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Coarse-grained intermolecular interactions on quantum processors
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Variational quantum algorithms (VQAs) are increasingly being applied in simulations of strongly bound
(covalently bonded) systems using full molecular orbital basis representations. The application of quantum
computers to the weakly bound intermolecular and noncovalently bonded regime, however, has remained largely
unexplored. In this work, we develop a coarse-grained representation of the electronic response that is ideally
suited for determining the ground state of weakly interacting molecules using a VQA. We require qubit numbers
that grow linearly with the number of molecules and derive scaling behavior for the number of circuits and
measurements required, which compare favorably to traditional variational quantum eigensolver methods. We
demonstrate our method on IBM superconducting quantum processors and show its capability to resolve the
dispersion energy as a function of separation for a pair of nonpolar molecules—thereby establishing a means by
which quantum computers can model Van der Waals interactions directly from zero-point quantum fluctuations.
Within this coarse-grained approximation, we conclude that current-generation quantum hardware is capable
of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important
regime. Finally, we perform experiments on simulated and real quantum computers for systems of three, four,
and five oscillators as well as oscillators with anharmonic onsite binding potentials; the consequences of the
latter are unexamined in large systems using classical computational methods but can be incorporated here with
low computational overhead.
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I. INTRODUCTION

Computer simulation of matter at the atomic and molecular
scale has advanced to the point where it is now playing an in-
creasingly significant role in the design and discovery of new
functional materials. However, these simulations all face the
common challenge of how to strike inevitable compromises
between the physical realism of an underlying model and the
practicality of its implementation across the deep hierarchy of
intermolecular forces responsible for cohesion in condensed
phases.

This hierarchy spans a continuum of energy scales ranging
from greater than 1 eV for intramolecular bonds, extending
down to 10−1–10−2 eV for the intermolecular regime [1]. The
weakest of these are the dispersion interactions arising from
instantaneous quantum fluctuations of the electron distribu-
tion. These give rise to correlated induced multipole moments
with the leading-order contribution coming from dipolar cou-
pling, attenuated by the familiar 1/R6 asymptotic decay with
distance. Dispersion interactions therefore form part of the
nonlocal correlation energy of the system and are not pair-
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wise additive. Although generally weaker than electrostatic
interactions or hydrogen bonds, their long-ranged character
and ubiquity means that they exert influence to some extent in
all noncovalent associations.

There is now clear evidence that dispersion effects extend
beyond cohesive energy and have impact on structural and me-
chanical properties [2,3] as well as barrier heights and phase
transitions [4]. They can therefore play governing roles in a
wide range of condensed matter phenomena including liquid
state physics, molecular crystal stability, low-dimensional and
layered system stacking, hybrid organic-inorganic interface
properties, and biophysical interactions such as drug-ligand
binding. Moreover, as these interactions scale with system
size, their importance is expected to grow for larger molecules
and supramolecular assemblies [5].

Principally, there are two distinct strategies employed to
capture this molecular interaction hierarchy in computer mod-
els: First, there are empirical potential or force-field methods.
Here the system energy is typically decomposed into bonded
(stretches, bends, and torsions) and nonbonded (electrostatic
and dispersive) terms. These are parameterized to fit certain
experimental reference quantities. The motion of the system
can then be evolved by classical mechanics (molecular dy-
namics), and trajectories averaged to obtain static properties.
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These methods have the advantage of extreme computational
efficiency, meaning that they can be applied to relatively large
systems. However, they generally lack explicit electronic re-
sponses and, consequently, transferability to thermodynamic
or environmental conditions outside those of the parametriza-
tion range is limited.

Second, there are so-called first principles approaches in
which the Schrödinger equation is solved to various levels
of approximation. Here the prevailing methods for molecu-
lar dynamics applications are based on Kohn-Sham density
functional theory. In these models, there are no empirical
force laws: Instead, forces are computed “on-the-fly” directly
from the electronic structure according to the Hellmann-
Feynman [6,7] theorem with trajectories evolved on the
Born-Oppenheimer surface [8]. These techniques are com-
putationally resource-intensive and tend to be limited to
relatively small systems. Also, common density functional
approximations do not properly capture nonlocal correlations
involved in dispersion forces, and there are active efforts
to devise dispersion-corrected density functionals [9–12].
High-level quantum chemistry methods (such as configura-
tion interaction (CI) [13–15] or canonical coupled cluster
(CC) [16,17] with perturbative—single, double, triple—
excitations) can account for dispersion interactions explicitly
within various levels of approximation albeit with even more
severe limitations imposed by system size scaling [18–20].

Quantum computing offers promising routes for simula-
tions of correlated electronic systems at the first-principles
level. Materials modeling at atomic and molecular scales
is therefore one of its most anticipated application areas.
One such route is to use variational quantum algorithms
(VQAs) [21,22] for solving the Schrödinger equation for
chemical systems [23]. VQAs have the benefits of requir-
ing relatively short coherence times and modest numbers of
qubits, which is achieved by using a shallow parameterized
quantum circuit embedded within a classical optimiza-
tion routine to find the ground state of a given problem
Hamiltonian [24]. Since the first proposal to use varia-
tional methods—namely, the variational quantum eigensolver
(VQE) for chemical systems [24], VQAs have seen applica-
tion to a significant number of areas including combinatorial
optimization [25,26], strongly correlated materials [27–29],
and nonlinear partial differential equations [30]. Current
capabilities to model molecular properties from first princi-
ples in large systems using VQAs are, however, limited by
the prohibitive computational cost of the high-level, wave-
function methods typically deployed in quantum chemistry.
For example, solution of the Schrödinger equation at the full
configuration interaction (so-called “full CI”) level for the
ground-state wave function for molecular systems exhibits
factorial scaling [31].

Chemical applications of VQAs have consequently been
confined to the strongly bound intramolecular regime of
the interaction hierarchy and to small systems with ex-
amples now demonstrated for dissociation curves of small
molecules [32,33], ground-state energies for intramolecular
bonds [34], molecular excitation energies [31], covalent bind-
ing energies of hydrogen chains, isomerization barriers [35],
molecular vibrations [36,37], and two-site DMFT calcula-
tions [38,39]. All except the last two examples consider

Hamiltonians and states within full electronic basis sets such
as Slater-type or Gaussian-type orbitals [40]. For the sake
of comparison with our method, we will refer to these as
orbital-based VQE methods.

In contrast, the intermolecular (noncovalent) interaction
regime has been largely unexplored using quantum algo-
rithms and is a gap which will need to be filled in order to
address realistic material science problems using near-term,
noisy, quantum computers. Due to the size of the molecular
complexes of interest and the necessary inclusion of core
electrons for dispersive forces, the required number of elec-
trons and orbitals implies a large number of basis functions
and qubits [41,42]. This makes the direct scale up of current
quantum algorithms for electronic structure calculations very
impractical, and therefore strategies are needed to reduce the
number of electrons and orbitals treated explicitly at the high-
est levels of accuracy.

To address this difficulty, we develop a coarse-grained
model of electronic interactions that is ideally suited for VQA
and can easily be extended to represent a wide range of pos-
sible interactions. Our approach is inspired by and extends
a maximally coarse-grained model used in classical compu-
tations [43]. In this model the responsive (polarizable) part
of the molecular charge distribution is modeled as a quan-
tum harmonic oscillator embedded in the molecular frame
and its properties can be tuned to reproduce reference values
of polarisability or dispersion coefficients for real molecular
species. Zero-point multipolar fluctuations are present by con-
struction and so dispersion arises naturally. While the model
parameters are defined empirically to fit molecular properties
there are no interaction potentials or force laws between atoms
or molecules defined a priori. These are instead determined
from the coarse-grained electronic structure as in ab initio
approaches.

