L2]
√

ρ|
2
√
F11F22

, (2.13)

with |X | :=
√

X †X for an operator X . This IRTR was derived
by first establishing a correspondence relationship between
the information regrets and the state-dependent measurement
error defined by Ozawa and then invoking the inequalities that
Branciard [67] and Ozawa [68] proved for formulating the
measurement uncertainty relations. For pure states, the bound
Eq. (2.12) can be saturated by a quantum measurement due to
a property of Branciard’s inequality [67].

The IRTR Eq. (2.12) still holds when c̃ is replaced by

c := |tr([L1, L2]ρ)|
2
√
F11F22

. (2.14)

The resultant relation is weaker than Eq. (2.12), as we al-
ways have c̃ � c for the same parametric density operator.
The difference between the two IRTRs can be understood
by considering the situations where collective measurements
are permitted on n independent and identically distributed
quantum systems. Denote by c̃n the incompatibility coefficient
calculated for the density operator ρ⊗n of n copies of quantum
states. Reference [69] showed that

lim
n→∞ c̃n = c. (2.15)

Using the concept of hierarchical incompatibility measures
discussed in Ref. [69], we can say that c̃1 (which we will
simply denote by c̃) reflects the incompatibility when only in-
dependent measurements on each copy are permitted, while c
reflects the incompatibility when all collective measurements
on multiple copies are permitted.

The incompatibility coefficients c and c̃ can be connected
to another incompatibility measure proposed in Ref. [48],
namely,

γ := ∥∥2iF−1U
∥∥

∞, (2.16)

where U jk := −(i/4)tr(ρ[Lj, Lk]) and ‖ · ‖∞ represents the
largest eigenvalue of a matrix. Assuming that the QFIM is di-
agonal, for two parameter estimation problems, it was shown
that [48]

γ =
√

det 2U
det F . (2.17)

Comparing Eq. (2.17) with Eqs. (2.14) and (2.13), we have

γ = c � c̃. (2.18)

D. Estimation error tradeoff

In terms of the estimation errors, the IRTR implies that [46]

γ j + γk − 2
√

1 − c̃2
jk

√
(1 − γ j )(1 − γk ) � 2 − c̃2

jk, (2.19)

where γ j := 1/(νE j jF j j ), with ν being the number of experi-
ment repetitions. Note that γ j is proportional to the inverse of

the estimation error E j j and is rescaled to the range [0,1] due
to the inequality E j j � 1/(νF j j ). Particularly, we have

1

νE j jF j j
+ 1

νEkkFkk
� 1 (2.20)

when c̃ jk = 1. This inequality will be used later in our analysis
of the joint estimation of the centroid and the separation of two
incoherent point optical sources.

III. IRTR ANALYSIS FOR TWO INCOHERENT
POINT SOURCES

Before using the IRTR to analyze the resolution of two in-
coherent optical point sources, let us give a brief introduction
of the QFIM obtained in Ref. [7]. For the problem of locating
two equally bright optical point sources, it is convenient to use
the centroid and the separation as the parameters of interest,
that is,

θ1 = X1 + X2

2
, θ2 = X2 − X1. (3.1)

Assume hereafter that the point-spread function ψ (x) is real.
Reference [7] showed that the QFIM for θ1 and θ2 is given by

F =
(

4κ − 4γ 2 0
0 κ

)
, (3.2)

where κ and γ are real numbers, defined as

κ :=
∫ ∞

−∞
dx

[
∂ψ (x)

∂x

]2

, (3.3)

γ :=
∫ ∞

−∞
dx

∂ψ (x)

∂x
ψ (x − θ2). (3.4)

A. Incompatibility coefficient

Now, we use the IRTR to analyze the estimation of the
centroid and the separation of two weak incoherent optical
point sources. For real point-spread functions, it is easy to
see that c = 0 (see the Appendix for the details). Therefore,
if collective measurements on multiple samples are permitted,
the regrets of Fisher information for both the centroid and
the separation can simultaneously vanish. After some algebra,
we get the incompatibility coefficient without considering the
collective measurements (see the Appendix for the details):

c̃2 = β2

κ (κ − γ 2)
, (3.5)

where κ and γ are given by Eqs. (3.3) and (3.4), respectively,
and β is given by

β :=
∫ ∞

−∞
dx

∂ψ (x − X1)

