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Classical analogs of the covariance matrix, purity, linear entropy, and von Neumann entropy

Bogar Díaz ,1,2,3,* Diego González ,2,† Daniel Gutiérrez-Ruiz ,2,‡ and J. David Vergara 2,§

1Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
2Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

Apartado Postal 70-543, Ciudad de México, 04510, México
3Grupo de Teorías de Campos y Física Estadística. Instituto Gregorio Millán (UC3M),

Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain

(Received 22 January 2022; accepted 5 May 2022; published 6 June 2022)

We obtain a classical analog of the quantum covariance matrix by performing its classical approximation
for any continuous quantum state, and we illustrate this approach with the anharmonic oscillator. Using this
classical covariance matrix, we propose classical analogs of the purity, linear quantum entropy, and von Neumann
entropy for classical integrable systems, when the quantum counterpart of the system under consideration is in
a Gaussian state. As is well known, this matrix completely characterizes the purity, linear quantum entropy, and
von Neumann entropy for Gaussian states. These classical analogs can be interpreted as quantities that reveal how
much information from the complete system remains in the considered subsystem. To illustrate our approach,
we calculate these classical analogs for three coupled harmonic oscillators and two linearly coupled oscillators.
We find that they exactly reproduce the results of their quantum counterparts. In this sense, it is remarkable that
we can calculate these quantities from the classical viewpoint.
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I. INTRODUCTION

Within the theory of quantum information, many tools help
us describe the structure of the space of quantum states; in
particular, it has been found that many structures of geomet-
ric type can be developed, and this branch of the theory is
known as quantum information geometry. This branch aims
to develop structures that allow us to establish a measure of
distance between quantum states. Since quantum mechanics is
a theory based on probability, the most logical idea to establish
a geometric structure within this subject is to introduce a dis-
tance between probability distributions. In this way, Rokhlin
[1] and Rajski [2] introduced an information metric between
two random variables; of course, the concept of statistical
distance is entirely independent of quantum mechanics and
can be defined in any probability space. However, using this
metric, Schumacher [3] was able to show the nonseparability
of entangled states. On the other hand, the geometric structure
of quantum mechanics has also borne many fruits, defining
it through the parameter space using many quantities; among
the most notable are the quantum fidelity [4], the quantum
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metric tensor [5], the Berry phase [6], and the Loschmidt
echo [7]. Furthermore, using a recent formulation [8] it is
possible to rewrite these geometric structures in terms of
correlation functions of time-dependent operators. In contrast,
within classical mechanics, the state space has a real differen-
tiable manifold structure and the observables correspond to
the space of functions on the manifold. Despite this, there
are several classical analogs of some tools found in quantum
information geometry in the context of integrable systems,
like the Hannay angle [9] (see [10,11] for systems involving
coherent states) and the classical analog of the quantum metric
tensor [12–14].

A fundamental property of quantum mechanics is entan-
glement, which plays a crucial role in quantum information
and gives rise to quantities such as purity, linear quantum
entropy, and von Neumann entropy. All these quantities are
used to measure the degree of entanglement between quantum
states, which is the quantum phenomenon par excellence [15].
It is well known that quantum entanglement does not have a
classical counterpart [16], however, some of the mentioned
quantities do have a classic analog, such as linear quantum
entropy [17]. Furthermore, the quantum covariance matrix
is a widely used tool for studying entanglement; see, for
instance, [18] and references therein. An important feature
of the quantum covariance matrix is that it fully character-
izes Gaussian states, which play a crucial role in quantum
information theory and many quantum optics experiments.
For example, several quantum communication experiments
use only Gaussian states [19,20]. In this line of thought, we
wonder about the classical analogs of the quantum covariance
matrix, purity, linear quantum entropy, and von Neumann
entropy for classical integrable systems.
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The purpose of this article is twofold. First, we derive a
classical analog of the quantum covariance matrix by perform-
ing its classical approximation in the context of integrable
systems. Notably, the classical covariance matrix is able to
produce the same results as its quantum counterpart, up to the
use of a quantization rule for the action variables. Second,
using the classical covariance matrix, we propose classi-
cal analogs of the purity, linear quantum entropy, and von
Neumann entropy for Gaussian states. Our classical analogs
provide a measure of “nonseparability” of the individual
subsystems in phase space. In [21] it was suggested that
a classical analogy of a quantum state ψABE , in which the
subsystems A and B are entangled with the environment E ,
is given by a probability distribution P(XA, XB, XE ) where XA,
XB, and XE are random variables. In this paper, we elaborate
more in the context of this analogy, considering that the role
of the random variables is played by the classical phase-space
variables expressed in terms of action-angle variables and
the variances correspond to the correlation functions of the
system. An important feature of these classical analogs is
that they can be calculated for any classical integrable system
using classical tools only, with the advantage that they yield
the same mathematical results as their quantum counterparts
for Gaussian states, as demonstrated through the examples.

The structure of the paper is the following. After this
introduction, in Sec. II, we first review the relationship be-
tween the quantum covariance matrix, symplectic matrix, and
quantum geometric tensor using the path integral formulation
of quantum mechanics. Then, we obtain a classical covari-
ance matrix for classical integrable systems, written in terms
of action-angle variables, and establish its relation with the
quantum covariance matrix. We show that this classical matrix
yields the same results of its quantum counterpart for the
ground state (which it is not Gaussian) of the anharmonic
oscillator, up to a quantization rule. In Sec. III, we recall the
definition of purity, linear quantum entropy, and von Neumann
entropy. These functions are completely determined by the
quantum covariance matrix of the system if it is in a Gaussian
state. Then, taking this into account, in Sec. IV, we introduce
classical analogs of the purity, linear quantum entropy, and
von Neumann entropy for classical integrable systems. These
classical analogs are entirely determined by the classical co-
variance matrix of the classical system. In Sec. V, we compute
and compare our classical analogs of the purity, linear quan-
tum entropy, and von Neumann entropy with their quantum
counterparts for two examples: three coupled harmonic oscil-
lators and two linearly coupled oscillators. In Sec. VI, we give
our conclusions and some comments. The paper ends with
Appendixes A and B.

II. QUANTUM AND CLASSICAL
COVARIANCE MATRICES

The quantum covariance matrix σ = (σαβ ) of a quantum
state |m〉 has entries given by

σαβ := 1
2 〈r̂α r̂β + r̂β r̂α〉m − 〈r̂α〉m〈r̂β〉m, (1)

where r̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N )T is a 2N-dimensional
column vector of position and momentum operators, α and
β run from 1 to 2N , and 〈·〉m = 〈m| · |m〉 stands for the ex-

pectation value in the state |m〉. Throughout this paper, bold
letters with a hat denote quantum operators. Before carrying
out the classical approximation of the quantum covariance
matrix (1), we want to show how it and the Fubini-Study
metric are related, which can be performed using the path-
integral formulation of quantum mechanics. Suppose that a
Hamiltonian Hi describes our system during the time interval
t ∈ (−∞, 0), and assume that this Hamiltonian depends on a
set of phase-space coordinates (qa, pa) with a = 1, . . . , N and
some parameters λι, with ι = 1, . . . , M. We shall consider that
the full set of phase-space coordinates and parameters is de-
noted by zA = (qa, pa, λι), in consequence, A = 1, . . . , 2N +
M. Furthermore, we assume that Hi possesses a discrete and
nondegenerate spectrum En. Now, consider that at t = 0, the
system suffers a perturbation that modifies the Hamiltonian in
the form