This model blends therefore features from both empirical
potential and first principles methodologies and has already
been solved, with model limitations, using a path integral
approach on classical processors. In particular, it has been
successfully applied to noble gas liquids and solids (pure dis-
persion) and to water (where polarization and dispersion are
both present) across its phase diagram where it has correctly
predicted vaporization enthalpy, temperature of maximum
density, temperature dependences of the dielectric constant
and surface tension [43–45] and revealed molecular signa-
tures of Widom line crossing in the supercritical fluid [46].
These classical methods have, however, been developed with
the specific aim of deriving force laws and are restricted to
harmonic confining potentials where certain order interactions
are missing and others are related by simple algebraic relation-
ships that hold only approximately for real systems [47].

By using quantum processors to model a coarse-grained
representation, our method gives a more general framework
than classical approaches. This allows for the extension to
anharmonic oscillators, which would capture these missing
interactions as well as allowing for the introduction of more
complex physics through nonlinear interaction terms. Figure 1
shows a schematic representation of the algorithm and corre-
lated charge fluctuations captured by the model.

Here we summarize our main findings: First, the num-
ber of qubits required to simulate the model on a quantum
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FIG. 1. Schematic of the VQE optimization procedure and out-
put states showing instantaneous asymmetry of the molecular charge
distribution. These correlated charge density fluctuations lead to dis-
persion interaction which, to the lowest order, is the familiar 1/R6

London attraction.

computer grows linearly with the number of molecules. Sec-
ond, the number of unique circuits required to measure our
Hamiltonian with all-to-all dipolar interactions scales at most
linearly with the number of oscillators. This compares favor-
ably to the O(N3) unique circuits that must be measured for
a full orbital-based VQE Hamiltonian with N orbitals [48].
For our algorithm, relaxation of the harmonic approximation
incurs negligible experimental overhead. Classical methods,
such as path integral and Monte Carlo techniques, typically
rely on the efficient sampling [49] of two-point correlators
for Gaussian states generated by harmonic Hamiltonians.
However, the non-Gaussian ground states of anharmonic
Hamiltonians are much more costly to sample. Thus, anhar-
monic potentials have not been studied much using classical
computational approaches.

We also present proof-of-principle experiments using IBM
superconducting quantum processors demonstrating the sol-
ubility of our model on current generation hardware. We
focus on two linear nonpolar molecules where the electronic
responses are described by embedded quantum oscillators.
Here the interactions arise from London dispersion forces for
which the leading contribution comes from dipolar quantum
fluctuations. Looking ahead to the main experimental results
of this paper, Fig. 2 shows the result of our VQA; combined
with a simple method to extract the binding energy; for a
pair of these interacting oscillators with parameters chosen to
represent an iodine (I2) molecular dimer. This demonstration
successfully recreates the leading order London dispersion
interaction, thereby giving the first demonstration of the use
of quantum processors to model dispersion forces directly
arising from quantum fluctuations.

Finally, we extend our proof-of-principle experiments to
systems of three, four, and five oscillators using simulated
quantum computers. We show how the algorithm performs
as a function of ansatz size and demonstrate that it is able
to find ground states of systems containing nontrivial many-
body interactions. We also perform experiments using an IBM
superconducting quantum processor in order for a system
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FIG. 2. London dispersion energy (�E ) calculated using vari-
ational quantum algorithm for one-dimensional quantum Drude
oscillators computing interacting I2 dimers. The black line gives the
dispersion energy obtained analytically. Red squares correspond to
noise-free evaluation (via state vector simulations) of the experi-
mentally optimized coupled ground state. Blue circles correspond
to energy directly obtained from experimentally optimized ground
states (error bars represent one-standard deviation on the mean). The
horizontal line marks zero dispersion interaction corresponding to
uncoupled oscillators at R = ∞ and vertical dashed line corresponds
to the I2 van der Waals diameter.

including anharmonic onsite binding potentials. We show that
the algorithm is again able to capture systems showing strong
anharmonic interactions however device noise levels must be
further improved in order to accurately measure the anhar-
monic contribution to the energy of the system, even when
using state-of-the-art error mitigation techniques.

Our coarse-grained model allows for the use of quantum
computers to efficiently model (with favorable scaling) the
intermolecular interactions between large molecules, which
are important in characterizing a wide range of chemical
and biological systems. This fills an essential gap in the
chemical interaction hierarchy and allows us to extend cur-
rent coarse-grained classical methods to capture a richer set
of physical behaviors with the necessary accuracy. Given
the reduced resource requirements (i.e., number of qubits,
gate operations, and circuit measurements) when compared
to full orbital-based electronic structure calculations, the
methodology presented here may be more readily scalable to
demonstrating an application of quantum advantage.

The layout of this article is as follows. In Sec. II we
describe the coarse-grained model and how it can be solved
using a variational quantum algorithm. This includes Sec. II A
describing the coarse-grained model of interacting oscillators;
Sec. II B giving a description of how the this system is repre-
sented on a quantum computer; Sec. II C. which makes use of
results from graph theory and measure theory to give a scheme
for grouping operators needed to measure the Hamiltonian as
well as derive upper and lower bounds for the number of shots
required to measure the Hamiltonian to a given accuracy;
and Sec. II D, which describes the variational ansatz used
in our experiments. In Sec. III we present proof-of-principle
results modeling the London dispersion interaction of an I2

dimer and a technique to subtract the effect of device noise to
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accurately measure the binding energy. In Sec. IV we describe
how the one-dimensional model can be extended to three
dimensions and to include anharmonic and nonlinear terms to
model richer physics than those accessible to efficient classi-
cal methods. In Sec. V we present further experiments on real
and simulated quantum processors. This includes Sec. V A for
systems of anharmonic oscillators, as well as Sec. V B where
we increase the size of the harmonic system to include three,
four, and five oscillators. In Sec. VI we discuss our results and
describe further research directions.

II. COARSE-GRAINED MODELING ON DIGITAL
QUANTUM COMPUTERS

A. Coarse-grained model

In the coarse-grained model, collective electronic re-
sponses are described by a charged quantum Drude oscillator
(QDO) tethered to an atomic nucleus or embedded in a molec-
ular frame. For neutral species the Drude (quasi-)particle and
the nucleus to which it is bound have charges −q and +q,
respectively. The correlated displacements of these QDOs,
which correspond to instantaneous charge density fluctuations
in molecules, allows us to capture dispersive interactions
between nonpolar molecules. It is an electronically coarse-
grained model which nonetheless exhibits the full hierarchy
of electronic responses at long range: Many-body polarization
and dispersion to all orders arise naturally and, in principle,
intermolecular forces can then be computed “on the fly” from
the coarse-grained electron distribution of Coulomb-coupled
oscillators without the need for a priori force laws or empiri-
cal interaction potentials. One further feature of this model, is
that it obeys distinguishable particle statistics—Fermi statis-
tics are not required. The model must therefore be augmented
by a simple short-ranged repulsion term. The basic method
has been demonstrated on classical processors in the case of
noble gas solids and single-component liquids [50,51]. Using
only the properties of the isolated molecule in the model
parameters, emergent properties of these systems have been
predicted across a range of their respective phase diagrams.
For a recent review of these methods and results see [43].

For simplicity, for most of this work we will focus on the
case of one-dimensional QDOs with dipole order coupling;
however, much of the methodology developed here can be
applied straightforwardly to systems of three-dimensional os-
cillators, and we give a brief description of this extension in
Sec. IV A. Even the simple one-dimensional model recreates
the London dispersion interaction proportional to R−6 and α2,
where α is the dipole polarizability and R the physical separa-
tion, up-to a constant factor for spherical nonpolar molecules
and exactly for a pair of linear nonpolar molecules in the limit
of infinitely anisotropic polarizability (see Appendix A for
further details.)

