
PHYSICAL REVIEW A 105, 062411 (2022)

Multiparameter quantum metrology with discrete-time quantum walks

Mostafa Annabestani *

Faculty of Physics, Shahrood University of Technology, P. O. Box 3619995161, Shahrood, Iran

Majid Hassani †

LIP6, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

Dario Tamascelli ‡

Quantum Technology Lab & Applied Quantum Mechanics Group, Dipartimento di Fisica Aldo Pontremoli,
Università degli Studi di Milano, I-20133 Milano, Italy

Matteo G. A. Paris §

Quantum Technology Lab & Applied Quantum Mechanics Group, Dipartimento di Fisica Aldo Pontremoli,
Università degli Studi di Milano, I-20133 Milano, Italy and INFN, Sezione di Milano, I-20133 Milano, Italy

(Received 13 October 2021; accepted 19 May 2022; published 6 June 2022)

We address multiparameter quantum estimation for one-dimensional discrete-time quantum walks and its
applications to quantum metrology. We use the quantum walker as a probe for the unknown parameters encoded
in its coin degrees of freedom. We find an analytic expression of the quantum Fisher information matrix for
the most general coin operator, and show that only two out of the three coin parameters can be accessed. We
also prove that the resulting two-parameter coin model is asymptotically classical, i.e., the Uhlmann curvature
vanishes. Finally, we apply our findings to relevant case studies, including the simultaneous estimation of charge
and mass in the discretized Dirac model.
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I. INTRODUCTION

Quantum enhanced metrology [1–5] is among the most
promising quantum technologies. Squeezing-enhanced op-
tical interferometry [6,7] has been recently exploited in
gravitational wave detectors [8,9], whereas quantum probes
have carved their place into experimental investigation of
delicate systems [10]. Several other applications of quantum
enhanced sensors have been also suggested [11–20]. Quantum
metrology has its foundations in quantum estimation theory
[1–4,7,21–26], which assesses the ultimate precision in the
estimation of unknown parameters characterizing quantum
systems and operations.

Since the early stages of quantum simulations, quantum
walks have provided a formidable tool for both the determi-
nation of the computational power of quantum computers,
and the study of discrete quantum systems [27–31]. In fact,
being the quantum analog of classical random walks (on con-
figuration spaces), quantum walks in either the discrete- or
continuous-time version [32] provide a simple but powerful
instrument to define and characterize quantum algorithms [33]
and communication protocols in the same way as classical
random walks are used to analyze randomized algorithms. On
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the other side, discrete time and space version of fundamental
equations, such as the Dirac equation, can be interpreted as
coined discrete-time quantum walks on lattices [34–41]. In
view of their use in the realization of quantum protocols, the
characterization of quantum walks at the quantum level is a
necessary step. Indeed, quantum metrological schemes have
been proposed, and precision benchmarks have been obtained,
for either the discrete- [42] or continuous-time quantum
walks [43].

In this work, we assess the ultimate precision attainable in
the determination of the unknown coin operator in a discrete-
time quantum walk. Since three parameters are necessary,
in the general setting, to define a unitary operator acting on
a two-level system, multiparameter quantum estimation the-
ory will be exploited to determine bounds on the efficiency
of unbiased estimators of the coin operator. As we will see
by exploiting our analytic expression of the quantum Fisher
information matrix, only two out of the three parameters
defining the coin operator may be actually accessed. On the
other hand, we prove that for the resulting two-parameter coin
model there is no incompatibility, i.e., the Uhlmann curvature
vanishes and the model is asymptotically classical. This fact
implies that the quantum walker can be used as an optimal
probe in the multiparameter quantum metrology, which yields
to the compatible model of estimation [44].

The paper is organized as follows. We will first briefly
introduce multiparameter quantum estimation and define the
relevant quantities in Sec. II. Section III is devoted to coined
discrete-time quantum walks. In Sec. IV we present our main
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results about the analytic expression of the quantum Fisher in-
formation matrix and Uhlmann curvature (or incompatibility)
matrix. We proceed in Sec. V with presenting some relevant
examples, which allow us to establish the compatibility of our
findings with what is already present in the literature, and to
illustrate the scope and range of our results. Section VI closes
the paper with some concluding remarks.

II. MULTIPARAMETER QUANTUM ESTIMATION

Quantum estimation theory deals with the assessment of
the ultimate estimation precision attainable in the presence
of quantum resources, such as coherence and entanglement.
The estimation process can be ideally seen as follows: a quan-
tum system, or probe, is prepared in a particular initial state,
evolved under the action of an Hamiltonian, or Liouvillian,
having unknown parameters, and then measured. The goal of
this procedure is to gain as much information as possible on
the unknown parameters, which determine the dynamics of
the probe. For fixed initial state and evolution, the amount of
information that is accessed upon measurement depends on
the measurement itself, whose outcome is then suitably pro-
cessed by means of an estimator. Analogously to the classical
Cramèr-Rao bound, which limits the precision of an estimator
in terms of a quantity independent of the estimator itself, i.e.,
the Fisher information, the quantum Cramèr-Rao bound poses
a bound to the ultimate precision of parameter estimation in
the presence of quantum resources. In the case of a single
unknown parameter θ , once indicated by {ρθ } the family of
quantum states depending on θ the ultimate precision of any
unbiased estimator θ̂ for θ is given by quantum Cramèr-Rao
inequality:

σ 2[̂θ] � 1

F (θ )
, (1)

where σ 2 is the variance of the estimator and F (θ ) is the
quantum Fisher information (QFI) defined as

F (θ ) = Tr
[
ρθL2

θ

]
. (2)

Lθ is the symmetric logarithmic derivative (SLD) implicitly
defined by

∂ρθ

∂θ
= 1

2
{Lθ , ρθ }, (3)

and {·} denotes the anticommutator. The QFI is therefore, as
its classical counterpart, independent of the measurement. We
moreover remark that the optimal measurement, i.e. the one
saturating the quantum Cramér-Rao inequality, is the projec-
tor operator, which can be constructed by the eigenvectors of
the SLD [2].