Hf = Hi + OAδzA, (2)

where OA = ∂Hi/∂zA are deformation functions and the sys-
tem evolves from (0,∞) with this new Hamiltonian Hf .
Notice that here we are considering more general variations
than those given in [8] since we allow variations of the phase
space variables (qa, pa). However, these variations could only
be translations in such a way that we can extract them from the
quantum averages. Now, following a procedure analogous to
that presented in [8], we can arrive at a generalized quantum
geometric tensor for the mth state

G(m)
AB = − 1

h̄2

∫ 0

−∞
dt1

∫ ∞

0
dt2[〈ÔA(t1)ÔB(t2)〉m

− 〈ÔA(t1)〉m〈ÔB(t2)〉m]. (3)

The real part of this tensor gives the Fubini-Study metric,
g(m)

AB = Re G(m)
AB , and its imaginary part is related to the (gen-

eralized) Berry curvature, F (m)
AB = −2 Im G(m)

AB . An alternative
expression for (3) is given in [22]. In this way, we have
full expressions for the quantum metric tensor and the Berry
curvature for the mth quantum state and defined for arbitrary
variations in the parameter-space and phase-space transla-
tions.

The phase-space part of g(m)
AB is related to the quantum

covariance matrix in the following way:

g(m)
qaqb

= 1

h̄2

(
1

2
〈p̂ap̂b + p̂bp̂a〉m − 〈p̂a〉m〈p̂b〉m

)
, (4a)

g(m)
qa pb

= −1

h̄2

(
1

2
〈p̂aq̂b + q̂bp̂a〉m − 〈p̂a〉m〈q̂b〉m

)
, (4b)

g(m)
pa pb

= 1

h̄2

(
1

2
〈q̂aq̂b + q̂bq̂a〉m − 〈q̂a〉m〈q̂b〉m

)
. (4c)

The proof of these equations is given in Appendix A. In this
way, we observe that the Fubini-Study metric for the phase-
space variables reduces to the quantum covariance matrix (1),
up to the 1/h̄2 factor and a sign in the components g(m)

qa pb
.

As a closing remark, it is worth noting that the phase-space
part of the generalized Berry curvature F (m)

αβ is related to the
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symplectic matrix 
αβ := −i[r̂α, r̂β ] as

F (m)
αβ = − 1

h̄2 
αβ. (5)

Thus, the generalized quantum geometric tensor (3) contains
both the quantum covariance matrix and the symplectic ma-
trix. Notice that the quantum geometric tensor associated to
the parameters admits a classical analog. Then, it is natural to
look for a classical analog of the phase space part of (3).

A. Classical approximation of the quantum covariance matrix

In this section, we consider classical integrable systems for
which the action-angle variables I = {Ia} and ϕ = {ϕa} exist
and prove that the quantum covariance matrix (1) reduces
to the “classical” covariance matrix σ cl = (σ cl

αβ ), with matrix
elements

σ cl
αβ := 〈rαrβ〉cl − 〈rα〉cl〈rβ〉cl, (6)

in the classical approximation, i.e., when h̄ → 0, m → ∞
such that mh̄ is constant and equal to a particular torus
Im corresponding to a quantum state |m〉. In (6), r =
(q1, . . . , qN , p1, . . . , pN )T is a 2N-dimensional phase-space
column vector and we define

〈 f 〉cl := 1

(2π )N

∫
· · ·
∫ 2π

0
dNϕ f , (7)

which denotes the classical average of a function f = f (ϕ, I ).
Here, we write dNϕ = dϕ1 · · · dϕN . Notice that (6), as well
as (1), is symmetric (σ cl

αβ = σ cl
βα ) and positive-semidefinite. In

Appendix B, we provide another perspective on the classical
average (7).

The proof can be done straightforwardly by using the
Wigner-function formalism [14,23–25]. In this approach, the
expectation value of an operator Ô(q̂, p̂) can be written as

〈Ô〉m =
∫ ∞

−∞
dN q dN pWm O, (8)

where Wm is the Wigner function and O is the Weyl transform
of Ô, which are, respectively, given by

Wm(q, p) = 1

(2π h̄)N

∫ ∞

−∞
dN z e− ip·z

h̄ ψm

(
q + z

2

)
ψ∗

m

(
q − z

2

)
,

(9a)

O(q, p) =
∫ ∞

−∞
dN z e− ip·z

h̄

〈
q + z

2

∣∣∣∣Ô(q̂, p̂)

∣∣∣∣q − z

2

〉
. (9b)

Here, the variables q = {qa} and p = {pa} are the eigenvalues
of the operators q̂ and p̂, respectively. Also, we write p ·
z = ∑N

a=1 paza, and ψm(q + z
2 ) = 〈q + z

2 |m〉, ψ∗
m(q − z

2 ) =
〈m|q − z

2 〉. Some useful results are that if F̂ = F (q̂), Ĝ =
G(p̂), and K̂ = 1

2 (q̂ap̂b + p̂bq̂a), then their Weyl transform
satisfy F = F (q), G = G(p), and K = qa pb, respectively
[25].

Let us now consider a quantum system whose classical
motion is integrable. In the classical limit (which we denote by
�), the Wigner function Wm(q, p) becomes a delta function on
the torus Im associated with the quantum state |m〉 [26]. More

precisely, it is given by

Wm(q, p) � 1

(2π )N
δ[I (q, p) − Im]. (10)

Using (10) together with (8) and (7), we can show that

〈q̂a〉m �
∫ ∞

−∞
dN q dN p

1

(2π )N
δ[I (q, p) − Im]qa

= 1

(2π )N

∫ ∞

0
dN I

∫ 2π

0
dNϕ δ(I − Im)qa(I, ϕ)

= 1

(2π )N

∫ 2π

0
dNϕ qa(Im, ϕ)

= 〈qa〉cl. (11)

By following an analogous procedure, it is possible to prove
the following relations:

〈q̂aq̂b〉m � 〈qaqb〉cl, (12a)

〈p̂a〉m � 〈pa〉cl, (12b)

〈p̂ap̂b〉m � 〈pa pb〉cl, (12c)
1
2 〈q̂ap̂b + p̂bq̂a〉m � 〈qa pb〉cl. (12d)

Plugging (11) and (12) into (1), it follows that σαβ � σ cl
αβ , and

hence

σ � σ cl, (13)

which completes the proof. Then, we show that, for a quantum
system whose classical counterpart is integrable, the classical
analog of σ is given by σ cl. This means that we can get a first
glimpse of the quantum covariance matrix σ from the classical
framework by using σ cl.

To complete the scheme, we introduce the classical analog
of the symplectic matrix (5). In this case, to order h̄ we now
obtain

1

ih̄
〈q̂ap̂b − p̂bq̂a〉m

= 1

ih̄
〈qa ∗ pb − pb ∗ qa〉m = 〈{qa, pb}〉cl, (14)

where to take the classical limit, we first transform all the
operators to functions using the phase-space formalism of
quantum mechanics and the Moyal product [27], and {qa, pb}
corresponds to the Poisson bracket. On the other hand, since
the classical covariance matrix is positive-semidefinite it fol-
lows that the corresponding uncertainty relation between the
functions rα and rβ is

σ cl
αασ cl

ββ � 0. (15)

See [28] for a general classical statistical uncertainty relation.
In the next sections, we exploit the consequences of (13)

and propose, for integrable systems, classical analogs of some
quantum quantities that can be written as a function of the
quantum covariance matrix.