∂X1

∂ψ (x − X2)

∂X2

=
∫ ∞

−∞
dx

∂ψ (x)

∂x

∂ψ (x − θ2)

∂x
. (3.6)

It is easy to see that the incompatibility coefficient c̃ van-
ishes when β = 0 is satisfied. From the definition of β, we
can see that β = 0 is equivalent to the fact that the vectors
∂|ψ1〉/∂X1 and ∂|ψ2〉/∂X2 are orthogonal. It is known that
c̃ = 0 is necessary for the saturation of Eq. (2.7) and thus for
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the vanishing of the regret matrix [69,70]; however, it remains
open whether c̃ = 0 is also sufficient for the saturation of
Eq. (2.7).

The most important situation is the estimation of small
separations, for which direct imaging has a poor performance
and optimal measurement is necessary. Let us consider the
limit of θ2 → 0; that is, the separation between the two point
sources is infinitesimal. It can be shown from Eq. (3.5) that

lim
θ2→0

c̃ = 1, (3.7)

as limθ2→0 β = κ and limθ2→0 γ = 0 according to their def-
initions given in Eqs. (3.3), (3.4), and (3.6). Therefore, the
incompatibility coefficient approaches its maximum value as
the separation decreases to zero. For c̃ = 1, the IRTR becomes

�2
1 + �2

2 � 1, (3.8)

implying that zero information regret about one parameter
must lead to the maximal information regret about the other
one. We can also use Eq. (2.20) to get the tradeoff relation for
the estimation errors. As a result,

1

4νκE11
+ 1

νκE22
� 1 (3.9)

must hold in the limiting case of θ2 → 0. When the incom-
patibility coefficient attains its maximum value, the resultant
IRTR (3.8) gives us an important clue to optimize quantum
measurements for a parameter of interest. In such a case, a
quantum measurement that attains �2 = 0 must satisfy �1 =
1, which means that the classical Fisher information about
θ1 must vanish. Since F11 = ∑

ω[∂ p(ω)/∂θ1]2/p(ω), F11 van-
ishes if and only if

∂ p(ω)

∂θ1
= 0 ∀ω such that p(ω) 
= 0, (3.10)

which in turn is equivalent to

tr

(
Mω

∂ρ

∂θ1

)
= 0 ∀ω such that tr(Mωρ) 
= 0. (3.11)

This condition is necessary for attaining the maximum Fisher
information about the separation θ2 when the separation be-
tween two coherent sources is very small. Concretely, in the
limiting case of θ2 → 0, if we take {|ω〉} as the measurement
basis, i.e., Mω = |ω〉〈ω|, the above condition is reduced to

Re 〈ω|� ′
θ1
〉〈�θ1 |ω〉 = 0, (3.12)

where |�θ1〉 = ∫
ψ (x − θ1)|x〉dx and |� ′

θ1
〉 = ∫

ψ ′(x −
θ1)|x〉dx, with ψ ′(x) being the first-order derivative of the
point-spread function ψ (x). In this way, it seems natural to
include the fundamental mode |�θ1〉 and the first derivative
mode |� ′

θ1
〉 in the optimal measurement basis for estimating

very small separations. Such a scheme was already used in
Ref. [11]. On the other hand, when the separation is very
small, the optimal measurement for estimating the centroid
must extract little information about the separation. This is
consistent with the performance of direct imaging.

FIG. 1. The incompatibility coefficient versus the separation for
a Gaussian point-spread function.

B. Gaussian point-spread function

We now take the Gaussian point-spread function as a typi-
cal example, for which we set

ψ (x) = (2πσ 2)−1/4exp

(
− x2

4σ 2

)
, (3.13)

with σ being a characteristic length of the point-spread func-
tion. It then follows from Eq. (3.5) that (see the Appendix for
the details)

c̃2 =
(

1 − θ2
2

4σ 2

)2[
exp

(
θ2

2

4σ 2

)
− θ2

2

4σ 2

]−1

. (3.14)

Figure 1 plots the incompatibility coefficient as a function of
θ2/σ . It can be seen that c̃ progressively attains its maximum
value of 1 as θ2 → 0.