These results and definitions can be extended to the mul-
tiparameter estimation scenario [45–49], namely when the
unknown parameters to be jointly estimated are more than
one. In this case we indicate by {��} the statistical model,
with � = (θ1, θ2, . . . , θn) and θi ∈ R. The Cramér-Rao bound
(1) for multiparameter estimation is expressed as [50]

Cov(�) � F −1, (4)

where Cov(�) is the n × n covariance matrix; F denotes
instead the quantum information Fisher matrix (QFIm) with

elements defined as

F μν = 1
2 Tr[��{Lμ, Lν}], (5)

where Lμ denotes the SLD with respect to the parameter μ.
From now on we omit the � subscript wherever clear from
the context for ease of notation.

Differently from the single-parameter case, in the multi-
parameter scenario the quantum limit given by the matrix
inequality (4) is not achievable in general [44,51–56]. This
fact has its root in the noncommuting nature of the operator al-
gebra, preventing the simultaneous measurement of arbitrary
observables with arbitrary accuracy and leading to tradeoffs
for the precision of the individual estimators.

A most useful scalar bound can be obtained by introducing
a real and positive weight matrix W . This yields

Tr[Cov(�)W ] � CS (�,W ), (6)

where

CS (�,W ) = Tr[F −1W ], (7)

also known as the symmetric bound. A tighter scalar bound
was derived by Holevo [45,48], which can be numerically
calculated by means of linear semidefinite programming as
Ref. [53]. Recently, it has been proved that the Holevo bound
CH (�,W ) can be upper bounded by the symmetric bound as
follows [52]:

CS (�,W ) � CH (�,W ) � (1 + R )CS (�,W ). (8)

The quantity R is defined as

R = ‖iF −1D‖∞, (9)

where ‖A‖∞ is the largest eigenvalue of the matrix A, and
0 � R � 1. The coefficient R measures the amount of incom-
patibility of the unknown parameters, and is in fact defined in
terms of the Uhlmann curvature matrix

Dμν = − i

2
Tr[��[Lμ, Lν]]. (10)

Strictly speaking, multiparameter quantum metrology cor-
responds to simultaneous estimation of multiple parameters
using a single quantum system to probe a quantum dynam-
ics with unknown parameters. Of course, separate experi-
ments may be also exploited, and in this case each parameter
is independently estimated. This means that in every estima-
tion run all parameters except one are considered perfectly
known. The symmetric bound is not generally achievable in
the simultaneous estimation, corresponding to the fact that in
simultaneous estimation one uses only the resources of one of
the separate schemes.

The compatibility conditions are as follows: (i) The
Uhlmann curvature matrix vanishes, Dμν = 0; this require-
ment ensures the existence of compatible measurements and
the saturability of the symmetric bound; (ii) The QFIm is a
diagonal matrix, i.e., F μν = 0 for all μ �= ν, which implies
that the different parameters can be estimated independently;
and (iii) There exists a single probe state that maximizes the
QFIs for all parameters. When these compatibility conditions
are fulfilled, the performance of the simultaneous and sep-
arate schemes will be equal to each other. Such models are
referred to as compatible models [44]. In compatible models
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each of parameters is estimated independently with ultimate
precision, and typically require fewer resources with respect
to separate schemes [44,57]. In this work, we prove that
discrete-time quantum walks provide a compatible model for
multiparameter quantum metrology.

III. DISCRETE-TIME QUANTUM WALK

In a discrete-time quantum walk (DTQW) on a one-
dimensional lattice, at each time step a walker moves between
nearest-neighbor sites of the lattice with an amplitude that
depends on the state of a two-level system playing the role of
a coin [29,30]. Between different moves, moreover, the state
of the coin can be modified by some operator. The Hilbert
space Hp of the walker is spanned by the elements of the
position basis {|x〉 | x ∈ Z}, where |x〉 indicates that the walker
is on the xth site of the lattice. A basis for the space Hc of
the coin is instead provided by the eigenstates {|0〉, |1〉} of
the Pauli matrix σz, and the complete lattice-coin space is
H = Hp ⊗ Hc.

In this basis, the evolution of the quantum walk is therefore
determined by the repeated application to an initial state of the
form

|	(0)〉 =
∑
x, j

cx, j (0)|x〉p ⊗ | j〉c (11)

of the operator

U� = S(1 ⊗ C�), (12)

where

S =
∑

x

|x + 1〉〈x| ⊗ |0〉〈0| + |x − 1〉〈x| ⊗ |1〉〈1| (13)

is the conditional shift operator and C� is the coin operator.
Neglecting an overall phase factor the most general form of
the coin operator, i.e., an element of U (2), is given by

C� = Cθ,α,β =
(

eiα cos θ eiβ sin θ

−e−iβ sin θ e−iα cos θ

)
. (14)

The parameters θ, α and β are the unknown parameters ad-
dressed by our multiparameter estimation problem. The state
of the quantum walker after t steps is equal to

|	�(t )〉 = Ut
�|	(0)〉. (15)

For our purposes it is expedient to work with a diagonal
representation of the shift operator. To this end we define
a new basis for the position space by applying the Fourier
transformation [58]

|k〉 =
∑

x

eikx|x〉. (16)

The set {|k〉}, −π � k � π satisfies the completeness condi-
tion

1

2π

∫ π

−π

dk |k〉〈k| = 1, (17)

and, moreover,

δ(k − k′) = 1

2π

∑
x

e−i(k−k′ )x. (18)

The unitary operator in k space is given by

U� = 1

2π

∫ π

−π

dk |k〉〈k| ⊗ uk (�), (19)

with

uk (�) = (e−ik|0〉〈0| + eik|1〉〈1|)C�. (20)

Replacing Eq. (19) in Eq. (15) yields

|	�(t )〉 = 1

2π

∫ π

−π

dk |k〉 ⊗ ∣∣ϕt
k (�)

〉
, (21)

where |ϕt
k (�)〉 = ut

k|ϕk (0)〉 and

|ϕk (0)〉 = 〈k|	(0)〉, (22)

is the amplitude of initial state in k space. We observe that
we have replaced ut

k (�) by ut
k to simplify the notation. It is

clear from Eq. (21) that in the k space the state of the walker
after t steps will be block diagonal and that the parameter
dependence appears only in the coin part.