B. Classical and quantum covariance matrices
of the quartic anharmonic oscillator

Here, we illustrate the computation of the classical covari-
ance matrix for the quartic anharmonic oscillator and compare
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it with its quantum counterpart. We consider the Hamiltonian

H = 1

2m
p2 + mω2

0

2
q2 + λ

4!
q4, (16)

with λ > 0 but λ 	 1 so that we can treat the system pertur-
batively.

We begin by splitting the Hamiltonian into two pieces:
the unperturbed exactly solvable Hamiltonian H0 = 1

2m p2 +
mω2

0
2 q2, and the perturbation H1 = 1

4! q
4. In this way, (16) reads

as

H = H0 + λH1. (17)

The action-angle variables (ϕ0, I0) of H0 are

q =
√

2I0

mω0
sin ϕ0, (18a)

p =
√

2I0mω0 cos ϕ0. (18b)

To find the action-angle variables (ϕ, I ) of the complete
Hamiltonian (16), we need the generating function of the
canonical transformation (ϕ0, I0) → (ϕ, I ) which we call W .
This function depends on the mixed pair (ϕ0, I ) and is ex-
pressed as a power series in λ:

W = ϕ0I + λW1 + λ2W2 + · · · , (19)

where the functions W s are computed through canonical per-
turbation theory [29]. This in turn allows us to obtain I0 and ϕ

as

I0 = ∂W

∂ϕ0
= I + λ

∂W1

∂ϕ0
+ λ2 ∂W2

∂ϕ0
+ · · · , (20a)

ϕ = ∂W

∂I
= ϕ0 + λ

∂W1

∂I
+ λ2 ∂W2

∂I
+ · · · . (20b)

The substitution of (20a) into (18) and a further expansion in
λ gives us the required elements to compute the classical co-
variance matrix. All that remains is to change the measure of
the classical average (7) as dϕ = (∂ϕ/∂ϕ0)dϕ0 using (20b) to
facilitate the integration. The averages 〈q〉cl and 〈p〉cl vanish,
and the components of resulting classical covariance matrix to
order λ2 are

σ cl
11 = 〈q2〉cl = I

mω0
− λI2

8m3ω4
0

+ 85λ2I3

2304m5ω7
0

+ · · · , (21a)

σ cl
12 = 〈qp〉cl = 0, (21b)

σ cl
22 = 〈p2〉cl = mω0I + λI2

8mω2
0

− 17λ2I3

768m3ω5
0

+ · · · . (21c)

Now, on the quantum side, we compute the quantum co-
variance matrix for the ground state only, which already
departs from a Gaussian state. To this end, we use the per-
turbative procedure of nonlinearization to obtain the wave
function as a power series in λ [30]. Once the wave function
is obtained, we can compute the required expectation values,
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FIG. 1. Plot of (�q)2(�p)2 as a function of λ fixing m = 1,
ω0 = 1, h̄ = 1, and I = 1/2. The dashed blue curve corresponds to
the classical result and the solid orange corresponds to the quantum
result.

finding that 〈q̂〉0 and 〈p̂〉0 vanish. The quantum covariance
matrix to order λ2 turns out to be

σ11 = 〈q̂2〉0 = h̄

2mω0
− λh̄2

16m3ω4
0

+ 35λ2h̄3

1536m5ω7
0

+ · · ·, (22a)

σ12 = 1

2
〈q̂p̂ + p̂q̂〉0 = 0, (22b)

σ22 = 〈p̂2〉0 = mω0 h̄

2
+ λh̄2

16mω2
0

− 7λ2h̄3

512m3ω5
0

+ · · · . (22c)

To compare (21) with (22), we need to establish a quanti-
zation prescription for the action variable. A first and simple
approach, although not exact, is to use the quantization rule
of the harmonic oscillator for the ground state I = h̄/2; this
yields important differences between the coefficients of the
terms in both series. A second approach is to use different
quantizations for different powers of the action variable, anal-
ogous to what was done in [12,13]. In this case, the rules are
I = h̄/2, I2 = h̄2/2, and I3 = 21h̄3/34, which substituted into
(21) give rise to (22) and are precisely the same rules that
reproduce the energy series [31,32]. This shows that, even
for this nonquadratic system, the classical covariance matrix
leads to the same results as its quantum counterpart modulo a
quantization rule.

In the light of the classical uncertainty relation (15), we
draw our attention to the product of the variances (�rα )2 =
〈(rα − 〈rα〉)2〉 = 〈r2

α〉 − 〈rα〉2 = σ cl
αα of q and p. Using (21)

we obtain, in the classical case,

(�q)2(�p)2 = I2 − λ2I4

1152m4ω6
0

+ · · · , (23)

and using (22), the result in the quantum case is

(�q̂)2(�p̂)2 = h̄2

4
+ λ2h̄4

1536m4ω6
0

+ · · · . (24)

Clearly, the zeroth order in λ corresponds to the well-known
result of the harmonic oscillator.

In Fig. 1, we show the plots of both functions and see that
the curve of the quantum result grows with λ, as opposed to
the classical result. This illustrates the fact that the product of
variances in the quantum case must be greater than or equal to
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h̄2/4, which is a stronger constraint than the nonnegativity of
the classical case.

III. PURITY, LINEAR QUANTUM ENTROPY,
AND VON NEUMANN ENTROPY

The purity μ of a normalized quantum state, described by
a density operator ρ̂, is defined as [33,34]

μ(ρ̂ ) = Trρ̂2. (25)

Notice that for pure states ρ̂2 = ρ̂ and then μ takes a maxi-
mum value of 1. On the other hand, for mixed states ρ̂2 
= ρ̂

and thus 0 < μ < 1. The purity is related to the linear quan-
tum entropy SL by

SL(ρ̂) = 1 − μ(ρ̂ ), (26)

which provides a measure of the degree of mixedness of a
quantum state.

So far, we consider general quantum states. In what fol-
lows, we restrict our analysis to Gaussian states, which are
well known for being fully characterized by the quantum
covariance matrix and the first moments of the canonical oper-
ators [33,34]. The motivation is that, for these states, the purity
depends only on the quantum covariance matrix [33,35–39].
In fact, considering an n-mode Gaussian state with quantum
covariance matrix σ (n) (n denotes the degrees of freedom of
the subsystem formed by the particles a1, a2, . . . , an of the
system of N degrees of freedom), the purity (25) takes the
simple form

μ(a1, a2, . . . , an) =
(

h̄

2

)n 1√
det σ (n)

. (27)

Here, the subscript (n) represents (a1, a2, . . . , an), for a com-
pact notation. We must notice that, written in this way, the
purity μ has a statistical interpretation in terms of the quantum
covariance matrix or the Fubini-Study metric, which tells us
how much information from the complete system remains in
the subsystem considered. This fact will allow us to give a
classical interpretation of the quantum purity, as we will see
in the following section.