Interestingly, there are two cases where the incompatibility
coefficient c̃ vanishes. In the first case, at large enough sep-
arations, e.g., θ2 > 6σ in Fig. 1, c̃ approximately vanishes.
This can be understood by noticing that the one-photon wave
functions corresponding to the two point sources are far away
from each other, so that the locations of the two point sources
can be estimated independently by measurements in different
regions in the image plane. Consequently, the centroid and
the separation can be jointly estimated with optimal precision.
The second case with a zero incompatibility coefficient is at
the specific value θ2 = 2σ . Whether we can find an optimal
measurement that obtains the maximum Fisher information
about θ1 and θ2 simultaneously when the incompatibility co-
efficient vanishes is still open. Unlike the case of large enough
separation, when θ2 = 2σ , the derivatives of the state vectors,
∂|ψ1〉/∂X1 and ∂|ψ2〉/∂X2, are orthogonal, but |ψ1〉 and |ψ2〉
are not orthogonal. Thus, the measurement and estimation of
X1 and X2 will interfere with each other. It is nontrivial to find
a measurement that is simultaneously optimal for estimating
both the centroid and the separation in such a case. The van-
ishing incompatibility coefficient here makes it promising.
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FIG. 2. The NSR information regret versus the separation for
direct imaging.

IV. MEASUREMENTS FOR JOINT ESTIMATION

Now, we study the performance of some specific quantum
measurements for estimating the centroid and the separation
of two incoherent point sources with the help of the IRTR.

A. Direct imaging

Let us first consider direct imaging, which measures the
intensity distribution of the optical field on the image plane.
The probability density function for observing a photon at the
position x = ω is given by

p(ω) = 1
2 [|ψ (ω − X1)|2 + |ψ (ω − X2)|2], (4.1)

where X1 and X2 are related to the centroid θ1 and the separa-
tion θ2 as X1 = θ1 − θ2/2 and X2 = θ1 + θ2/2. For Gaussian
point-spread functions, we numerically compute the FIM
about the parameters θ1 and θ2 via Eq. (2.6) and then compute
their NSR information regrets via Eq. (2.11). Figure 2 plots
the NSR information regrets of direct imaging for estimat-
ing the centroid and the separation of two incoherent optical
point sources. It can be seen that the information regret for
estimating the separation of the two sources is large in the
sub-Rayleigh region, which was shown in a previous work [4]
and was dubbed Rayleigh’s curse [7,31]. Note that for each
parameter, its information regret can be reduced to zero. So
Fig. 2 in fact reflects the possible improvements implied by
the quantum CRB. However, reducing the information regret
for one parameter may be accompanied by the inevitable in-
crease of the information regret for the other parameter, which
we need the IRTR to deal with.

Using the IRTR, we can obtain an intuitive picture of the
possible improvements of the quantum measurement for the
joint estimation of the centroid and the separation of two
incoherent point sources. It can be seen from Fig. 3 that, for
small separations (e.g., see the first three panels in the top row
of Fig. 3), although direct imaging has a poor performance
for estimating the separation, it already attains or gets close to
the IRTR. Therefore, in such cases, any substantial decrease
in the information regret for estimating the separation must
be obtained at the cost of increasing the information regret
for the centroid, in comparison with direct imaging. When the
separation of two point sources is close or equal to 2σ (see
the fourth panel in the top row of Fig. 3), the incompatibility
coefficient c̃ is very small, indicating that it is possible to get a
better joint estimation of the centroid and the separation than
with direct imaging. When the separation is large enough (see

FIG. 3. The IRTR and the information regrets of direct imaging for different separations. The black circles represent the combination
(�1,�2) for direct imaging. The regions below the IRTR (the red solid curve) are unattainable by quantum measurements. For θ2 = 2σ (the
fourth panel in the top row), c̃ equals zero, and thus, there is no IRTR. For θ2 = 8σ (the fourth panel in the bottom row), c̃ is so small that the
IRTR is invisible.
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the fourth panel in the bottom row in Fig. 3), the information
regrets for both the centroid and the separation are small.