The nondimensional Hamiltonian for N one-dimensional
QDOs with quadratic coupling is

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (1)

where x̂i and p̂i are the bosonic position and momentum
operators for oscillator i and γi, j ∈ R is the coupling between

oscillators i and j. Throughout this work we will implicitly
work in energy units of h̄ω/2 for simplicity of notation assum-
ing that all oscillators share the same trapping frequency ω.
For each pair of identical one-dimensional oscillators aligned
parallel to each other and along the interoscillator axis, sepa-
rated by distance Ri, j , the coupling constant is given by γi, j =
−2(q2/μω2)R−3

i, j = −4αR−3
i, j , where the effective charge of

the Drude particle q, the effective mass μ and the oscillator
frequency ω are model parameters. The dipole polarizability
is given by α = q2/μω2. If instead the oscillators are aligned
parallel to each other and perpendicular to the interoscillator
axis, the coupling is given by γi, j = 2αR−3

i, j .
One advantage of this harmonically bound coarse-grained

model is that efficient classical methods exist which can be
used for benchmarking quantum implementations. However,
the price paid for this harmonic approximation is that the rel-
ative strengths of interactions within the model are governed
by Gaussian statistics meaning that there are simple algebraic
relations relating interactions at different orders. This leads to
the absence of terms, such as the second hyperpolarizability
(dipole-dipole-dipole-dipole) [51], due to certain symmetries
that emerge in the harmonic model.

In what follows we present a variational quantum al-
gorithm for calculating intermolecular interactions between
molecules using a one-dimensional QDO model and outline
how to extend this to a full three-dimensional representation.
Such a quantum algorithm is not limited to the inclusion of
harmonic Hamiltonian terms and can be extended to include
anharmonic trapping potentials as well as nonlinear interac-
tion terms that may allow for a richer set of physics beyond
Gaussian statistics and the study of more realistic chemical
systems [51].

B. Algorithm description

In order to find the ground state of the Hamiltonians
of interest we use the common procedure for a Variational
Quantum Eigensolver (VQE) algorithm [24]. The main goal
of VQE is to produce quantum states |ψ (θ)〉 using a quan-
tum circuit parameterized by real parameters θ = { θ0, θ1, . . . }
which can be varied. Throughout the algorithm, the parame-
ters are updated using a classical feedback loop in order to
minimise the expected values of the Hamiltonian on the par-
ticular quantum state. Guided from the variational principle
the optimization procedure can provide a quantum state that
approximates the exact ground state of the system by solving
the minimization problem

min
θ

〈ψ (θ)|Ĥ |ψ (θ)〉 , (2)

provided the variational ansatz is able to represent a state
close to the ground state within the required precision. In the
following we outline how we encode the states of harmonic
QDOs into qubit states and how the Hamiltonian is measured
efficiently on a quantum computer before defining our varia-
tional ansatz later.

We represent the state of the QDOs in the Fock basis which
for bosonic oscillators form an infinite basis. We are limited to
a finite number of qubits and so must restrict ourselves to the
space of a finite subset of Fock states. This will naturally lead
to solutions that approximately match the true states in full
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Fock space. Since dispersive interaction energies are expected
to be much smaller than the bare energy scale h̄ω, the ground
states of realistic Hamiltonians will be dominated by the low-
est energy Fock states, and thus the truncation of the Fock
space will not severely impact the accuracy of solutions. We
use a compact encoding [52], which was proposed in earlier
work on vibrational modes on a quantum computer [36,53].
For this encoding, the first d Fock states are mapped onto
m = log2 d qubits as

Hd−Fock → H⊗m
2 : |n〉 → |binm(n)〉 , (3)

where binm(n) denotes the m-length binary representation of
integer n ∈ { 0, 1, . . . , d − 1 }. Throughout this work, under-
lined integers within a |·〉 will denote a Fock state, and all
other states will be written in the computational basis of the
qubits. The basis for multiple QDOs is then given by the
tensor product of the single QDO basis such that for a total
of N 2m-dimensional QDO we will use M = mN qubits.

Although we are restricted to the lowest d Fock states,
we expect that the ground states required will be sufficiently
close to the uncoupled ground state |0〉⊗N such that a finite
number of basis states will give a good approximation to
the ground-state energy, particularly in the weakly coupled

regime. Since we require logarithmically many qubits, this
qubit encoding will be efficient provided the number of Fock
states required for a chosen accuracy grows less than double
exponentially.

To measure the cost function for a given variational state
we must decompose each term in the Hamiltonian in (1),
restricted to a finite Fock basis, into tensor product Pauli oper-
ators P̂ ∈ {1, X,Y, Z }⊗M that can be measured on a quantum
computer. For the noninteracting and coupling terms we show
this for a single QDO and a single pair of QDOs respectively
and note that the same decomposition can be used for all
terms within the Hamiltonian just acting on different subsets
of m and 2m qubits. For the noninteracting contribution of a
single QDO, there are m nonidentity Z operators that must be
measured:

x̂2 + p̂2 = 2m1⊗m −
m−1∑
i=0

2iZi, (4)

where Zi is the Pauli Z operator acting on qubit i. For a pair
of m qubit QDOs the coupled part of the Hamiltonian leads to
( 1

2 d log2 d )2 Pauli terms. The form of the coupling terms for
arbitrary d , as well as a proof for the number of terms, is given
in Appendix C. As an example, the decompositions for m = 1
and m = 2 are given by

x̂1x̂2|m=1 = X1X2, (5)

x̂1x̂2|m=2 =
√

3 + 2

4
X1X3 +

√
3 + 1

4
√

2
X1X2X3 +

√
3 + 1

4
√

2
X1X3X4 + 1

4
X1X2X3X4 +

√
3 + 1

4
√

2
Y1Y2X3 + 1

4
Y1Y2X3X4

+
√

3 + 1

4
√

2
X1Y3Y4 + 1

4
X1X2Y3Y4 −

√
3 − 1

4
√

2
Y1Y2X3Z4 −

√
3 − 1

4
√

2
X1Z2Y3Y4 − 1

4
X1Z2X3

−
√

3 − 1

4
√

2
X1Z2X3X4 − 1

4
X1X3Z4 −

√
3 − 1

4
√

2
X1X2X3Z4 + 2 − √

3

4
X1Z2X3Z4 + 1

4
Y1Y2Y3Y4. (6)

The interaction Hamiltonian for N QDOs can then be
constructed by combining these pairwise interactions for
all N (N − 1)/2 pairs of QDOs with the correct coupling
constant.

C. Measurement cost

When combining the single-oscillator noninteracting and
two-oscillator coupling terms together to measure the total
Hamiltonian, if all γi, j are nonzero there will be a total of
(log2 d )N + 1

8 d2(log2 d )2N (N − 1) nonidentity Pauli opera-
tors. Naively Ĥ can be measured by measuring each of these
operators using its own circuit, however the number of mea-
surements required can be reduced significantly by measuring
mutually commuting operators concurrently. Many heuristic
methods exist for partitioning the terms into commuting sub-
sets, see, for example, Refs. [48,58–63]. From the structure of
our Hamiltonian we can derive an exact method for grouping
terms into subsets that qubit-wise commute and therefore
obtain an upper bound on the number of unique measurements
that need to be performed. We find an overall upper bound of
(N − 1)( d

2 log2 d )2 + 1 or N ( d
2 log2 d )2 + 1 circuits, for even

and odd N respectively, needed to measure Ĥ . In general, for
a Hamiltonian with all-to-all kth order coupling, there is an
upper bound of O((d log2 d )kNk−1) scaling with the number
of QDOs. Using heuristic sorting methods the scaling with
respect to d can be improved beyond that given by these
upper bounds, however an exact scaling is not known. For a
description of the grouping method, proof of these scalings
as well as examples of the result of using heuristic grouping
algorithms, see Appendix C.

Since we expect that, for physically relevant systems, the
ground states will be dominated by low-lying Fock states, we
do not expect the need to increase d significantly to model
nontrivial systems. Therefore, we are primarily concerned
with the scaling with respect to the number of QDOs N .
Appendix B shows that this is the case for the pair of inter-
acting QDOs and that d = 4 is a good approximation to the
true ground state until very large and unphysical couplings.