The name “linear quantum entropy” of SL follows from the
fact that it corresponds to a lower approximation of the von
Neumann entropy S, which for a quantum state ρ̂ is defined
by

S(ρ̂ ) = −Tr(ρ̂ ln ρ̂ ). (28)

The von Neumann entropy is zero for pure states and serves
as a measure of the mixedness of the quantum state [34].
Notably, for an n-mode Gaussian state with covariance matrix
σ (n), this entropy can be written as [33,38,40–42]

S(a1, a2, . . . , an) =
n∑

k=1

S (νk ), (29)

with

S (νk ) = (
νk + 1

2

)
ln
(
νk + 1

2

)− (
νk − 1

2

)
ln
(
νk − 1

2

)
, (30)

where νk are the symplectic eigenvalues of σ (n)/h̄, i.e.,
they are the entries of a nonnegative diagonal matrix D =

diag{ν1, . . . , νn}, which, together with a suitable symplectic
matrix M, permits us to write

M�
(σ (n)

h̄

)
M =

(
D 0n×n

0n×n D

)
. (31)

Notice that S(νk ) = 0 only if νk = 1/2, and that in the case of
one degree of freedom [41], for the particle a1, we have

ν1 = 1

h̄

√
σpa1 pa1

σqa1 qa1
− (

σqa1 pa1

)2
. (32)

It is worth mentioning that using (31), the purity (27) can
also be expressed in terms of the symplectic eigenvalues of
σ (n)/h̄. In fact, we have

μ(a1, a2, . . . , an) =
(

1

2n

) n∏
k=1

ν−1
k . (33)

IV. CLASSICAL ANALOGS OF THE PURITY, LINEAR
QUANTUM ENTROPY, AND VON NEUMANN ENTROPY

The goal of this section is to provide classic analogs of the
purity (27), linear quantum entropy (26), and von Neumann
entropy (29) in the framework of classical integrable systems.
Then, we consider here a subsystem consisting of the n parti-
cles a1, a2, . . . , an of the classical integrable N-system, which
is written in terms of the action-angle variables (ϕ, I ).

Bearing in mind (27), the relation (13) for the quantum σ (n)

and classical σ cl
(n) covariance matrices, i.e., σ (n) � σ cl

(n), and the
Bohr-Sommerfeld quantization rule for the action variables, in
the sense h̄/2 → Ik , it is natural to define the classical function

μcl(a1, a2, . . . , an) := 1√
det σ cl

(n)

n∏
k=1

Iak . (34)

We recall that the Iak is associated with the kth normal mode.
This in turn allows us to define, in analogy with (26), the
classical function

Scl
L (a1, a2, . . . , an) := 1 − μcl(a1, a2, . . . , an). (35)

It is worth making some comments about (34) and (35). First,
μcl and Scl

L are purely classical quantities and to calculate
them no a priori knowledge of the corresponding quantum
system is required. Second, μcl and Scl

L are functions of the
action variables and the system’s parameters only. Conse-
quently, to compare μcl and Scl

L with μ [given by (27)] and
SL, respectively, we should resort to the Bohr-Sommerfeld
quantization rule and set Ik = h̄/2. However, to avoid the
use of this rule and keep the calculations completely in the
classical setting, we can define classical functions from (34)
and (35) closest to their quantum counterparts by making all
action variables equal to a real-positive constant α. By doing
this, the resulting classical functions are

μ̃cl(a1, a2, . . . , an) := lim
Ik→α

μcl(a1, a2 . . . , an)

= αn lim
Ik→α

1√
det σ cl

(n)

, (36a)

S̃cl
L (a1, a2, . . . , an) := 1 − μ̃cl(a1, a2, . . . , an), (36b)
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which can be regarded as classical analogs of the purity (27)
and linear quantum entropy (26), respectively. We remark that
μ̃cl and S̃cl

L are classical quantities since in their calculation we
do not need to invoke anything from the quantum framework.
As we will see in the examples of Sec. V, the functions μ̃cl

and S̃cl
L yield exactly the same mathematical results as their

quantum counterparts and, remarkably, without the need of
setting α = h̄/2. Notice that (36a) and (36b) are defined for
any integrable system. However, it is only when the corre-
sponding quantum system is in a Gaussian state that μ̃cl and
S̃cl

L correspond to the classical analogs of the quantum purity
and linear quantum entropy, respectively.

In complete analogy with (29) and taking into account
the relation (13) for the quantum and classical covariance
matrices as well as the Bohr-Sommerfeld quantization rule for
the action variables h̄/2 → Ik , we define the classical function

Scl(a1, a2, . . . , an) :=
n∑

k=1

Scl(σk ), (37)

where

Scl(σk ) :=(σk + 1
2

)
ln
(
σk + 1

2

)− (
σk − 1

2

)
ln
(
σk − 1

2

)
,

(38)

with σk := σ cl
k /2Iak being σ cl

k the symplectic eigenvalues of
σ cl

(n). In the case n = 1, for the particle a1 we get

σ1 = 1

2Ia1

√
σ cl

pa1 pa1
σ cl

qa1 qa1
− (

σ cl
qa1 pa1

)2
. (39)

We can go further and define a classical function closer to
(29) by setting all action variables equal to a constant in (37).
That is, we can define the function

S̃cl(a1, a2, . . . , an) :=
n∑

k=1

Scl(σ̃k ), (40a)

σ̃k := lim
Ik→β

σk, (40b)

where Scl is given by (38) and β is a real-positive constant,
which, as we will see, disappears during the calculation (as
in the classical analog of the purity). The function (40a) is
defined for any integrable system and can be regarded as
a classical analog of the von Neumann entropy when the
quantum counterpart of the system under consideration is in
a Gaussian state. A remarkable fact about (40a) is that it
can be calculated completely from a classical point of view
and, as shown in the examples, it yields exactly the same
mathematical results as the von Neumann entropy.

Notice that the classical analog of the purity (34) can also
be expressed in terms of the symplectic eigenvalues σ̃k as

μ̃cl(a1, a2, . . . , an) =
(

1

2n

) n∏
k=1

σ̃−1
k , (41)

in analogy with (33).
Finally, to better understand why we obtain the same

mathematical results of the purity and entropy from a clas-
sical point of view, we can observe that we have both local
and global information when describing our system in terms

of action-angle variables. Thus, using the n action vari-
ables, we have a torus T n. In contrast, when analyzing the
correlations of the original variables [q1(ϕ, I ), . . . , qn(ϕ, I ),
p1(ϕ, I ), . . . , pn(ϕ, I )], we see a knot Kn(KN ) since all the
variables are correlated in this case and we are observing the
n subsystem. In this sense, the classical functions μ̃cl, S̃cl

L , and
S̃cl provide a measure of “nonseparability” of the individual
subsystems in phase space.

V. EXAMPLES

In this section, we present two examples of coupled oscil-
lators for which we compute the classical functions defined
in the previous section. At the same time, we compare the
results with those found using the quantum definitions for
the ground state of the quantum counterpart of these classical
integrable systems. Both examples show that our classical
approach provides exactly the same results as their quantum
counterparts.