B. SPADE

We now consider the SPADE measurement introduced in
Ref. [7], which takes the Hermite-Gaussian modes as the basis
to decompose and measure the image-plane optical field. We
set the origin of the coordinate system on the image plane to
the origin of the Hermite-Gaussian modes. The wave function
of the qth Hermite-Gaussian mode with the same character-
istic length σ as the Gaussian point-spread function is given
by

φq(x) =
(

1

2πσ 2

)1/4 1√
2qq!

Hq

(
x√
2σ

)
exp

(
− x2

4σ 2

)
,

(4.2)

where Hq is the Hermite polynomial. For the Gaussian point-
spread function, the probability of obtaining the outcome q
corresponding to the qth Hermite-Gaussian mode state |φq〉 is
given by

p(q) = 1

2
|〈φq|ψ1〉|2 + 1

2
|〈φq|ψ2〉|2

= 1

2q!

[
α

2q
1 exp

( − α2
1

) + α
2q
2 exp

( − α2
2

)]
, (4.3)

with α1 = X1/2σ = (θ1 − θ2/2)/2σ and α2 = X2/2σ =
(θ1 + θ2/2)/2σ . In Ref. [7], assuming that the SPADE device
is aligned with the centroid of two incoherent point sources
(i.e., θ1 = 0) such that α1 = −α2 in Eq. (4.3), it was shown
that the SPADE is optimal for estimating the separation
of the two point sources in the sense that the information
regret for θ2 vanishes. This optimal strategy requires the prior
information or preliminary estimation of the centroid of two
incoherent point sources.

In fact, the SPADE also extracts Fisher information about
the centroid from the one-photon state when there is a mis-
alignment between the origin of the SPADE device and the
centroid of the two incoherent point sources. In Fig. 4, we
numerically compute and plot the information regrets of the
SPADE for estimating θ1 and θ2 as well as the IRTR for
a small separation θ2 = 0.1σ and different values of the
centroid θ1. We can see that, for this small separation, the in-
formation regret for θ2 increases but the information regret for
θ1 decreases as the misalignment increases. This means that,
for two closely placed incoherent point sources, the SPADE
shows good performance for estimating the separation when
it is aligned with the centroid of the two sources and good per-
formance for estimating the centroid when the misalignment
becomes large. The latter can be understood by considering
the limit case in which the origin of the Hermite-Gaussian
modes is distant from the centroid of the two close point
sources, i.e., θ1 � θ2. In such a case, the probability of the
SPADE measurement outcome is approximately given by

p(q) ≈ 1

q!

(
θ1

2σ

)2q

exp

(
− θ2

1

4σ 2

)
, (4.4)

FIG. 4. The IRTR (red solid curve) and the information regrets of
the SPADE measurement for estimating the centroid and separation
of two incoherent point sources. Here, the information regrets are
numerically computed at θ2 = 0.1σ .

meaning that the effect of the SPADE for two close incoherent
point sources is like that for one point source with two times
the intensity. The Fisher information for the above probability
distribution for the parameter θ1 is σ−2, which equals its
quantum limit. Therefore, the SPADE can also be used to
estimate the centroid for two closely placed incoherent point
sources.

C. Random POVMs on the minimal subspace

Note that the Hilbert space associated with the one-photon
state given by Eq. (2.1) is infinite-dimensional. Both the (con-
tinuum) direct imaging and the (complete) SPADE have an
infinite number of possible outcomes. Nevertheless, the FIM
and the CRB are relevant to only the minimal subspace Sθ

supporting the density operators and their derivatives. This
subspace Sθ is spanned by the state vectors |ψ j〉 and their
derivatives ∂|ψ j〉/∂Xj for j = 1, 2. According to Naimark’s
dilation theorem [71], the optimization over all quantum mea-
surements on the underlying Hilbert space can be equivalently
done by optimizing over the POVMs on the four-dimensional
subspace Sθ .