IV. MAIN RESULT

Equation (21) is the pure state of DTQW after t steps,
which is defined on the whole Hilbert space, namely the coin
and the position space. By exploiting the fact that for pure
states the relations (�2 = � = |	〉〈	|) and Lμ = 2∂μ� =
2(|∂μ	〉〈	| + |	〉〈∂μ	|) hold, it is possible to determine the
QFIm and the Uhlmann curvature matrix; their elements are
given by

F μν[|	〉〈	|] = 4R(〈∂μ	|∂ν	〉 − 〈∂μ	|	〉〈	|∂ν	〉),
(23)

Dμν[|	〉〈	|] = 4 I(〈∂μ	|∂ν	〉 − 〈∂μ	|	〉〈	|∂ν	〉),
(24)

where R and I denote, respectively, the real and imaginary
part, and ∂μ = ∂

∂θμ
. The first derivative of Eq. (21) is

|∂μ	�(t )〉 = 1

2π

∫ π

−π

dk |k〉 ⊗ ∣∣∂μϕt
k (�)

〉
, (25)

where

|∂μϕt
k (�)〉 =

t−1∑
m=0

um+1
k Oμ um+1 †

k

∣∣ϕt
k (�)

〉
, (26)

and Oμ = u †
k ∂μuk (see Appendix A for details on the deriva-

tion). One can define the superoperator, Ak on the coin space
of the walker as

t−1∑
m=0

um+1
k Oμ um+1 †

k ≡
t−1∑
m=0

Am+1
k (Oμ) = A′

k (Oμ). (27)

This yields

〈∂μ	|∂ν	〉 − 〈∂μ	|	〉〈	|∂ν	〉 (28)

=
∫ π

−π

dk

2π
〈A′

k (O†
μ)A′

k (Oν )〉t

−
(∫ π

−π

dk

2π
〈A′

k (O†
μ)〉t

)(∫ π

−π

dk

2π
〈A′

k (Oν )〉t

)
,
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where

〈•〉t = 〈
ϕt

k (�)
∣∣ • ∣∣ϕt

k (�)
〉 = Tr

[ • At
k (�0)

]
, (29)

with �0 = |ϕk (0)〉〈ϕk (0)|. In order to extract simple analytic
relations for F μν and Dμν , we adopt the superoperator for-
malism [59,60].

Any two-dimensional Hermitian (anti-Hermitian) operator
such as O can be represented in terms of Pauli matrices
{1, σx, σy, σz} as follows:

O = 1
2 (o01 + oxσx + oyσy + ozσz ), (30)

where the coefficients oi are determined by the Hilbert-
Schmidt product Tr[Oei] of O with the ith element of a basis

for the space of 2 × 2 matrices. We set oi = Tr[Oσi], i ∈
{0, x, y, z}, and σ0 = 1. The coefficients of the above expan-
sion can be regarded as the elements of four-dimensional
column vector

|O) =

⎛
⎜⎝

o0

ox

oy

oz

⎞
⎟⎠ ≡ (o0, �o)T , (31)

in which �o is nothing else than the Bloch vector. In Ap-
pendix B we report some simple, but useful, properties of this
representation.

Theorem 1. The elements of the QFIm F μν and of the
Uhlmann curvature matrix Dμν are

F μν = t2

{∫ π

−π

dk

2π
(Oμ|Ã1

k |Oν ) −
(∫ π

−π

dk

2π
(Oμ|Ã1

k |�0)

)(∫ π

−π

dk

2π
(�0|Ã1

k |Oν )

)}
+O(t ), (32)

Dμν =
∫ π

−π

dk

2π
( �o′

μ × �o′
ν ) · �r, (33)

where Oi = u †
k ∂iuk, i ∈ {α, β, θ}, uk represents the evolution operator, and �0 = |ϕk (0)〉〈ϕk (0)| denotes the initial state of the

DTQW in k space; �r and �o′
μ/ν are the Bloch vectors of |R) = Ãt

k|�0) and the imaginary part of |O′
μ/ν ) = Ã′

k|Oμ/ν ), respectively

[see (31)]. The matrix Ã1
k is instead defined as

Ã1
k = N

⎛
⎜⎜⎝

1
N 0 0 0
0 sin2 (k − β ) − cos (k − β ) sin (k − β ) cot θ sin (k − β ) sin (k − α)
0 − cos (k − β ) sin (k − β ) cos2 (k − β ) − cot θ cos (k − β ) sin (k − α)
0 cot θ sin (k − β ) sin (k − α) − cot θ cos (k − β ) sin (k − α) cot2 θ sin2 (k − α)

⎞
⎟⎟⎠,

N = sin2 θ

1 − cos2 θ cos2 (k − α)
. (34)

The proof of the theorem is reported in Appendix C.
Here in the following we describe some relevant conse-

quences of our main result.
Corollary 1. Only the parameters θ and α of the coin op-

erator can be estimated.
Proof. By exploiting the definition Oi = u †

k ∂iuk , one can
easily show that

|Oθ ) = 2i

⎛
⎜⎝

0
− sin(α − β )
cos(α − β )