Furthermore, using this known grouping, we can estimate
the expected number of shots needed to measure 〈Ĥ〉 with
absolute error ε. Without knowing the ground state of an arbi-
trary Hamiltonian, we calculate the expected number of shots
with respect to two different distributions of states in Hilbert
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TABLE I. Number of unique circuits required using our exact grouping as well as expected number of shots required to achieve absolute
measurement error ε for a system of N d-level one-dimensional QDOs. Here γ is a typical scale for the interoscillator couplings. The
expectations for number of shots are calculated with respect to distribution over the uniform spherical measure of states (Uniform spherical)
as well as the pure state of the uncoupled QDOs (Pure uncoupled). For ungrouped results all Pauli operators in the Hamiltonian are measured
separately, for grouped results Pauli operators are measured in groups according to the method described in Appendix C Theorem 4.

Ungrouped Grouped

Measure over states Circuits Shots Circuits Shots

Uniform spherical O
(

γ 2N4d8

ε2

)
b O

(
γ 2N3(log2 d )4d6

ε2

)
d

O(N2(log2 d )2d2)a O(Nd2)c

Pure uncoupled O
(

γ 2N4d4

ε2

)
e O

(
γ 2N3d4

ε2

)
f

For full expressions and proofs see Appendix D; aTheorem 1; bTheorem 7; cTheorem 4; dTheorem 6; eTheorem 9; fTheorem 8.

space. The first distribution is the uniform spherical measure
on the full Hilbert space which assumes no knowledge of the
distribution of possible states [[64], Chapter 7]. The second
is the pure state of the uncoupled ground state |ψ0〉 = |0〉⊗mN

which we expect to be close to the ground state of the system
with small nonzero coupling. The scaling of the expected
number of shots required for these two distributions is given
in Table I for measuring all Pauli operators individually or
by grouping them as described. We see that in both distribu-
tions, grouping the measurements improves the scaling from
O(N4) to O(N3) with respect to N and significantly reduces
the polynomial scaling with respect to d in the case of the
uniform spherical measure. In all cases, the exact values as
well as proofs for the number of shots required can be found
in Appendix D (the number of shots is an upper bound in the
case of the uniform spherical measure and tight for the pure
uncoupled state).

To demonstrate the number of shots required for modeling
real molecules of interest, Fig. 3 highlights the number of
shots required to achieve a measurement error on 〈Ĥ〉 of
ε = 10% × �E (RvdW). Here we consider �E (RvdW) to be
the dispersion interaction between a pair of one-dimensional
QDOs representing the molecule evaluated at RvdW the Van
der Waals diameter of the molecules. Assuming distributions
of quantum states of the uniform spherical measure as well
as a pure uncoupled state, we see that the grouping method
derived in this work can reduce the required number of shots
by multiple orders of magnitude. Further reductions may be
possible if heuristic methods are used to find more optimal
groups.

For the prototypical orbital-based VQE methods there are
in general O(N4) Pauli operators that must be measured where
N is the size of the molecular orbital basis set used. The
best known scaling for the number of commuting operator
collections is O(N3) [48] which, when compared to the or-
der O(N ) scaling in terms of the number of QDOs for the
dipole coupled Hamiltonian here, suggests that the system
we consider in this work may be significantly more scalable
than those considered in orbital-based VQE methods. To our
knowledge, no attempt has been made to find a scaling for the
number of shots required for these.

D. Variational ansatz

For the results presented in this paper, we use a variational
ansatz consisting of layers of two-qubit operators acting on

nearest-neighbor qubits. Since the problem Hamiltonian is
positive, the ground state will be real-valued (up to a global
phase) and we restrict ourselves to using real-valued, two-
qubit operators based on the optimal construction of general
SO(4) operators found by Vatan and Williams [65]. We re-
moved two parameterized Rz gates from their construction to
reduce the number of variational parameters. This naturally
restricts the available operations implemented by each block
to a subset of SO(4) but was found to still give reasonable
results in simulation and experiment while reducing the num-
ber of circuits required for gradient measurements. The circuit
used for two QDOs is shown in Fig. 4(a), which has a total
of 12 variational parameters, the two-qubit circuit blocks are
given in Fig. 4(b).

Although more costly than ansätze designed to make
efficient use of the quantum hardware [33], quantum ad-
vantage may be achieved for ab initio VQE by using
chemistry-inspired ansätze such as unitary coupled cluster
(UCC) [66]. Analogous ansätze for bosonic systems can
be constructed [36,37,67], namely, the unitary-vibrational-
coupled-cluster (UVCC) ansatz (following the naming con-
vention of McArdle et al. [36]). This is a unitary extension
to the vibrational coupled cluster (VCC) used in classical
computations [68,69] and, unlike the VCC ansatz, the UVCC
ansatz obeys the variational principle and may deal better with
strong static correlations [36].

The UVCC ansatz will lead to significantly larger circuits
than our ansatz in Fig. 4 due to the nontrivial decomposition
of bosonic operators into Pauli operators that can be imple-
mented natively on quantum devices, thus we do not consider
its application in this work. The analysis of commutation
relations presented in Appendix C as well as various encoding
methods [67] will be important in understanding the experi-
mental cost of the Trotterization required for such an ansatz.

III. EXPERIMENTAL RESULTS USING IBM QUANTUM
COMPUTERS

To demonstrate the feasibility of calculating weak inter-
molecular interactions from the coarse-grained model we
represent two linear, nonpolar molecules at distance R apart
using two one-dimensional QDOs. We choose model parame-
ters matching those of I2, which is known to produce a dimer
molecular liquid above its melting point of 114 ◦C in which
dispersion forces dominate the cohesion.
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FIG. 3. Estimated number of shots required to measure 〈Ĥ (RvdW)〉 with error ε = 10% × �E (RvdW) for a range of different molecules.
Here RvdW is the van der Waals diameter of the respective molecules. The expected number of shots is calculated with respect to the spherically
uniform measure (a), (b) as well as with the uncoupled state (c), (d) with and without grouping commuting operators. The number of shots is
shown both as a function N for fixed d = 4 and as a function of d for fixed N = 2. Note that in (d), the grouped and ungrouped lines are the
indistinguishable from one another. Values for RvdW and α are taken from Refs. [54–57].

For each QDO, we use a d = 4 level Fock basis, leading
to a total of four qubits required for the two-molecule sys-
tem. We model the pair of I2 molecules, both aligned with
their molecular axis along the intermolecular axis such that
the one-dimensional QDO models their induced polarization
along the molecular axis. We use a value for the polarizabilty
of α = αzz = 14.5 Å3 the polarizability coefficient along the
molecular axis [54] and a harmonic trapping frequency of
h̄ω = 9.61 eV. For the coarse-grained electronic model, it is
usual to choose the ω parameter (or alternatively the point
charge q and mass μ if working with raw Drude particle
parameters). This is done to capture a certain chosen prop-
erty, such as the C6 London dispersion coefficient, and then
further terms (such as C8 and C9 terms) arise naturally from
the model. In this case, we choose h̄ω such that the full
three-dimensional QDO in this setup would give C6 coeffi-
cient matching experimental measurements of I2 [70]. For
the pair of interacting molecules, the full three-dimensional
model and the total London dispersion energy for the pair
of interacting molecules can be found from repetitions of
the one-dimensional model using the correct possibilities for
each remaining axis a discussion of which is deferred until
Sec. IV A. As proof of principle, we consider polarizability
only along the intermolecular axis. To generate the disper-
sion energy as a function of intermolecular separation R, we
perform the VQE procedure to calculate the ground-state en-
ergy of the coupled QDOs for a range of possible coupling
constants.