A. Three coupled harmonic oscillators

Let us consider a system of three coupled harmonic oscil-
lators (N = 3, a = 1, 2, 3) with parameters {k, k12, k13}. The
Hamiltonian reads

H (q, p) = 1
2

{
p2

1 + p2
2 + p2

3 + k
(
q2

1 + q2
2 + q2

3

)
+ k12[(q1 − q2)2 + (q2 − q3)2]

+ k13(q3 − q1)2
}
. (42)

To deal with this Hamiltonian, it is convenient to introduce
the transformation from the variables (q, p) to new variables
(Q, P) given by

Q = Sq, P = Sp, (43)

where

Q =

⎛
⎜⎝

Q1

Q2

Q3

⎞
⎟⎠, q =

⎛
⎜⎝

q1

q2

q3

⎞
⎟⎠, P =

⎛
⎜⎝

P1

P2

P3

⎞
⎟⎠, p =

⎛
⎜⎝

p1

p2

p3

⎞
⎟⎠,

(44)

and

S =

⎛
⎜⎜⎜⎝

1√
3

1√
3

1√
3

1√
6

−
√

2
3

1√
6

− 1√
2

0 1√
2

⎞
⎟⎟⎟⎠, (45)

which allows us to express the Hamiltonian (42) in the form

H (Q, P) = 1
2

(
P2

1 + P2
2 + P2

3 + ω2
1Q2

1 + ω2
2Q2

2 + ω2
3Q2

3

)
,

(46)
where

ω1 :=
√

k, ω2 :=
√

k + 3k12, ω3 :=
√

k + k12 + 2k13,

(47)

are the frequencies of uncoupled harmonic oscillators. Notice
that we restricted ourselves to the case k > 0, k + 3k12 > 0,

and k + k12 + 2k31 > 0. In turn, the transformation from the
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variables (Q, P) to the action-angle variables (ϕ, I ) is given by

Qa =
(

2Ia

ωa

)1/2

sin ϕa, Pa = (2ωaIa)1/2 cos ϕa, (48)

and the classical average of a function f = f (ϕ, I ) is
computed via

〈 f 〉cl = 1

(2π )3

∫∫∫ 2π

0
d3ϕ f . (49)

With this at hand, we compute the 6 × 6 classical covari-
ance matrix (6), obtaining

σ cl =
(

σqq σqp

σqp σpp

)
, (50)

where the block matrices σqq, σpp, and σqp are given by

σqq = 1

3

⎛
⎜⎜⎝

1
2

( 2I1
ω1

+ I2
ω2

+ 3I3
ω3

) I1
ω1

− I2
ω2

1
2

( 2I1
ω1

+ I2
ω2

− 3I3
ω3

)
I1
ω1

− I2
ω2

I1
ω1

+ 2I2
ω2

I1
ω1

− I2
ω2

1
2

( 2I1
ω1

+ I2
ω2

− 3I3
ω3

) I1
ω1

− I2
ω2

1
2

( 2I1
ω1

+ I2
ω2

+ 3I3
ω3

)
⎞
⎟⎟⎠, (51a)

σpp = 1

3

⎛
⎜⎝

1
2 (2I1ω1 + I2ω2 + 3I3ω3) I1ω1 − I2ω2

1
2 (2I1ω1 + I2ω2 − 3I3ω3)

I1ω1 − I2ω2 I1ω1 + 2I2ω2 I1ω1 − I2ω2

1
2 (2I1ω1 + I2ω2 − 3I3ω3) I1ω1 − I2ω2

1
2 (2I1ω1 + I2ω2 + 3I3ω3)

⎞
⎟⎠, (51b)

σqp = 03×3. (51c)

We can obtain the classical covariance matrix of each subsystem by taking from (50) the respective rows and columns. The
subsystems are as follows: each oscillator (1), (2), and (3); the possible pairs (1,2), (2,3), and (1,3); and the complete system
(1,2,3).

1. Classical analog of purity

Using (34) and (50), we obtain the following results for each subsystem:

μcl(1) = 6I1

√
ω1ω2ω3

(2I1ω1 + I2ω2 + 3I3ω3)[ω1(3I3ω2 + I2ω3) + 2I1ω2ω3]
, (52a)

μcl(2) = 3I2

√
ω1ω2

(I1ω2 + 2I2ω1)(I1ω1 + 2I2ω2)
, (52b)

μcl(3) = I3

I1
μcl(1), (52c)

μcl(1, 2) = 6I1I2

√
ω1ω2ω3

(2I2I3ω1 + I1I3ω2 + 3I1I2ω3)[I1ω1(3I2ω2 + I3ω3) + 2I2I3ω2ω3]
, (52d)

μcl(1, 3) = 3I1

√
ω1ω2

(2I1ω2 + I2ω1)(2I1ω1 + I2ω2)
, (52e)

μcl(2, 3) = I3

I1
μcl(1, 2), (52f)

μcl(1, 2, 3) = 1. (52g)

Notice that the resulting functions μcl depend on the action
variables I and the normal frequencies ω, except in the case of
the complete system [see (52g)].

We now calculate the classical analog of the purity (36a).
Setting I1 = I2 = I3 = α in (52), it is straightforward to
obtain

μ̃cl(1) = 6
√

ω1ω2ω3

(2ω1 + ω2 + 3ω3)[ω1(3ω2 + ω3) + 2ω2ω3]
,

(53a)

μ̃cl(2) = 3
√

ω1ω2

(ω2 + 2ω1)(ω1 + 2ω2)
, (53b)

along with μ̃cl(3) = μ̃cl(1, 2) = μ̃cl(2, 3) = μ̃cl(1),
μ̃cl(1, 3) = μ̃cl(2), and μ̃cl(1, 2, 3) = μcl(1, 2, 3). Some of
these equalities are expected because the system is symmetric
under the interchange 1 ↔ 3. Let us make some comments
about these results.

(1) As expected the functions μ̃cl take values between 0
and 1. Notice that they do not depend on α.

(2) Notice that if ω1 = ω2 = ω3, then μ̃cl(1) = 1, which is
the case for uncoupled oscillators k12 = k13 = 0. This means
that the oscillator (1) is pure only if it does not interact with
the oscillators (2) and (3), as we can expect.

(3) We have that if ω1 = ω2, then μ̃cl(2) = 1, which
corresponds to k12 = 0. This means that the oscillator (2)
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is pure if it does not interact with the oscillators (1)
and (3).

(4) Using these classical analogs of purity and (36b) we
can also calculate the classical analog of the linear quantum
entropy.

2. Classical analog of the von Neumann entropy

To calculate the classical analog of the entropy we need the
symplectic eigenvalues σak of the classical covariance matrix
of each subsystem and the corresponding σ̃ak . They are given
by

(1) : σ1 = 1

12I1

√(
2I1

ω1
+ I2

ω2
+ 3I3

ω3

)
(2I1ω1 + I2ω2 + 3I3ω3)

⇒ σ̃1 = 1

12

√(
2

ω1
+ 1

ω2
+ 3

ω3

)
(2ω1 + ω2 + 3ω3), (54a)

(2) : σ1 = 1

6I2

√(
I1

ω1
+ 2I2

ω2

)
(I1ω1 + 2I2ω2) ⇒ σ̃1 = 1

6

√
5 + 2ω1

ω2
+ 2ω2

ω1
, (54b)

(3) : σ1 = 1

12I3

√(
2I1

ω1
+ I2

ω2
+ 3I3

ω3

)
(2I1ω1 + I2ω2 + 3I3ω3)

⇒ σ̃1 = 1

12

√(
2

ω1
+ 1

ω2
+ 3

ω3

)
(2ω1 + ω2 + 3ω3), (54c)

(1, 2) :

⎧⎨
⎩

σ1 = 1
12I1

√
1

2ω1ω2ω3
(E − √

F + E2)

σ2 = 1
12I2

√
1

2ω1ω2ω3
(E + √

F + E2)

⇒
σ̃1 = 1

2

σ̃2 = 1
12

√(
2
ω1

+ 1
ω2

+ 3
ω3

)
(2ω1 + ω2 + 3ω3)