0

⎞
⎟⎠, (35)

|Oα ) = i

⎛
⎜⎜⎝

0
cos(α − β ) sin 2θ

sin(α − β ) sin 2θ

2 cos2 θ

⎞
⎟⎟⎠, (36)

|Oβ ) = i

⎛
⎜⎜⎝

0
cos(α − β ) sin 2θ

sin(α − β ) sin 2θ

−2 sin2 θ

⎞
⎟⎟⎠. (37)

It is thus straightforward to show that

Ã1
k |Oβ ) = 0. (38)

Corollary 2. The maximum value of the diagonal elements
of the QFIm may be obtained when the second term of the

F μν in Eq. (32) vanishes. In turn, at variance with the first
one, this term depends on the initial state and may be tuned by
choosing the proper preparation of the probe. The maximum
value of the diagonal elements of the QFIm is given by

F μμ = t2
∫ π

−π

dk

2π
(Oμ|Ã1

k |Oμ)

=
{

4t2 sin θ (1 + sin θ )−1 μ = θ,

4t2(1 − sin θ ) μ = α,
(39)

which explicitly depends the single parameter θ . In addition,
it exists a probe preparation making the QFIm diagonal.

To see this more explicitly, we notice that the off-diagonal
elements (μ �= ν) of Ã1

k vanishes (see the explicit form of Ã1
k

in Appendix D) ∫ π

−π

dk

2π
(Oμ|Ã1

k |Oν ) = 0. (40)

and thus the off-diagonal elements of the QFIm contain only
terms dependent on the initial state, which may be set to zero
by a suitable choice of the initial preparation of the probe.

Corollary 3. As in any local estimation problem, the actual
ultimate precision, as quantified by the QFIm, depends on
the true value of the parameters. One may wonder whether
there are values for which both the diagonal elements F θθ and
F αα of the QFIm (see Corollary 2), are maximized. In order
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to check whether such values exist, one should solve F θθ =
F αα , which indeed admits solutions sin θ = −g and sin θ =
−g−1, where g = 1+√

5
2 and g−1 = 1−√

5
2 are the so-called

golden and the golden conjugate (silver) ratio, respectively.
Since g > 1, we have θ = arcsin(−g−1).

Corollary 4. If the walker is initially localized on a site of
the lattice, the elements of the QFIm are explicitly given by

F θθ = 4t2

1 + sin θ

(
sin θ − (n̂ × �r)2

ẑ

1 + sin θ

)
, (41)

F φφ = 4t2(1 − sin θ )

(
1 − (n̂ · �r)2

1 + sin θ

)
, (42)

F θφ = −4t2(1 − sin θ )

cos θ (1 + sin θ )
(n̂ · �r)(n̂ × �r)ẑ, (43)

where φ = α − β, n̂ = (sin θ cos φ, sin θ sin φ, cos θ ), �r is the
Bloch vector of the coin initial state, and (·)ẑ indicates the
third component of the vector. In the expressions (41)–(43) we
have moreover neglected an O(t ) additional term that becomes
irrelevant for large enough times t . On the other side, the
choice �r = ∂θ n̂ makes the t2 term in Eq. (43) vanish thus
leaving a QFIm having O(t ) off-diagonal elements, and O(t2)
diagonal elements.

Proof. All of |Oi )s depend on θ and φ = α − β see
Eqs. (35)–(37). In addition, for any local initial state in the
position space

|	(0)〉 = |x0〉p ⊗ |χ〉c, (44)

and �0 = |ϕk (0)〉〈ϕk (0)| = |χ〉〈χ | does not depend on k. The
integration in Eq. (32) is thus taken over Ã1

k and the solution
of the integral depends on θ and φ (see Appendix D). It
follows that the elements of the QFIm have only two inde-
pendent parameters (θ and φ). Equations (41), (42), and (43)
can be easily derived by calculating Eq. (32) with �0 ≡ |�0) =
(1, �r)T .

These results make it clear that for a localized initial
state of the walker, the optimal choice of the coin state (see
Corollary 2) leads to a QFIm where the off-diagonal elements
become negligible, for large values of t , with respect to the
diagonal elements. However, since the off-diagonal terms do
not vanish, such optimal choice does not lead to a compatible
model. On the other side, here below we show that we can
exploit the state dependence of the second term of the QFIm
(32) to obtain such a compatible quantum multiparameter
model.

Theorem 2. There exists an optimal choice for the initial
state of the quantum walker for which we may maximize
both the diagonal elements of the QFIm and set to zero the
off-diagonal elements, thus obtaining on optimal compatible
model. This optimal choice corresponds to a coin-position
entangled initial state

|	 ′(0)〉 = 1√
2

(|x1,p0c〉 + |x2,p1c〉), (45)

were x1 and x2 indicate two points in the position space and
d = |x1 − x2| is an odd number.

We refer the reader to Appendixes C and D for a proof of
the theorem. Here we limit ourselves to observe that, for this
choice of the initial state, the initial-state-dependent term (46)

of the QFIm, namely∫ π

−π

dk

2π
(Oμ|Ã1

k |�′
0), μ ∈ {θ, α}, (46)

vanishes. Moreover, |�′
0) does depend on k but does not de-

pend on the unknown parameters and, remarkably enough, the
elements of the Uhlmann curvature matrix (33) vanish.

A (discrete-time) quantum walker can thus be used as a
probe in a multiparameter quantum metrology scenario in
which the unknown parameters are encoded on the coin space
of the walker. The evolution is governed by the unitary opera-
tion of the DTQW. Our results show that by suitably choosing
the initial state, a DTQW probe yields to a compatible model,
where all parameters are estimated independently with the
ultimate precision and consuming fewer resources. Moreover,
optimal entangled initial states does not depend on the un-
known parameters, at variance with optimal local initial states,
see Corollary 4. In the following, we illustrate some relevant
applications of our results by means of a few examples.