The subscript of Sθ indicates that this subspace depends
on the value of the vector parameter θ = (θ1, θ2), which is to
be estimated. The POVMs on Sθ also in general depend on θ .
This fact does not make the study of the POVMs on Sθ useless
for the following reasons. First, recall that the (quantum)
Fisher information is defined at a fiducial parameter point
and measures the distinguishability of the parameters for the
quantum states in the first-order infinitesimal neighborhood of
the fiducial state [57,72]. The distinguishability characterized
by the FIM under a θ -dependent POVM could be attained with
prior information about the fiducial parameter point, which
may be obtained by a “preestimation” stage. Second, it is
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FIG. 5. The IRTR (red solid curve) and the information regrets
of random orthogonal projection measurements on the relevant sub-
space. We generated 10 000 random real-valued orthonormal bases
with the Haar measure. Here, θ2 = 0.1σ .

possible to implement a θ -dependent POVM on Sθ through
a θ -independent POVM on the whole Hilbert space, although
a systematic method for such a task is still lacking.

We now investigate the performance of randomly gener-
ated POVMs on Sθ in extracting the Fisher information for
both the centroid and the separation of two incoherent point
sources. For the optimization of the Fisher information, it is
sufficient to consider rank-1 POVMs because all POVMs can
be obtained by coarse graining of rank-1 POVMs and coarse
graining cannot increase the Fisher information. For simplic-
ity, we consider only the orthogonal projection measurement
on Sθ in this work and leave the optimization over general
rank-1 POVMs to future work. Furthermore, since the point-
spread function is assumed to be real valued in this work,
we consider only the spatial mode whose wave functions are
real.

The random orthogonal projection measurement on Sθ

is produced as follows. First, we apply the Gram-Schmidt
process on the set {ψ1(x), ψ2(x), ∂ψ1(x)

∂X1
,

∂ψ2(x)
∂X2

} to get an
orthonormal basis {φ j (x) | j = 1, 2, 3, 4} for Sθ . Note that
φ j (x) are all real valued, as the wave functions ψ1(x) and
ψ2(x) are real valued. Then, we generate 10 000 random four-
dimensional orthogonal matrices [73] with the Haar measure
[74].

Figure 5 plots the NSR information regrets as well as
the IRTR for the 10 000 random orthogonal projection mea-
surements mentioned above, where the separation of two
incoherent point sources is chosen to be θ2 = 0.1σ . From
the distributions of the information regrets �1 and �2, we
can see that the orthogonal projection measurement with
a real-valued function in the subspace Sθ nearly attains
the IRTR.

V. CONCLUSION

In this work, we have used the IRTR to investigate the
estimation of the centroid and the separation of two incoherent
weak optical point sources. We have obtained an analytic
expression of the incompatibility coefficients, with which we
can paint an intuitive picture of the possible improvement of
a measurement for estimating the centroid and the separation.
We demonstrated that when the incompatibility coefficient is
close or equal to its maximum value, corresponding to very
small separations, the optimal measurement for the separation
must extract little information about the centroid and vice
versa.
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APPENDIX: CALCULATION OF THE
INCOMPATIBILITY MEASURE

Here, we give detailed derivations of Eqs. (3.5) and (3.14)
for the incompatibility coefficient c̃. According to the defini-
tion of c̃, we need the SLD operators L1 and L2 for θ1 and θ2.
Following Ref. [7], the SLD operators can be represented as
four-dimensional matrices with an orthonormal basis for the
subspace that support the density operators and their deriva-
tives with respect to θ1 and θ2. A specific orthonormal basis is
given by [7]

|e1〉 = 1√
2(1 − δ)

(|ψ1〉 − |ψ2〉), (A1)

|e2〉 = 1√
2(1 + δ)