, (54d)

with E := 16I2
1 ω1ω2ω3 + 2I1I2ω3

(
ω2

1 + ω2
2

)+ 6I1I3ω2
(
ω2

1 + ω2
3

)+ 25I2
2 ω1ω2ω3 + 3I2I3ω1

(
ω2

2 + ω2
3

)+ 9I2
3 ω1ω2ω3,

F := −144ω1ω2ω3(3I1I2ω3 + I1I3ω2 + 2I2I3ω1)[I1ω1(3I2ω2 + I3ω3) + 2I2I3ω2ω3],

(1, 3) :

⎧⎨
⎩

σ1 = I3
2I1

σ2 = 1
6I3

√( 2I1
ω1

+ I2
ω2

)
(2I1ω1 + I2ω2)

⇒
σ̃1 = 1

2

σ̃2 = 1
6

√
5 + 2ω1

ω2
+ 2ω2

ω1

, (54e)

(2, 3) :

⎧⎨
⎩

σ1 = 1
12I2

√
1

2ω1ω2ω3

(
E − √

F + E2
)

σ2 = 1
12I3

√
1

2ω1ω2ω3

(
E + √

F + E2
)

⇒
σ̃1 = 1

2

σ̃2 = 1
12

√(
2
ω1

+ 1
ω2

+ 3
ω3

)
(2ω1 + ω2 + 3ω3)

, (54f)

(1, 2, 3) :

⎧⎪⎨
⎪⎩

σ1 = 1
2 = σ̃1,

σ2 = 1
2 = σ̃2,

σ3 = 1
2 = σ̃3.

(54g)

Using these results, the classical analogs of the von Neumann entropy (40a) for each subsystem are

S̃cl(1) = 1

12

[
log

{[
2ω3

(
ω2

1 − 11ω1ω2 + ω2
2

)+ 3ω2
3(ω1 + 2ω2) + 3ω1ω2(2ω1 + ω2)

]6

8 916 100 448 256ω6
1ω

6
2ω

6
3

}

+ 2

√(
2

ω1
+ 1

ω2
+ 3

ω3

)
(2ω1 + ω2 + 3ω3) tanh−1

⎛
⎝ 6√(

2
ω1

+ 1
ω2

+ 3
ω3

)
(2ω1 + ω2 + 3ω3)

⎞
⎠
⎤
⎦, (55a)

S̃cl(2) = 1

6

⎡
⎣2

√
2ω1

ω2
+ 2ω2

ω1
+ 5 tanh−1

⎛
⎝ 3√

2ω1
ω2

+ 2ω2
ω1

+ 5

⎞
⎠− 3 log

(
18ω1ω2

(ω1 − ω2)2

)⎤⎦, (55b)
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(a)

(b)

FIG. 2. (a) Classical analog of the quantum entropy S̃cl(2)
(green) and classical analog of the linear quantum entropy S̃cl

L (2)
(dashed orange) for the subsystem (2) as functions of ω1 and ω2.
(b) S̃cl (2) (solid green) and S̃cl

L (2) (dashed orange), but now as func-
tions of ω1/ω2.

along with S̃cl(3) = S̃cl(1, 2) = S̃cl(2, 3) = S̃cl(1), S̃cl(1, 3) =
S̃cl(2), and S̃cl(1, 2, 3) = 0. Notice that if ω1 = ω2 = ω3 then
S̃cl(1) = 0, and if ω1 = ω2 then S̃cl(2) = 0. To illustrate the

behavior of these functions, in Fig. 2(a) we plot the classical
analog of the entropy S̃cl(2) and the classical analog of linear
quantum entropy S̃cl

L (2) as functions of the frequencies ω1 and
ω2. Also, noticing that S̃cl(2) and S̃cl

L (2) actually depend on
the quotient ω1/ω2, in Fig. 2(b) we plot them as functions of
this quotient. Clearly, we see that both S̃cl(2) and S̃cl

L (2) are
equal to zero when ω1 = ω2, as we already pointed out.

3. Quantum approach

The aim of this subsection is to compare the previous
results with those coming from the quantum approach. The
quantum counterpart of the Hamiltonian (42) is

Ĥ(q̂, p̂) = 1

2

{
p̂2

1 + p̂2
2 + p̂2

3 + k
(
q̂2

1 + q̂2
2 + q̂2

3

)
+ k12

[
(q̂1 − q̂2)2 + (q̂2 − q̂3)2

]+ k13(q̂3 − q̂1)2
}
.

(56)

The ground-state wave function of this system is Gaussian and
given by

ψ0(q) = (ω1ω2ω3)1/4

π3/4h̄3/4 exp

{
− 1

12h̄

[
2q2

2(ω1 + 2ω2)

+ (
q2

1 + q2
3

)
(2ω1 + ω2 + 3ω3)

+ 4q2(q1 + q3)(ω1 − ω2)

+ 2q1q3(2ω1 + ω2 − 3ω3)
]}

. (57)

Using this state, the quantum covariance matrix (1) turns out
to be

σ =
(

σqq σqp

σqp σ pp

)
(58)

where

σqq = h̄

6

⎛
⎜⎜⎝

1
2

(
2
ω1

+ 1
ω2

+ 3
ω3

)
1
ω1

− 1
ω2

1
2

(
2
ω1

+ 1
ω2

− 3
ω3

)
1
ω1

− 1
ω2

1
ω1

+ 2
ω2

1
ω1

− 1
ω2

1
2

(
2
ω1

+ 1
ω2

− 3
ω3

)
1
ω1

− 1
ω2

1
2

(
2
ω1

+ 1
ω2

+ 3
ω3

)
⎞
⎟⎟⎠, (59a)

σ pp = h̄

6

⎛
⎜⎝

1
2 (2ω1 + ω2 + 3ω3) ω1 − ω2

1
2 (2ω1 + ω2 − 3ω3)

ω1 − ω2 ω1 + 2ω2 ω1 − ω2

1
2 (2ω1 + ω2 − 3ω3) ω1 − ω2

1
2 (2ω1 + ω2 + 3ω3)

⎞
⎟⎠, (59b)

σqp = 03×3. (59c)

By using the Bohr-Sommerfeld quantization rule Ia → h̄/2, it is straightforward to verify that the resulting classical and
quantum covariant matrices, (50) and (58), satisfy the relation (13).

The covariance matrix of each subsystem can be easily obtained by taking from the above matrix the respective rows and
columns. Using (27) and (58), we compute the purity of each subsystem, obtaining

μ(1) = 6
√

ω1ω2ω3

(2ω1 + ω2 + 3ω3)[ω1(3ω2 + ω3) + 2ω2ω3]
, (60a)

μ(2) = 3
√

ω1ω2

(2ω1 + ω2)(ω1 + 2ω2)
, (60b)
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along with μ(1, 2, 3) = 1, μ(3) = μ(1, 2) = μ(2, 3) = μ(1),
and μ(1, 3) = μ(2). Comparing (53) and (60), it is direct
to see that both results are exactly the same. Hence, in this
example, we verified that the classical function μ̃cl is able to
produce the same mathematical results of the quantum purity
μ.

We now turn to the calculation of the von Neumann
entropy. Using (58), it can be verified that the symplectic
eigenvalues νk of the corresponding matrices σ (n)/h̄ are equal
to the eigenvalues σ̃k given by (54). This means that, from
(29), the resulting von Neumann entropies of the subsystems
are the same as determined from the classical function (40a)
with (54), i.e., they are given by (55). This corroborates that
the classical function (40a) is capable of giving rise to the
same mathematical results of the von Neumann entropy.