V. CASE STUDIES

In order to gain insight about the applications of the above
general results, let us now consider a few examples. In par-
ticular, we aim to show the applicability of our results in
DTWQ-related quantum metrology problems.

1. Single-parameter quantum metrology

We start by applying our results to a single-parameter
quantum statistical model. Without loss of generality in what
follows we set α = β = 0, and focus on the remaining param-
eter θ . In this case, Eq. (41) simplifies to

F θ = f�r (θ ) t2 = 4 sin θ
[
1 + sin θ

(
1 − r2

y

)]
(1 + sin θ )2

t2. (47)

The ultimate bound to precision, as determined by the QFI, is
thus monotonically increasing with time. For a fixed value of
the unknown parameter θ , the QFI is a function of the initial
state, and it is maximized by the set of states lying in the x-z
plane (for which we have ry = 0), whereas the ±1 eigenstates
of σy minimize the QFI. As shown in Fig. 1, at any fixed time
the ratio between the QFIs corresponding to the best and worst
choices of the initial state is larger than one, and can lead
to a

√
2 gain factor in the standard deviation of the efficient

estimator of θ . The minimum value of the F θ agrees with the
results in Ref. [42], where numerical evaluation for each initial
state of the coin was required.

2. Two-parameter quantum metrology with special initial
states of the coin

Let us now consider the following initial state of the walker
|	1(0)〉 = 1√

2
(|0p0c〉 + |1p1c〉). This corresponds to an ini-

tially delocalized walker, over the site x = 0 and x = 1 in
the position space, and entangled with the coin. Substituting
|	1(0)〉 in Eq. (22) yields

|ϕ′
k (0)〉 = 1√

2
(|0c〉 + e−ik|1c〉), (48)
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FIG. 1. The QFI (47) for θ = π/4 as a function of time when a
maximizing (ry = 0, solid red line) or a minimizing (eigenstates of
σy, dashed blue line) initial state is selected. In the inset the prefac-
tor f�r (θ ) for the same maximizing (solid red line) and minimizing
(dashed blue line) initial states as a function of θ .

and

|�′
0) = |ϕ′

k (0)〉〈ϕ′
k (0)| = (1, cos k,− sin k, 0)T . (49)

By exploiting Eq. (32) one can evaluate the QFIm as follows:

F 1 = 4t2

( sin θ
1+sin θ

0
0 1 − sin θ

)
, (50)

where the initial-state-dependent terms of Eq. (32) vanish∫ π

−π

dk

2π
(Oθ |Ã1

k |�′
0)

=
∫ π

−π

dk

2π

2i cos(k − α) sin(2k − β ) sin2 θ

1 − cos2(k − α) cos2 θ
= 0, (51)

and∫ π

−π

dk

2π
(Oα|Ã1

k |�′
0)

=
∫ π

−π

dk

2π

−i sin(k − α) sin(2k − β ) sin 2θ

1 − cos2(k − α) cos2 θ
= 0. (52)

In other words, having an initially entangled state makes the
off-diagonal elements of the F and the D to vanish, and
maximizes its diagonal elements (see Theorems 1 and 2). The
model is thus compatible and the inequalities (8) are saturated,
so that

CH (�,W ) = CS (�,W ) = Tr
[
F −1

1 W
]
. (53)

In particular, by assuming W = 1, Tr[F −1
1 W ] gives the sum

of the mean-square errors for each of the unknown parameters.
One can thus calculate the Holevo bound

CH
1 (�,W ) = 1

t2
g(θ ) = 1

t2

sin θ + cos2 θ

4 sin θ (1 − sin θ )
. (54)

Figure 2 shows the Holevo bound for different values of θ .
One asymptotically gains a factor 1

t2 , i.e., a quadratic enhance-
ment in precision.

As another example, we consider the following initial state:

|	2(0)〉〈	2(0)| = |0〉〈0| ⊗ |γ 〉〈γ |
|γ 〉〈γ | = 1

2 (1 + cos γ σx + sin γ σy). (55)
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FIG. 2. The Holevo bound in Eq. (54) as a function of time for
θ = π/4 and θ = 3π/8. The quantity g(θ ) from the same equation is
shown as a function of θ in the inset.

The localized initial condition of the walker sets us once
again under the conditions for Corollary 4 to apply. This time,
however, the initial state of the coin is parametrized by γ .
The elements of the QFIm of the full space can be derived
by means of (41)–(43) and are

F 2,θθ = 4t2

1 + sin θ

[
sin θ − sin2 θ

1 + sin θ
sin2(γ − φ)

]
, (56)

F 2,αα = 4t2(1 − sin θ )

[
1 − sin2 θ

1 + sin θ
cos2(γ − φ)

]
, (57)

F 2,θα = −4t2(1 − sin θ )

cos θ (1 + sin θ )
[sin2 θ sin(γ − φ) cos(γ − φ)].

(58)

Note that by tuning γ in the initial state |	2(0)〉 [Eq. (55)],
one finds the optimal value γ = φ, which maximizes F 2,θθ

and makes the off-diagonal terms to vanish. On the other hand
F 2,αα is not maximum. Hence for this local initial state the
compatibility conditions are not fulfilled.