For the experimental optimization procedure we used, for
R = ∞, the quantum computer ibmq_santiago and, for all

other values of R, ibmq_montreal (for further details about the
hardware used in this work, see Appendix F). Each evaluation
of 〈Ĥ〉 is performed by running ten circuits with 8192 shots
each where the 21 Pauli operators needed to estimate 〈Ĥ〉 are
collected into ten groups of operators that qubit-wise com-
mute as described in Sec. II B. We evaluated gradients using
the parameter shift rule [71] and performed the optimization
using the ADAM optimizer (learning rate 0.25, decay rates
0.9, 0.99) [72]. For each value of R, the VQE procedure was
run for 200 optimization steps with the final set of parameters
taken as the output. For each experiment, the values of θ are
independently randomly initialized to values taken uniformly
on the interval [−π/2, π/2].

Once the optimal set of parameters was found, we extracted
the binding energy from the noisy quantum computer using
a simple scheme to subtract the effect of device noise. The
binding energy due to the London dispersion interaction at a
certain R is then given by

�E (R) = E (R) − E (R = ∞), (7)

where E (R) is the ground-state energy at R and with E (R =
∞) corresponding to the ground-state energy of the com-
pletely uncoupled state. By modeling the output of the noisy
quantum computers as a unitary channel depending on vari-
ational parameters θ along with depolarizing noise with error
rate λ, the output state for a given set of variational parameters
is

ρ(θ) = (1 − λ)|ψ (θ)〉〈ψ (θ)| + λ

2mN
1, (8)
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FIG. 4. Circuits used in experiments. (a) Four qubit variational
ansatz representing the state of two d = 4 QDOs. The upper (lower)
qubit within the two-qubit register for each QDO corresponds to
the most (least) significant bit in the binary encoding of the cor-
responding QDO Fock states. Each two-qubit block consists of a
four-parameter real-valued operator. (b) Composition of the four-
parameter real-valued operators. Rz and Ry gates in the center are
Pauli Z and Y rotation gates, each one contains a single varia-
tional parameter. The remaining gates are fixed with S = Rz( π

2 ) and
R = Ry( π

2 ). This block is based on the general SO(4) operator from
Ref. [65] with two parameterized Rz gates removed.

where |ψ (θ)〉 is the output state from a noiseless ansatz with
parameters θ. Assuming |ψ (θ)〉 is the required ground state,
this corresponds to a noisy expectation value for the Hamilto-
nian

〈Ĥ (R)〉ρ(θ) = (1 − λ)E (R) + λ

2mN
Tr[Ĥ (R)]. (9)

Therefore, assuming λ is independent of the variational
parameters and does not change between experiments, the
dispersion energy is given by

�E (R) = 〈Ĥ (R)〉ρ(θ) − 〈Ĥ (R = ∞)〉ρ(θ∞ )

(1 − λ)
, (10)

where θ∞ are variational parameters found for the ground
state of Ĥ (R = ∞), here we have used that Tr[Ĥ (R)] =
Tr[Ĥnonint] = dN ∀R. We use (10) to calculate the dispersion
energy from noisy measurements, estimating ε by measuring
the fidelity of the uncoupled ground state on the noisy com-
puter F = Tr[ρ(θ∞)|0〉〈0|⊗mN ] = (1 − λ) + λ

2mN . This can be
done without additional cost by reusing the counts measured
when calculating 〈Ĥ〉ρ(θ∞ ). We find that, for the devices
and circuits we use in this work, this method to subtract
the device noise gives accurate values for the dispersion
energy.

To measure the dispersion energy for the optimized states
we use the ibm_lagos quantum computer. One practical con-
sideration when performing this subtraction, is that due to the
significant time dependence of the noise levels of the device, it
is important to evaluate the expectations for different values of
R in (10) with the same qubits on the same device as close to

simultaneously as possible. For the results presented here we
took the mean of 200 repetitions of each measurement of 〈Ĥ〉
(with 8192 shots per circuit), performing the measurements
for each R sequentially before moving onto the next of the
200 repetitions. As many measurements were performed as
possible in a single job and all jobs were submitted simultane-
ously to minimise the time between successive jobs. Figure 5
shows how the level of noise varies significantly throughout
the 200 evaluations but the drift seen in the expectation values
is approximately matched for each of the different values of R
when measured in this way.

The spectrum achieved by the optimization procedure in
this proof-of-principle experiment is shown in Fig. 2. From
this, we see that by using the variational procedure combined
with our ansatz, optimal parameters can be found using noisy
gradients calculated on the real device that correspond to
energy values close to the true ground state when evaluated
without device noise. Furthermore, although the raw exper-
imental energies are much larger than even the uncoupled
energy of the system, using the simple subtraction method
described above, we are able to successfully measure disper-
sion energies on the device closely matching the exact London
dispersion interaction. From Fig. 2 we see that for all values
of R tested, the binding energy using the quantum processor is
within two standard deviations of the exact value. It is worth
noting that the value of the ground-state energy with the same
variational parameters but evaluated using noiseless simula-
tion [shown in Fig. 5(b)] are all slightly above the true value
given by the curve. This could be due to either imperfect or
unconverged optimization or systematic errors in the rotation
gates applied by the device which are accounted for as over-
or underrotations in the variational parameters learnt by the
algorithm and not reflected in the error-free simulation. We
expect that these effects will be reduced by improvements in
hardware performance and by using better gradient descent
schemes or better fine tuning of the settings for the ADAM
optimization used.

IV. EXTENDING THE MODEL

A. Three-dimensional QDOs

As described in Sec. II A, for a complete description of the
dipole-dipole interaction and higher order terms, full three-
dimensional QDOs are required. Here we demonstrate how
our representation and variational algorithm can be extended
to three-dimensional QDO systems.

The Hamiltonian for such a system is given by

Ĥ =
N∑

i=1

(
1

2μ
p̂2

i + 1

2
μω2x̂2

i

)

+ q2
∑
j>i

3(x̂i · Ri, j )(x̂ j · Ri, j ) − x̂i · x̂ jR2
i, j

R5
i, j

, (11)

where x̂i = (x̂i, ŷi, ẑi ) and p̂i = ( p̂xi , p̂yi , p̂zi ) are the position
and momentum operators for QDO i in each of the three
Cartesian coordinates. Ri, j is the vector separating the centers
of the pairs of QDOs i and j and μ, ω, and q represent the
effective mass, natural frequency, and charge for the QDO
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FIG. 5. Experimental measurements used for error subtraction. (a) Measurements of 〈Ĥ (R)〉ρ(θR ) where θR are the optimal parameters found
for each separation R evaluated on ibm_lagos quantum computer. As described in the main text, each of the 200 experiments is performed for
each value of R before moving onto the next one. (b) Mean values of the measurements for each R. (c) Exact calculation of Ĥ with no noise
for the optimized parameters. Solid curve shows the true ground state. (d) Absolute difference between exact value of 〈Ĥ〉 and mean of noisy
measurements. This shows that, although the effect of noise varies with each experiment, by measuring each R in the order described the effect
of noise is approximately equal for each data point. Points at R = ∞ correspond to the uncoupled Hamiltonian and parameters found using
the optimization procedure.

particles, which, for simplicity, are assumed to be isotropic
and equal for all oscillators.

To represent the state of these three-dimensional oscil-
lators on a quantum computer, we treat each of the three
spatial dimensions as a separate harmonic oscillator with po-
sition and momentum operators { (x̂, p̂x ), (ŷ, p̂y), (ẑ, p̂z ) }. As
in Sec. II B, each of these one-dimensional oscillators can be
represented using a binary encoding in m qubits. Thus, the
state of each three-dimensional oscillator state is encoded in a
register of 3m qubits:

H⊗3
d−Fock → H⊗m

2 ⊗ H⊗m
2 ⊗ H⊗m

2 :

|nx, ny, nz〉 → |binm(nx ), binm(ny), binm(nz )〉 . (12)

Following Sec. II B, an upper bound for the number of cir-
cuits that are required to measure H is (N − 1)( d

2 log2 d )2 + 1
or N ( d

2 log2 d )2 + 1, for even and odd N , respectively. See
Appendix C for details.