It is worthwhile mentioning that in [43] (see [44] for an
equivalent criterion), Simon introduced a separability crite-
rion for Gaussian states of a bipartite system of two harmonic
oscillators. Soon after, in [45] (see also [46,47]), a separability
criterion for Gaussian states of 1 × M (M is arbitrary large)
oscillators was provided, which is the case of this example.
As explained in these references, the Gaussian states are en-
tangled if the criteria are violated. These criteria are linked
to our results by the observation (condition) that only when
some of the normal frequencies are equal, the corresponding
subsystems are pure and the von Neumann entropy is zero.
Certainly, in that cases, the subsystems are separable and
classically uncoupled.

Before concluding this example it is important to empha-
size that our classical analogs of the purity, linear quantum
entropy, and von Neumann entropy are completely defined
in the classical context, i.e., we do not need any a priori
information from the quantum context to compute them.

B. Linearly coupled harmonic oscillators

We now want to illustrate our classical approach on a
system of two coupled harmonic oscillators described by the
Hamiltonian

H (q, p) = 1
2

(
p2

1 + p2
2 + Aq2

1 + Bq2
2 + Cq1q2

)
, (61)

where A, B > 0 are parameters and we restrict our study to
the region A 
= B, 4AB − C � 0. This system has been widely
analyzed in the context of quantum entanglement and, in
particular, it has been shown that for certain parameter values
it exhibits a very large quantum entanglement [48–50]. Also,
in [13] this model was used to study the classical analog of
the quantum geometric tensor (3) restricted to the parameter

space. Interestingly, it was shown that the classical analog
of the quantum metric tensor does not yield the full param-
eter structure of its quantum counterpart, the cause being a
quantum anomaly. The origin of such anomaly was that the
transformation matrix, which brings the system into its normal
form, depends on the system’s parameters [14]. In contrast,
we show in this subsection that our classical analogs exactly
reproduce the mathematical results of their quantum counter-
parts.

To bring the system (61) into its normal form, we perform
the canonical transformation

Q = Rq, P = Rp, (62)
where

Q =
(

Q1

Q2

)
, q =

(
q1

q2

)
, P =

(
P1

P2

)
, p =

(
p1

p2

)
, (63)

and

R =
(

cos α − sin α

sin α cos α

)
. (64)

Here, the angle α is such that tan 2α = C/(B − A) with
α ∈ (−π/4, π/4). Notice that the transformation matrix R
depends on the system’s parameters. In terms of the new
variables, the Hamiltonian reads

H (Q, P) = 1
2

(
P2

1 + P2
2 + ω2

1Q2
1 + ω2

2Q2
2

)
, (65)

where ω1 and ω2 are the normal frequencies

ω1 :=
√

A − C

2
tan α, ω2 :=

√
B + C

2
tan α. (66)

We further express the new coordinates in terms of the action-
angle variables (ϕa, Ia) as

Qa =
(

2Ia

ωa

)1/2

sin ϕa, Pa = (2ωaIa)1/2 cos ϕa, (67)

and compute the classical average via

〈 f 〉cl = 1

(2π )2

∫∫ 2π

0
d2ϕ f . (68)

Using (6) and the previous transformations, we arrive at the
4 × 4 classical covariance matrix σ cl of the system:

σ cl =
(

σqq σqp

σqp σpp

)
, (69)

where

σqq =
⎛
⎝ I1 cos2 α

ω1
+ I2 sin2 α

ω2

( I2
ω2

− I1
ω1

)
sin α cos α( I2

ω2
− I1

ω1

)
sin α cos α I1 sin2 α

ω1
+ I2 cos2 α

ω2

⎞
⎠, (70a)

σpp =
(

I1ω1 cos2 α + I2ω2 sin2 α (I2ω2 − I1ω1) sin α cos α

(I2ω2 − I1ω1) sin α cos α I1ω1 sin2 α + I2ω2 cos2 α

)
, (70b)

σqp = 02×2. (70c)
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In this case, the subsystems are: each oscillator (1) and (2); and the complete system (1,2). With (69) at hand, we compute the
classical analog of the purity (36a). The result for each subsystem is

μ̃cl(1) =
√

ω1ω2(
ω1 sin2 α + ω2 cos2 α

)(
ω1 cos2 α + ω2 sin2 α

) =
√

4AB − C2

4AB
= μ̃cl(2), (71a)

μ̃cl(1, 2) = 1. (71b)

Notice that if C = 0 then μ̃cl(1) = 1 = μ̃cl(2), which means that the oscillators (1) and (2) are pure only if they are uncoupled,
as expected. Remarkably, the resulting classical purities (71) exactly match their quantum counterparts, which were calculated
in [50] for the ground-state wave function of the corresponding quantum system.

On the other hand, the symplectic eigenvalue of the subsystem (1) is

(1) : σ1 = 1

2I1

√(
I1 cos2 α

ω1
+ I2 sin2 α

ω2

)(
I1ω1 cos2 α + I2ω2 sin2 α

)

⇒ σ̃1 = 1

2

√(
cos2 α

ω1
+ sin2 α

ω2

)(
ω1 cos2 α + ω2 sin2 α

) =
√

AB

4AB − C2
, (72)

and, because of the symmetry between the subsystems (1) and (2), the symplectic eigenvalue of the subsystem (2) is σ̃2 = σ̃1.
Furthermore, the symplectic eigenvalues of the complete system (1,2) are σ1 = 1/2 = σ2 = σ̃1 = σ̃2. Then, the classical analogs
of the von Neumann entropy for the subsystems (1), (2), and (1,2) turn out to be

S̃cl(1) =
(√

AB

4AB − C2
+ 1

2

)
ln

(√
AB

4AB − C2
+ 1

2

)
−
(√

AB

4AB − C2
− 1

2

)
ln

(√
AB

4AB − C2
− 1

2

)
= S̃cl(2), (73a)

S̃cl(1, 2) = 0. (73b)

Notice that if C = 0 then S̃cl(1) = S̃cl(2) = 0, i.e., they
vanish when the oscillators are uncoupled. Finally, it can
be verified that the resulting classical entropies (73) exactly
match their quantum counterparts for the ground state of the
quantum version of (61).

VI. CONCLUSION

In this paper, we first derive the classical covariance matrix
(6) for integrable systems, which is the classical analog of the
quantum covariance matrix, as is stated by the relation (13).
We achieve this classical covariance matrix by using the clas-
sical limit of the Wigner function and show that the relation
(13) between both covariance matrices holds even if the corre-
sponding quantum state is not Gaussian, which is illustrated in
the case of the anharmonic oscillator. Then, we introduce the
functions (36a), (36b), and (40a) for classical integrable sys-
tems and show through examples that they are, respectively,
the classical analogs of the purity, linear quantum entropy,
and von Neumann entropy as long as the quantum counterpart
of the system is in a Gaussian state. The classical functions
(36a), (36b), and (40a) provide, respectively, a mathematical
description of the purity, linear quantum entropy, and von
Neumann entropy of the system from a classical point of
view, without resorting to quantum context. These classical
functions depend on the classical covariance matrix which
only involves averages over the angle variables of the system.
Our classical analogs reveal how much information from the
complete system remains in the subsystem under considera-
tion. As we explain, this is because, by using the action-angle
variables, we have both local and global information.