3. Joint estimation of two components of the magnetic field

Let us now apply our formalism to estimate the compo-
nents of a magnetic field [15,51,61]. In order to do that,
we consider a quantum walk in which the coin operation is
defrermined by a magnetic field having two unknown com-

ponents �B = (0, b2, b3), where B =
√

b2
2 + b2

3. The magnetic
field acts on a two-level system according to the following
unitary evolution:

e−iBB̂.σ = cos B1 − i
sin B

B
b2σy − i

sin B

B
b3σz. (59)

To estimate the unknown components of the magnetic field
within our formalism, we encode them on the coin operator of
the DTQW [see Eq. (14)[ as follows:

sin θ = − sin B

B
b2, tan α = − tan B

B
b3, β = 0. (60)

This implies that estimating the unknown parameters of the
coin provides the components of the magnetic field.
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4. Joint estimation of mass and charge in the Dirac equation

Our formalism may be used to jointly estimate physical
quantities such as mass and charge. In order to show this
possibility, we consider the Dirac Hamiltonian in (1 + 1)
dimensions in the presence of an electromagnetic field (in
Planck units h̄ = c = 1)

[iγ μ(∂μ − iqAμ) − m]ψ = 0, (61)

where q and m denote the charge and the mass of a spinless
particle, Aμ is the vector potential, and the γ μ denote Dirac
gamma matrices with μ = 0, 1, satisfying the anticommuta-
tion relation {γ μ, γ ν} = 2gμν1, in which gμν = diag(1,−1)
and 1 is the 2 × 2 identity matrix. We choose γ 0 = σx, γ 1 =
−iσy, and Aμ = (0, Ax )T , i.e., we assume a zero scalar po-
tential. With the above assumptions, the Dirac Hamiltonian,
Eq. (61), rewrites as

i∂tψ = HDψ = (−iσz∂x + qAxσz + mσx )ψ. (62)

The unitary evolution of the Dirac Hamiltonian for small ε is
given by [35]

|ψ (t + ε)〉 = e−iHDε |ψ (t )〉
= e−εσz∂x e−iε(qAxσz+mσx )|ψ (t )〉 + O(ε2), (63)

where in the last line we have employed the Lie-Trotter prod-
uct formula. Equation (63) shows that the evolution induced
by the Dirac Hamiltonian corresponds to a DTQW where
the first exponential term is the translational operator and the
second one denotes the coin operator. Moreover, it indicates
that the mass and charge of the particle corresponds to the
coin parameters as follows:

sin θ = −m√
q2A2

x + m2
sin

(
ε

√
q2A2

x + m2
)


 −mε,

tan α = −qAx√
q2A2

x + m2
tan

(
ε

√
q2A2

x + m2
)


 −qAxε,

β = π

2
. (64)

DTQW thus represents a convenient tool to simulate the
evolution of a Dirac particle, and to simultaneously estimate
the mass and the charge of the particle via coin parameter
estimation. Moreover, the vanishing of the Uhlmann curva-
ture ensures that the mass and the charge may be jointly
estimated using a single walker. One can easily see that
the Lie-Trotter approximation used to derive Eq. (63) in-
troduces errors of the order O(ε2t ) after t steps of the
quantum walk. As long as the simulation time T = tε sat-
isfies ε � T � (1/ε), therefore, all the constraints for the
validity of Theorem 1 and of the Lie-Trotter approximations
hold.

VI. CONCLUSIONS

In this paper, we have addressed multiparameter quantum
estimation for one-dimensional discrete-time quantum walks.
In particular, we have explored the possibility of exploiting
quantum walk to address the full statistical model, namely
the simultaneous estimation of different unknown parameters.
We have found the analytic expression of the quantum Fisher
information matrix for the most general coin operator, and
then exploited our findings to demonstrate that a (discrete-
time) quantum walker can be used as an optimal probe if the
unknown parameters of the statistical model are encoded in
the coin space.

We have shown that for the full model, only two out of the
three parameters defining the coin operator can be actually
accessed, and proved that the resulting two-parameter coin
model is asymptotically classical, i.e., the Uhlmann curvature
vanishes. Finally, we have applied our findings to relevant
case studies, including the simultaneous estimation of two
components of a magnetic field and of the charge and the mass
of a particle in the discretized Dirac model. Our results clarify
the role of coin parameters in discrete quantum walks, and
pave the way for further investigation in systems with more
than a walker.
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APPENDIX A: PROOF OF EQ. (26)

Here we present the proof of Eq. (26). The first derivative of the coin part (|ϕt
k (�)〉) is given by

∣∣∂μϕt
k (�)

〉 = ∂μut
k|χ〉c =

t−1∑
m=0

um
k 1 (∂μuk ) ut−m−1

k |χ〉c =
t−1∑
m=0

um
k uku †

k (∂μuk ) u†m+1
k ut

k|χ〉c =
t−1∑
m=0

um+1
k (u †

k ∂μuk ) u†m+1
k

∣∣ϕt
k (�)

〉
.

(A1)

APPENDIX B: USEFUL RELATIONS IN THE CALCULATION OF THE BLOCH REPRESENTATION

In the main text, we apply the Bloch representation for any two-dimensional Hermitian (anti-Hermitian) operator. Here we
recall some properties of the trace in this representation which help us to derive our results. Let us consider three 2 × 2 matrices
A, B, and C as follows:

A = 1
2 (a01 + �a · �σ ), B = 1

2 (b01 + �b · �σ ), C = 1
2 (c01 + �c · �σ ).
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By exploiting Eq. (30), it is straightforward to show that

Tr[AB] = 1

2
(A†|B) = 1

2
(a0b0 + �a · �b), (B1)

Tr[ABC] = 1

4
(i�a · (�b × �c) + a0(B†|C) + b0(C†|A) + c0(A†|B) − 2a0b0c0)

= 1

4
(i�a · (�b × �c) + a0(�b · �c) + b0(�a · �c) + c0(�a · �b) + a0b0c0). (B2)

Using Eq. (B2), one can obtain following identities:

Tr[A{B,C}] = Tr[ABC + ACB]
(B2)= 1

2
[a0(�b · �c) + b0(�a · �c) + c0(�a · �b) + a0b0c0], (B3)

Tr[A[B,C]] = Tr[ABC − ACB]
(B2)= 1

2
i�a · (�b × �c). (B4)

APPENDIX C: PROOFS FOR THEOREM 1 AND THEOREM 2

In this Appendix we prove Theorem 1 and Theorem 2. In order to do that, let consider the effect of the unitary evolution uk