Extending the two-oscillator system to three dimensions,
the Hamiltonian simplifies to

Ĥ =
∑

u∈{ x,y,z }

(
û2

1 + p̂2
u1

)+ (û2
2 + p̂2

u2

)+ γuuû1û2, (13)

where γxx = 2αxx/R3, γyy = 2αyy/R3 and γzz = −4αzz/R3, αxx, αyy,
αzz represent the dipole polarisability along each of the three
axes (which we now allow to be anisotropic, corresponding
to q being an anisotropic tensor) and the intermolecular axis
is in the z direction, along which the physical separation is
R. We have ignored dimensions to match the structure of (1).
We see from this that the Hamiltonian is equivalent to three
independent one-dimensional oscillators with the Hamilto-
nian matching (1) for N = 2 with the appropriate choices of
coupling constants. Therefore, in the previous section where
we modeled the interaction of two linear molecules aligned

along an axis, an extension to a full three-dimensional system
follows trivially.

B. Induction, anharmonic, and nonlinear terms

The quadratic Hamiltonians that we have presented so far
can easily be extended to include higher-order and anhar-
monic terms. Here we briefly describe three extensions of
the model giving rise to additional interactions and phenom-
ena. We also discuss how the decomposition and grouping
strategies described in Sec. II C can be applied to these richer
systems.

The cheapest and simplest modification is the inclusion
of induction effects by applying a uniform electric field E
to the oscillators. This simple modification can, for two or
more oscillators, lead to nonadditive effects [43]. For one-
dimensional oscillators this leads to an interaction of the form
ĤE-field =∑N

i=1 qiEx̂i for N Drude oscillators with charges
qi. These can be measured using the same decompositions
for x̂ as were used previously since these interactions are
guaranteed to qubit-wise commute with terms of the form
x̂ ⊗ x̂ incurring no additional circuits to measure the total
Hamiltonian.

For more realistic induction models, we can instead con-
sider oscillators in a Coulomb potential caused by one
or more charges. In this case, the Hamiltonian will have
the form Ĥcoulomb =∑N

i=0

∑M
j=0 φ j (x̂i ) for N oscillators in

Coulomb potentials represented by φ j caused by M fixed
charges. To measure a Hamiltonian of this form, each of the
Coulomb potentials must be Taylor expanded up to some finite
order w:

φ j (x̂i ) ∼ 1

|r j − x̂i| ≈ 1

r j
+ x̂i

r2
j

+ x̂2
i

r3
j

+ · · · + x̂(w−1)
i

rw
j

, (14)

062409-9



LEWIS W. ANDERSON et al. PHYSICAL REVIEW A 105, 062409 (2022)

where r j  |x̂i| is the position of the point charge relative to
the center of the QDO. Again, since each term of the form x̂w

i
acts on distinct oscillators they can all be measured simultane-
ously. The expected contribution to the number of shots will
be O(

√
N ) with respect to N thus leaving the asymptotic scal-

ing unchanged when added to the linear dipolar Hamiltonian
of (1).

Using a similar addition to the Hamiltonian we are able
to relax the assumption of a harmonic trapping potential
and consider anharmonic trapping potentials that have not
been accessible for large systems using classical computation
methods [51]. Additional terms of the form Ĥanharm = ω3x̂3

i +
· · · + ωw x̂w

i with appropriate model parameters defining co-
efficients { ω3, ω4, . . . , ωw } can be used to choose a desired,
potentially asymmetric, trapping potential. The measurement
cost will scale in the same way as terms in (14). Relaxing the
harmonic assumption is required for inclusion of some higher
order terms (such as four-dipole hyperpolarizabilty [51,73])
and leads to nonlinear optical effects such as the Kerr effect,
second- and third- harmonic generation, and forms of optical
mixing [74].

Finally, we introduce nonlinear interaction terms. As an
example we consider interactions of the form Ĥnon-lin =∑N

i, j,k=0 β〈i, j,k〉x̂ix̂ j x̂k . Terms similar to this have been consid-
ered for use in quantum algorithms for vibrational spectra,
noting that these are difficult to deal with classical com-
putational methods [36,75]. If all O(N3) possible terms in
Ĥnon-lin are nonzero, using the exact grouping that we have
described will contribute an O( d9N5

ε2 ) cost to the number
of shots required. In practice the number of shots may be
considerably lower as heuristic sorting methods will make
use of additional qubit-wise commutation not considered
in the grouping method we have used in this work. For
higher order interactions, these commuting pairs will likely
be more common. Also, many physical systems may not
include all-to-all interactions or will have interactions that
decay strongly with distance such that many of the inter-
action terms can be ignored. Terms of this form, as well
as higher order nonlinear interaction terms will allow for a
large amount of flexibility in the model and will allow for
the investigation of a wide range of physical and chemical
phenomena.

V. FURTHER EXPERIMENTAL RESULTS

A. Anharmonic systems

To test the performance of the algorithm for a system
of anharmonic oscillators, we investigate two systems with
1D anharmonic QDOs on both simulated and real quantum
computers.

We first consider the system of a single oscillator in an
external potential, modifying the onsite potential to include
a quartic term. In this case, the Hamiltonian is given by
Ĥ = x̂2 + p̂2 + 1

5 x̂4 + Ex̂, where parameter E is a uniform
external field which is varied. We used two qubits to give a
truncated Fock space of d = 4 and an ansatz consisting of the
single four parameter block given in Fig. 4(b).

Optimization was performed using a simulated version of
the ibm_montreal device and using the same optimizer and
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FIG. 6. Deviation from zero field ground-state energy of 1D an-
harmonic oscillator in external field E . Blue circles correspond to
evaluating the energy on the real ibmq_montreal quantum processor
using error mitigation techniques described in the main text. Red
square data points correspond to evaluating the final energy with no
device or shot noise. Both sets of data points use the same variational
parameters which were found through optimization performed on
a simulated version of ibmq_montreal. Black solid line shows the
exact spectrum found by numerically diagonalizing the Hamiltonian.
Black dashed line shows the exact spectrum for the analogous har-
monic system (setting x4 term to zero).

settings as in Sec. III for 200 optimization steps. As with
the experiments in Sec V B, for the first data point at E = 0,
θ were initialized to values taken randomly on the uniform
interval [−π/2, π/2]. Proceeding data points were then run
in order of increasing E initializing θ to the optimized values
linearly extrapolating the optimized parameters from the pre-
vious data points with respect to the two corresponding values
of E .

Once the optimization was completed, we evaluated the
final energy value using the optimized parameters on the real
ibm_montreal device to see how real device noise affected the
accuracy of the energy measured. Since the system was no
longer harmonic, the zero field ground state was not known
to be the zero state and so the subtraction method given in
Eqn. (10) could not be used to remove device noise from
the measured value. Instead two error mitigation techniques—
zero noise extrapolation [76,77] and one based on the Lanczos
method [78]—were used in combination to measure the final
ground-state energy. See Appendix E for details on these
two methods, as well as experimental settings used in this
work.

The results of this procedure are shown in Fig. 6. We see
that values of the ground-state energy evaluated without noise
agree well with the true value found by directly diagonal-
izing the Hamiltonian matrix. As in previous experiments,
this shows that, despite the simulated device noise in the
optimization procedure, a good set of variational parameters
are found by the algorithm and that the ansatz is able to
accurately generate the required ground states. We see that,
when combined with error mitigation, the interaction energy
of the system shows some agreement with the true value;
however, the uncertainties in the values mean that we are not
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FIG. 7. Deviation from uncoupled ground-state energy for sys-
tem of two coupled anharmonic oscillators with optimization
performed on simulated ibmq_montreal device. Data points show
ground-state energy relative to true ground-state energy of uncoupled
system, evaluated without device or shot noise. Solid line gives exact
spectrum of the anharmonic system calculated by direct matrix diag-
onalization. Dashed line gives exact spectrum of the corresponding
harmonic system.

able to resolve the difference in interaction energies between
the harmonic and anharmonic systems. We note that in this
system, the energy resolution required is significantly smaller
than the dispersion interaction of Sec. III.