To illustrate the approach, we calculate our classical
analogs for a nontrivial system of three coupled harmonic
oscillators, and for a system of two linear coupled oscillators
which was previously analyzed in the literature. We find in
these examples that the aforementioned classical analogs ex-
actly match their quantum versions.

Let us end with some comments. (i) Our classical analogs
may help to provide more insight into the investigation of
separability of quantum states. In this line of thought, our
approach may be exploited to develop a classical analog of
the separability criterion for Gaussian states [43,44,47], which
relies on the quantum covariance matrix. (ii) Following our
approach, it seems feasible to define classical analogs of
other quantum quantities, for instance, generalized purities
and entropies [51]. (iii) It would be interesting if we could
generalize these classical analogs to other kinds of states. (iv)
In [52] it was shown that for a classical nonlinear system the
quantum entanglement of localized states is influenced by the
classical bifurcations in the underlying channel periodic orbit.
Also, in [53,54] it was found that, under some circumstances,
the linear growth of the entanglement entropy has a classical
counterpart and was connected to classical and quantum quan-
tifiers of chaos. In this sense, it would be worth to connect
these results to our approach and extend our classical analogs
to non-integrable systems.
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APPENDIX A: PROOF OF EQ. (4)

In this Appendix we prove the relation between the Fubini-Study metric and the quantum covariance matrix, i.e., equations (4).
We begin by going to the Schrödinger picture in (3) to factor out the time dependence. Analyzing the second term in (3), we
clearly see that 〈ÔA(t1)〉m = 〈m|e i

h̄ Ĥt1ÔAe− i
h̄ Ĥt1 |m〉 = 〈ÔA〉m, and similarly for 〈ÔB(t2)〉m. Analogously, we find that the first

term of (3) takes the form

〈ÔA(t1)ÔB(t2)〉m = e− i
h̄ Em (t2−t1 )〈m|ÔAe− i

h̄ Ĥt1 e
i
h̄ Ĥt2ÔB|m〉. (A1)

We introduce the identity operator I = ∑
n |n〉〈n| between the two exponentials inside the bracket, which results in

〈ÔA(t1)Ô(t2)〉m =
∑

n

e
i
h̄ (En−Em )(t2−t1 )〈m|ÔA|n〉〈n|ÔB|m〉. (A2)

Splitting the sum for m 
= n and m = n, it is easily seen that the integrand in (3) reduces to

〈ÔA(t1)ÔB(t2)〉m − 〈ÔA(t1)〉m〈ÔB(t2)〉m =
∑
n 
=m

e
i
h̄ (En−Em )(t2−t1 )〈m|ÔA|n〉〈n|ÔB|m〉, (A3)

and, therefore,

G(m)
AB = − 1

h̄2

∑
n 
=m

(∫ 0

−∞
dt1

∫ ∞

0
dt2 e

i
h̄ (En−Em )(t2−t1 )

)
〈m|ÔA|n〉〈n|ÔB|m〉. (A4)

We thus completely isolated the time dependence and we can integrate it. Having in mind the ranges of t1 and t2, the
computation of the integrals gives∫ 0

−∞
dt1

∫ ∞

0
dt2 e

i
h̄ (En−Em )(t2−t1 ) = lim

ε→0+

∫ 0

−∞
dt1

∫ ∞

0
dt2 e

i
h̄ (En−Em+iε)(t2−t1 ) = − h̄2

(En − Em)2
, (A5)

which yields

G(m)
AB =

∑
n 
=m

〈m|ÔA|n〉〈n|ÔB|m〉
(En − Em)2

, (A6)

or specializing to phase space,

G(m)
αβ =

∑
n 
=m

〈m|Ôα|n〉〈n|Ôβ |m〉
(En − Em)2

. (A7)

We first consider q̂a. The Schrödinger equation reads, in
position space, as

Ĥ
(

q,−ih̄
∂

∂q

)
ψn(q) = Enψn(q), (A8)

with ψn(q) = 〈q|n〉. Applying the operator −ih̄ ∂
∂qa

, multiply-
ing by the wave function ψ∗

m(q), and integrating in q, we find
that

− ih̄
∫

dN q ψ∗
m(q)

∂Ĥ
∂qa

ψn(q)

= (En − Em)
∫

dN q ψ∗
m(q)

(
−ih̄

∂ψn(q)

∂qa

)
, (A9)

or

−ih̄〈m|Ôqa |n〉 = (En − Em)〈m|p̂a|n〉. (A10)

With this result in hand, we conclude that

G(m)
qaqb

=
∑
n 
=m

〈m|Ôqa |n〉〈n|Ôqb |m〉
(En − Em)2

=
∑
n 
=m

1

h̄2 〈m|p̂a|n〉〈n|p̂b|m〉. (A11)

Adding and subtracting the term with n = m and identifying
the completeness relation, we end up with the following ex-
pression:

G(m)
qaqb

= 1

h̄2 (〈p̂ap̂b〉m − 〈p̂a〉m〈p̂b〉m). (A12)

Now, we take the real part of (A12) to find the Fubini-Study
metric for position coordinates, which turns out to be

g(m)
qaqb

= 1

h̄2

(
1

2
〈p̂ap̂b + p̂bp̂a〉m − 〈p̂a〉m〈p̂b〉m

)
. (A13)

On the other hand, writing the Schrödinger equation in
momentum space, we see that the following relation holds for
pa:

ih̄〈m|Ôpa |n〉 = (En − Em)〈m|q̂a|n〉. (A14)

This allows us to proceed similarly with g(m)
qa pb

and g(m)
pa pb

to find
that

g(m)
qa pb

= − 1

h̄2

(
1

2
〈p̂aq̂b + q̂bp̂a〉m − 〈p̂a〉m〈q̂b〉m

)
, (A15)
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and

g(m)
pa pb

= 1

h̄2

(
1

2
〈q̂aq̂b + q̂bq̂a〉m − 〈q̂a〉m〈q̂b〉m

)
. (A16)

This completes the proof.

APPENDIX B: ON THE CLASSICAL AVERAGE

In this Appendix, we provide another perspective on the
classical average, we introduce an angular probability dis-
tribution Pcl(ϕ) (see [55,56] for the usual position-space
treatment). Without loss of generality, we consider a classical
system with one degree of freedom and the corresponding
orbit in phase space for a fixed energy. The probability of
finding the particle in the orbit’s region spanned by dϕ is
given by the ratio of time dt that it spends there, and the
period T = 2π/ω that it takes to traverse the entire orbit.

More precisely, this probability is given by

Pcl(ϕ)dϕ := dt

T
= dϕ

ωT
= dϕ

2π
. (B1)

From this expression, we read off the probability distribution
Pcl(ϕ) = 1/(2π ), which is uniform and allows us to compute
the average f̄ (I ) of a function f (ϕ, I ) as

f̄ :=
∫ 2π

0
dϕ Pcl(ϕ) f (ϕ) = 〈 f 〉cl, (B2)

matching the classical average (7). An analogous result fol-
lows for integrable systems with N degrees of freedom. If
the system is separable and the analysis is made in each
degree of freedom’s phase space (qa, pa), the total probability
distribution turns out to be

Pcl(ϕ
1, . . . , ϕN ) = P(1)

cl (ϕ1) · · · P(N )
cl (ϕN ). (B3)

The same result follows for integrable but not separable sys-
tems (in the original coordinates (q, p)), once transformed
into normal coordinates.
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