[Eq. (20)] on an arbitrary operator, namely O, as follows:

O′ = ukOu†
k ≡ Ak (O), (C1)

where Ak denotes a superoperator. From Eqs. (20), (30), and (31), one obtains

O′ = ukOu†
k = 1

2

(
e−i(k−α) cos θ e−i(k−β ) sin θ

−ei(k−β ) sin θ ei(k−α) cos θ

)(
o0 + oz ox − ioy

ox + ioy o0 − oz

)(
ei(k−α) cos θ −e−i(k−β ) sin θ

ei(k−β ) sin θ e−i(k−α) cos θ

)
, (C2)

with four-dimensional column vector representation as

|O′) =

⎛
⎜⎝

o0

cos2 θ [ox cos(2k − 2α) − oy sin(2k − 2α)] − sin2 θ [ox cos(2k − 2β ) + oy sin(2k − 2β )] − sin 2θ cos(2k − α − β ) oz

cos2 θ [ox cos(2k − 2α) + oy sin(2k − 2α)] + sin2 θ [oy cos(2k − 2β ) − ox sin(2k − 2β )] − sin 2θ sin(2k − α − β ) oz
sin 2θ [ox cos(α − β ) + oy sin(α − β )] + cos 2θ oz

⎞
⎟⎠.

(C3)
We the define |O′) = Ãk|O) where

Ãk =
⎛
⎝1 0 0 0

0 cos(2k − 2α) cos2 θ − cos(2k − 2β ) sin2 θ − sin(2k − 2α) cos2 θ − sin(2k − 2β ) sin2 θ − cos(2k − α − β ) sin 2θ

0 sin(2k − 2α) cos2 θ − sin(2k − 2β ) sin2 θ cos(2k − 2α) cos2 θ + cos(2k − 2β ) sin2 θ − sin(2k − α − β ) sin 2θ
0 cos(α − β ) sin 2θ sin(α − β ) sin 2θ cos 2θ

⎞
⎠.

(C4)
In order to arrive at Eq. (28), we need to calculate A′

k = ∑t−1
μ=0 A

μ+1
k and At

k . The spectral decomposition of Ãk yields

Ãk = |λ1)(λ1| + |λ2)(λ2| + e2iω|λ3)(λ3| + e−2iω|λ4)(λ4|, (C5)

i.e., the eigenvalues of Ãk are

λ1 = λ2 = 1, λ3 = e2iω, λ4 = e−2iω, (C6)

in which cos ω ≡ cos(k − α) cos θ . From whence

Ã′
k =

t−1∑
μ=0

Ãμ+1
k = t (|λ1)(λ1| + |λ2)(λ2|) +

t−1∑
μ=0

e2iω(μ+1)|λ3)(λ3| +
t−1∑
μ=0

e−2iω(μ+1)|λ4)(λ4|

= t (|λ1)(λ1| + |λ2)(λ2|) + e2iω(1 − e2iωt )

1 − e2iω
|λ3)(λ3| + e−2iω(1 − e−2iωt )

1 − e−2iω
|λ4)(λ4|, (C7)

and

Ãt
k = |λ1)(λ1| + |λ2)(λ2| + e2iωt |λ3)(λ3| + e−2iωt |λ4)(λ4|. (C8)

in which Ã1
k = |λ1)(λ1| + |λ2)(λ2| is the projector of Ãk on the subspace corresponding to the eigenvalue 1 and

|λ1) = 1√
2(1 − cos ω)

⎛
⎜⎝

cos(k − α) cos θ − 1
sin(k − β ) sin θ

− cos(k − β ) sin θ

sin(k − α) cos θ

⎞
⎟⎠, (C9)
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|λ2) = 1√
2(1 + cos ω)

⎛
⎜⎝

cos(k − α) cos θ + 1
sin(k − β ) sin θ

− cos(k − β ) sin θ

sin(k − α) cos θ

⎞
⎟⎠. (C10)

By defining A′
k (O†

μ) ≡ A, A′
k (Oν ) ≡ B, At

k (�0) ≡ C, and using (B2), the first term of Eq. (28) is∫ π

−π

dk

2π
Tr

[
A′

k (O†
μ)A′

k (Oν )At
k (�0)

] = 1

4

∫ π

−π

dk

2π
(i�a · (�b × �c) + (Oμ|Ã′

k
†Ã′

k|Oν )) (C11)

and the integrals appearing in the last term of Eq. (28) are∫ π

−π

dk

2π
Tr

[
At

k (�0)A′
k (Ox )

] = 1

2

∫ π

−π

dk

2π

(
�0|Ãt

k

†Ã′
k|Ox

)
. (C12)

Note that A′
k and Ak are trace preserving super operator, so we have a0 = b0 = 0 and c0 = 1.

Since Ak is real and |Oμ/ν ) are pure imaginary, all elements of (C11) and (C12) are real, except i�a · (�b × �c), which is pure
imaginary. So according to the definitions of (23) and (24)

F μν =
∫ π

−π

dk

2π
(Oμ|Ã′

k
†Ã′

k|Oν ) −
∫ π

−π

dk

2π
(Oμ|Ã′

k
†Ãt

k|�0)
∫ π

−π

dk

2π

(
�0|Ãt

k

†Ã′
k|Oν

)
(C13)

Dμν =
∫ π

−π

dk

2π
( �o′

μ × �o′
ν ) · �r, (C14)

in which �r and �o′
μ/ν are Bloch vectors of |R) = Ãt

k|�0) and the imaginary part of |O′
μ/ν ) = Ã′

k|Oμ/ν ), respectively [see (31)].
Now we show that, for the large enough t , only the subspace spanned by |λ1) and |λ2) needs to be considered, whereas the

subspaces spanned by |λ3) and |λ4) can be neglected in Eqs. (C13) and (C14). To see this, let us rewrite (C7) and (C8) as