An increase in the measurement uncertainty is a conse-
quence of both error mitigation techniques. This uncertainty
can be decreased, as well as the overall reduction in the error,
by using a larger number of shots (thereby increasing runtime)
or by improving error rates on the quantum computer.

We additionally perform experiments for a system of two
linearly coupled oscillators (the system using in Sec. III
with additional quartic onsite potential terms). For such a
system the Hamiltonian is given by Ĥ = x̂2

1 + p̂2
1 + 1

5 x̂4
1 +

x̂2
2 + p̂2

2 + 1
5 x̂4

2 + γ x̂1x̂2. We again use two qubits per oscil-
lator and use the ansatz shown in Fig, 4(a) and the same
optimization settings as in Sec III. Again, values of θ were
randomly initialized for γ = 0 data point and initial values
of θ for remaining data points were chosen by extrapolating
from previous optimized values. Optimization was performed
using a simulated version of the ibmq_montreal device and
we calculated the final values for the ground-state energy
found using exact simulation, removing the effect of device
or shot noise. The results of these experiments are given in
Fig. 7. These show a good agreement between the true ground-
state energy and results found through the optimization
procedure.

B. Many oscillators

We also test our variational algorithm for more than two-
body systems, namely, N = 3, 4, and 5 oscillators. Using
a Hamiltonian of the form Eq. (1) again, coupling con-
stants γi, j were chosen to represent systems of 1D QDOs
arranged in regular N-sided polygons and allowed to os-

cillate perpendicular to the interoscillator plane. For these
systems, γi, j = 2α/R3

i, j ∝ 2α/D3 where Ri, j are the distances
between oscillators i and j, D gives the diameter of the
circle that effectively encloses the N vertex polygons. By
varying the ratio of 2α/D3 (effectively varying the size of
the polygons) we generate the spectra shown in the results of
Fig. 8.

For the results shown in Fig. 8, we simulate the perfor-
mance of our VQA using a range of different ansätze depths.
We use an exact simulation for the optimization procedure and
final energy measurement so there are no contributions from
finite number of shots or device noise. As a variational ansatz,
we use a similar construction to that of the ansätze used in
Sec. III with the slight modification of using cyclic connectiv-
ity such that there are additional SO(4) circuit blocks between
the first and last qubits in even numbered layers. We represent
each QDO with two qubits such that the local dimension of the
oscillators is d = 4 and experiments require six, eight, and ten
qubits for N = 3, 4, and 5, respectively. For each data point,
500 optimization steps and the same optimization settings as
in Sec. III. For the α/D3 = 0 data points, θ were initialized
to values taken uniformly on the interval [−π/2, π/2]. Pro-
ceeding data points were then run in order of increasing α/D3

initializing θ to the optimized values for the previous data
point (in the case for the second data point) or by linearly
extrapolating the optimized parameters from the previous data
points with respect to the two corresponding values of α/D3

(for all other data points).
From the results in Fig. 8, we see that the variational

algorithm is able to successfully recreate the energy spec-
trum of the three, four, and five QDO systems. Of particular
interest is the spectrum of the three-oscillator case in which
the three-body contribution, similar to the full Axilrod-Teller
interaction energy [79], makes a significant contribution to the
dispersion energy and is accurately recreated by the d = 4
truncated Fock space as well as the variational algorithm.
Across all three systems, over the coupling parameter val-
ues considered, the truncated spectrum corresponding to the
truncated Fock space matches well the exact ground-state en-
ergy calculated through symplectic methods (see Appendix G
for details on how this was calculated). As the system size
increases, a deeper ansatz circuit with more variational pa-
rameters is needed to capture reasonable estimates of the
ground-state energy.

VI. DISCUSSION AND CONCLUSIONS

In this work we have developed a variational quantum
algorithm for modeling intermolecular interactions using a
coarse-grained framework. We have introduced an encod-
ing scheme, variational ansatz, and variational algorithm for
digital quantum computers assessing measurement cost and
scaling. We presented an exact method for grouping mutually
commuting operators that can be measured simultaneously
which gave bounds on the number of different circuits and
number of shots required to measure a system with dipole-
dipole interactions. We have shown evidence that this scaling
may be more favorable than for existing VQE methods. We
have also presented a pathway for adding anharmonic and
higher order terms that are not easily accessible to classical
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FIG. 8. Simulation of VQA for systems of (a) three, (b) four, and (c) five QDOs arranged in regular polygons using ansätze of varying
depth. Insets show respective oscillator geometries, labeling the diameter D of the circle enclosing the polygons which was effectively varied to
generate the spectra. Red solid line (labeled d = 4) corresponds to numerically diagonalizing Hamiltonian of oscillators of d = 4 energy levels.
Blue dashed line corresponds to the same system but only considering the two body pairwise interactions. Black solid line (labeled analytic)
corresponds to using symplectic representation of many oscillator system (as described in Appendix G) which effectively corresponds to
d = ∞. Data points correspond to outputs of VQA algorithm for varying depth ansätze.

computational methods. This, combined with the favorable
scaling, suggests that our algorithm may be a more promising
candidate for showing quantum advantage than other varia-
tional methods.

As with other applications of VQE methods, the global
scaling of the algorithm presented—namely, how many op-
timization steps are required to find the ground state within
a given accuracy—is not yet known. That the classical op-
timization required for variational quantum algorithms is
known to be NP-hard [80] and the occurrence of bar-
ren plateaus [81–84]—exponentially vanishing gradients that
mean ansätze cannot be optimized efficiently—may limit the
scalability of the variational approach. As seen in the field
of classical machine learning however, worst case complexity
theoretic arguments [85] do not necessarily preclude the use
of such methods for practical applications, particularly as al-
gorithmic improvements can be made to mitigate such issues.
There is already a significant body of work on methods to ad-
dress the issue of barren plateaus. These include investigating
ansatz structure [86–88] and parameter initialization strate-
gies [89–91] among others [92–94]. We expect that many
methods found to avoid barren plateaus for VQAs in a general
setting or for specific cost functions will likely be applicable
to the work presented here. For the problem presented here,
a more physically inspired ansatz (e.g., UVCC described in
Sec. II D) may be needed to avoid barren plateaus induced
by approximate 2-designs [81] within the ansatz that we have
used. Additionally, the cost function we use in this work is
local and may be more resilient to barren plateaus than other
applications of VQAs [82,95].

We have experimentally demonstrated that van der Waals
dispersion energies are resolvable on current generation quan-
tum computing hardware and that they lie within physically
realistic ranges found in molecular materials. This repre-
sents the first use of existing quantum computing capability
to access the weak but influential intermolecular energy

scales arising from noncovalent interactions (including cor-
related quantum fluctuations) relevant in condensed states of
molecular assemblies. While the specific model used in this
experiment can also be solved on classical processors, the
impetus to develop and demonstrate an efficient and well char-
acterized quantum implementation includes the following:

First, it expands the palette of problems that can can be
accessed on quantum computing systems by providing a fur-
ther level of electronic coarse graining while preserving a
complete set of responses, fluctuations and correlation phe-
nomena at long range. This methodology could therefore be
combined with other electronic structure strategies allowing
only selected electronic subsystems to be treated at the highest
level of accuracy. Such combined hybrid approaches are likely
to be required to treat complex or multiscale problems even
if full CI computations can be realized in polynomial time
complexity. Having established that dispersion interactions
are detectable, extensions to the current implementation can
be included to move up the interaction hierarchy to capture
induction and many-body polarization thereby opening op-
portunities for versatile molecular simulation problems on
quantum architecture.

Second, this framework may also be used to enrich existing
simple models such as bead based descriptions of protein
and branched polymer folding which can approach classically
intractable combinatorial complexity and are already being
actively explored for implementation in quantum architec-
ture [96,97]. Including coarse-grained representations of the
long-ranged interactions will result in more realistic treat-
ments of model folding problems.