(|ψ1〉 + |ψ2〉), (A2)

|e3〉 = 1

η3

[
1√
2

(
∂|ψ1〉
∂X1

+ ∂|ψ2〉
∂X2

)
− γ√

1 − δ
|e1〉

]
, (A3)

|e4〉 = 1

η4

[
1√
2

(
∂|ψ1〉
∂X1

− ∂|ψ2〉
∂X2

)
+ γ√

1 + δ
|e2〉

]
, (A4)

where κ , γ , and β are given by Eqs. (3.3), (3.4), and (3.6),
respectively; other coefficients are defined as

δ :=
∫

dx ψ (x − X1)ψ (x − X2), (A5)

η3 :=
√

κ + β − γ 2

1 − δ
, (A6)

η4 :=
√

κ − β − γ 2

1 + δ
. (A7)

With this basis, the density matrix for the image-plane one-
photon state is given by

ρ =

⎛
⎜⎜⎝

1−δ
2 0 0 0
0 1+δ

2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (A8)
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The SLD operators with respect to the centroid θ1 and separa-
tion θ2 are represented by

L1 =

⎛
⎜⎜⎜⎜⎝

0 2γ δ√
1−δ2 0 2η4√

1−δ
2γ δ√
1−δ2 0 2η3√

1+δ
0

0 2η3√
1+δ

0 0
2η4√
1−δ

0 0 0

⎞
⎟⎟⎟⎟⎠, (A9)

L2 =

⎛
⎜⎜⎜⎝

−γ

1−δ
0 −η3√

1−δ
0

0 γ

1+δ
0 −η4√

1+δ−η3√
1−δ

0 0 0

0 −η4√
1+δ

0 0

⎞
⎟⎟⎟⎠. (A10)

Because the matrices for ρ, L1, and L2 are all real valued,
it is easy to see that

|tr([L1, L2]ρ)| = |Im tr(L1L2ρ)| = 0, (A11)

implying that the quantity c defined in Eq. (2.14) vanishes. By
calculating the eigenvalues of

√
ρ[L1, L2]

√
ρ, it can be shown

that

tr|√ρ[L1, L2]
√

ρ| = 4|β|, (A12)

which implies Eq. (3.5). For the Gaussian point-spread func-
tion given by Eq. (3.13), it can be shown that

κ = 1

4σ 2
, γ = − θ2

4σ 2
exp

(
− θ2

2

8σ 2

)
, (A13)

and

β = −θ2
2 − 4σ 2

16σ 4
exp

(
− θ2

2

8σ 2

)
. (A14)

Substituting the above expressions for κ , γ , and β into
Eq. (3.5), we get Eq. (3.14).
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K. Banaszek, On super-resolution imaging as a multiparam-
eter estimation problem, Int. J. Quantum Inf. 15, 1740005
(2017).

[54] H. Cramér, Mathematical Methods of Statistics (Princeton Uni-
versity Press, Princeton, NJ, 1946).

[55] C. R. Rao, Information and the accuracy attainable in the esti-
mation of statistical parameters, Bull. Calcutta Math. Soc. 37,
81 (1945).

[56] R. A. Fisher, On the mathematical foundations of theoreti-
cal statistics, Philos. Trans. R. Soc. London, Ser. A 222, 309
(1922).

[57] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[58] F. Hiai and D. Petz, Introduction to Matrix Analysis and Appli-
cations, Universitext (Springer, Cham, 2014).

[59] J. Liu, X.-X. Jing, W. Zhong, and X.-G. Wang, Quantum Fisher
information for density matrices with arbitrary ranks, Commun.
Theor. Phys. 61, 45 (2014).

[60] P. J. D. Crowley, A. Datta, M. Barbieri, and I. A. Walmsley,
Tradeoff in simultaneous quantum-limited phase and loss esti-
mation in interferometry, Phys. Rev. A 89, 023845 (2014).

[61] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S.
Kolthammer, M. Kim, A. Datta, M. Barbieri, and I. A.
Walmsley, Joint estimation of phase and phase diffusion for
quantum metrology, Nat. Commun. 5, 3532 (2014).

[62] M. Szczykulska, T. Baumgratz, and A. Datta, Multi-parameter
quantum metrology, Adv. Phys.: X 1, 621 (2016).
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