Ã′
k = tL1 + fL3 + f ∗L4, (C15)

Ãt
k = L1 + e2iωtL3 + e−2iωtL4, (C16)

in terms of projectors

L1 = A1
k = |λ1)(λ1| + |λ2)(λ2|, L3 = |λ3)(λ3|, L4 = |λ4)(λ4|, (C17)

in which

f = e2iω(1 − e2iωt )

1 − e2iω
. (C18)

Note that the projectors Li are orthogonal, i.e.,

LiL j = Liδi, j, (C19)

in which δi, j is Kronecker delta. By using (C15) and (C19) we have

(Oμ|Ã′
k

†Ã′
k|Oν ) = t2(Oμ|Ã1

k |Oν ) + | f |2(Oμ|L3 + L4|Oν ). (C20)

for the first term of (C13) and(
�0|Ãt

k

†Ã′
k|Ox

) = t (�0|Ã1
k |Ox ) + e−2iωt f (�0|L3|Ox ) + e2iωt f ∗(�0|L4|Ox ), (C21)

for the integrals appearing in the second term.
According to the stationary phase theorem, for the large values of t any terms proportional to e±2iωt scale with 1√

t
. So the

largest error of neglecting oscillation terms (any terms proportional to | f |2, e−2iωt f or e2iωt f ∗) scale with 1. Therefore putting
(C20) and (C21) into (C13) and using stationary phase theorem, we have

F μν = t2

{∫ π

−π

dk

2π
(Oμ|Ã1

k |Oν ) −
∫ π

−π

dk

2π
(Oμ|Ã1

k |�0)
∫ π

−π

dk

2π
(�0|Ã1

k |Oν )

}
+ O(t ) (C22)

which has relative error of order t−1. We should note that for the diagonal F xx (optimal initial state in Theorem 2) the relative
error of approximation will be t−2.

Let us turn our attention to the Uhlmann curvature matrix Dμν . Since

|ρt ) = At
k|ρ0) (C23)

and all the elements of |ρ0), |ρt ), |λ1), and |λ2) are real, the elements of

e2iωt |λ3) + e−2iωt |λ4) (C24)
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are real, that is |λ3) = |λ4)∗ ≡ |R2) + i|R3). Furthermore we can write L1 ≡ |R1〉〈R1|, where |Rx ) are real four-vectors and the
orthogonality of |λx ) implies |Rx ) to be orthogonal.

Since both Ãk and Ã1
k are trace preserve (all off-diagonal elements in the first row and the first column are 0), the remaining

subspace of Ãk , which spanned by |R2) and |R3) can not change the trace, so the first element of |R2) and |R3) must be 0 and
consequently the Bloch vectors of �rx [(31)] are orthogonal too, i.e.,

�ri · ( �r j × �rk ) = εi jkrir jrk, (C25)

in which ri = |�ri| and εi jk is Levi-Civita symbol.
By expressing Ãk, Ãt and |Ox ) in |Rx〉 basis and using (C25), we have

( �o′
μ × �o′

ν ) · �r = 4te−2iωt f [β2(α3μα1ν − α1μα3ν ) + β3(α1μα2ν − α2μα1ν )] − 4| f |2β1(α3μα2ν − α2μα3ν ) (C26)

with αix = �ri · �ox and βi = �ri · ��0, which, thanks to the stationary phase theorem, scale as O(t ) in (C14). Equation (C26) makes it
clear that it is impossible to set the proper local initial state to have a compatible model. In fact, for the diagonal F with maximum
elements we need a local initial state satisfies (Ox|Ã1

k |�0) = 0, which is equivalent to �r1 · ��0 = 0. So at least one of β2 = �r2 · ��0

or β3 = �r3 · ��0 is not 0, which keeps time-dependent term in Dμν [see (C26)]. Inversely by setting ��0 perpendicular to both �r2

and �r3, the coefficients β2 = β3 = 0 which eliminate time-dependent term of Dμν , but this kind of ��0 can not be perpendicular
to �r1 too and F is not diagonal. As we observed, only by starting from an entangled initial state we can diagonalize the F and
eliminate the time dependency of D at the same time.

APPENDIX D: VANISHING EQ. (45) FOR COIN-POSITION ENTANGLED INITIAL STATES
WITH ODD SEPARATION IN THE POSITION SPACE

We prove that by choosing coin-position entangled initial states with odd separation in the position space, Eq. (45) vanishes.
In order to show that, let consider the explicit form of

∫ π

−π
dk
2π

Ã1
k as

∫ π

−π

dk

2π
Ã1

k = sin θ

sin θ + 1

⎛
⎜⎜⎝

sin θ+1
sin θ

0 0 0

0 sin θ cos2 φ + sin2 φ sin φ cos φ(sin θ − 1) cos φ cos θ

0 sin φ cos φ(sin θ − 1) sin θ sin2 φ + cos2 φ sin φ cos θ

0 cos φ cos θ sin φ cos θ cos θ cot θ

⎞
⎟⎟⎠. (D1)

and the analytic solution of integrals are∫ π

−π

dk

2π
(Oθ |Ã1

k |�′
0) = −i(1 + (−1)d ) tan θ

(
1 − sin θ

cos θ

)d−1

sin[β + α (d − 1)] (D2)

and ∫ π

−π

dk

2π
(Oα|Ã1

k |�′
0) = i(1 + (−1)d ) sin θ

(
1 − sin θ

cos θ

)d−1

cos [β + α (d − 1)]. (D3)

Notice that for odd d the integrals are zero, whereas for even d this is no longer true except for some specific values of β. On
the other hand, for d → ∞ the integrals (D2) and (D3) vanish also for even d , and we have a compatible model by choosing an
entangled initial states with enough large separation d = |x1 − x2| between the spatial components [see Eq. (45)].
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