Finally, we have shown that the aforementioned extension
to the model, in which anharmonic on-site binding poten-
tials can be introduced with low experimental overhead, can
already be solved within our VQA and how the measured
anharmonic energies are affected by device noise on super-
conducting processors. This paves the way for using quantum
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algorithms for anharmonic systems not easily accessible to
classical algorithms and should lead to a better understanding
of how anharmonic effects can be used to extend coarse-
grained models for molecules as well as how new physics may
arise in anharmonic many-body systems.
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APPENDIX A: LONDON DISPERSION IN LINEAR
MOLECULES AND ONE-DIMENSIONAL QUANTUM

DRUDE OSCILLATORS

This Appendix shows how the interaction between two
axially symmetric linear molecules can be captured by one-
dimensional QDOs. The results and derivations given here can
be found in the literature but are combined and included here
for the reader.

In the framework developed by London [99], the interac-
tion between two anisotropic linear molecules that are axially
symmetric about their respective principle intramolecular
bond can be described by ellipsoids of charge. For a pair of
identical linear molecules that share components of the dipole
polarizability α‖ (α⊥) and characteristic angular frequencies
ω‖ (ω⊥) parallel (perpendicular) to their intramolecular axis,
the London dispersion energy at large separation R is

�E = − 1

R6
{(C‖,‖ + C⊥,⊥ − C‖,⊥)[sin2(θa) sin2(θb) cos(φa − φb) − 2 cos(θa) cos(θb)]2

+ 3(C‖,⊥ − C⊥,⊥)[cos2(θa) + cos2(θb)] + 2(C‖,⊥ + 4C⊥,⊥)}, (A1)

where θa, φa, θb, φb describe the orientation of molecules a
and b relative to the intramolecular axis. C·,· coefficients are
given by

C‖,‖ = 1
8α2

‖ h̄ω‖, C⊥,⊥ = 1
8α2

⊥h̄ω⊥,

C‖,⊥ = 1
4α‖α⊥h̄

ω‖ω⊥
ω‖ + ω⊥

. (A2)

For further details about the geometry and derivation see
Ref. [100]. When the two molecules are aligned parallel to
each other and the intermolecular axis θa = θb = 0 and φa =
φb (which can be set to 0 without loss of generality) in the
completely anisotropic limit α‖  α⊥ the London dispersion
interaction is given by

�E = −α2
‖ h̄ω‖
2R6

. (A3)

We now show how two interacting one-dimensional QDOs
can recreate this dispersion interaction. The Hamiltonian for
pair of one-dimensional QDO is

Ĥ = p̂2
1

2μ
+ p̂2

2

2μ
+ 1

2
μω2

(
x̂2

1 + x̂2
2 + γ x̂1x̂2

)
, (A4)

where γ = −4 q2

μω2
1

R3 . Alternatively γ = −4 α
R3 when written

in terms of the dipole polarizability α = q2

μω2 . Defining the
transformed variables

p̂± = 1√
2

( p̂1 ± p̂2), x̂± = 1√
2

(x̂1 ± x̂2), (A5)

the Hamiltonian can be written in this uncoupled basis as

Ĥ =
[

p̂2
+

2μ
+ 1

2
μω2

(
1 + γ

2

)
x̂2
+

]

+
[

p̂2
−

2μ
+ 1

2
μω2

(
1 − γ

2

)
x̂2
−

]
. (A6)

Therefore the ground-state energy is given by

E = 1

2
h̄ω

(√
1 + γ

2
+
√

1 − γ

2

)

= 1

2
h̄ω

(
2 − γ 2

16
+ O(γ 4)

)
. (A7)

Using the definition γ = − 4α
R3 gives the R6 term correspond-

ing for the oscillator pairs

�E = − 1

32
γ 2h̄ω = −1

2

α2

R6
h̄ω. (A8)

APPENDIX B: TRUNCATED FOCK SPACE

For our one-dimensional QDO system, we want to be sure
that using a finite-dimensional Fock space for each QDO still
gives a reasonable approximation to the ground-state energy
of the true infinite-dimensional system. Figure 9 shows how
the ground-state energy of the system deviates for different
values of the local QDO dimension d . We can see that even
for d = 4, the ground-state energy is approximated well until
very large couplings γ . For reference, γ = 2 corresponds to
a Hamiltonian that is no longer positive-semidefinite, at this
point the charged Drude particles dissociate from the nuclei
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FIG. 9. Ground-state energy of one-dimensional QDO pair as a
function of coupling constant γ for various values of d; the dimen-
sionality of the truncated Fock space. Analytic refers to exact energy
given by (A7).

and the system breaks down. For physically relevant systems,
we expect to require value of γ much lower than 2, and we can
therefore limit ourselves to small d . For the real device exper-
iments in the main text, the smallest separation R considered
corresponds to the largest coupling value of γ = 1.55.

APPENDIX C: DECOMPOSITION AND MEASUREMENT
OF HAMILTONIAN

1. Scaling in the total number of Pauli operators

Theorem 1. For a d-level harmonic QDO, there are
( 1

2 d log2 d )2 nonzero Pauli terms in the binary encoding of
the x̂ ⊗ x̂ interaction.

Proof. The following single-qubit operators can be repre-
sented in the Pauli basis

|0〉 〈0| = 1
2 (1 + Z ), |1〉 〈0| = 1

2 (X − iY ),

|1〉 〈1| = 1
2 (1 − Z ), |0〉 〈1| = 1

2 (X + iY ). (C1)

We first consider a x̂ = 1√
2
(â† + â) for a single QDO,

where the ladder operators â† and â for the d-level Fock space
are given by

â† =
d−1∑
n=0

√
n + 1 |n + 1〉 〈n| ,

â =
d−1∑
n=0

√
n + 1 |n〉 〈n + 1| , (C2)

which follow the usual bosonic commutation relations. We
begin by considering a single |n + 1〉 〈n| which given in terms
of k single-qubit operators is

|n + 1〉 〈n| =
(

m−1⊗
i=k+1

|bin(n)i〉 〈bin(n)i|
)

× ⊗ |1〉 〈0| ⊗ (|0〉 〈1|)⊗k, (C3)

where bin(n)i ∈ { 0, 1 } is the binary digit at position i of the
binary representation of n and k(n) = max { i | bin(n)i = 0 }
is the position of the rightmost 0. Using the the definitions
in (C1) this is equal to

|n + 1〉 〈n| =
[

m−1⊗
i=k+1

(1 + (−1)bin(n)i Z )

]

× ⊗(X + iY ) ⊗ (X − iY )⊗k . (C4)

Expanding (C4) will give 2m unique Pauli terms of the form
P̂ = cσ⊗m

i where σ⊗m
i ∈ {1, X,Y, Z }m and c ∈ { ±1,±i }.

Each P̂ will either be hermitian or anti-Hermitian, depending
on whether c = ±1 or c = ±i.

For each term in x̂ like (|n + 1〉 〈n| + |n〉 〈n + 1|), we
note that |n + 1〉 〈n| = (|n〉 〈n + 1|)† and their sum is Her-
mitian. Therefore the Pauli terms within this summed term
are simply two times the Hermitian terms in the expansion
of (C4) (anti-Hermitian terms cancel). Of the 2m different P̂
within (C4), half will be Hermitian (c = ±1) and half will
be anti-Hermitian (c = ±i). Therefore, there are a total of
1
2 2m unique Pauli operators in the compact representation of
(|n + 1〉 〈n| + |n〉 〈n + 1|).

Finally, in the summation

x̂ =
d−1∑
n=0

√
n + 1(|n + 1〉 〈n| + |n〉 〈n + 1|), (C5)

there are log2 d = m unique values of k(n), each of which will
contribute 2m

2 unique Pauli operators to the binary encoding of
x̂. Thus there are a total of ( 1

2 d log2 d )2 Pauli operators within
x̂ ⊗ x̂, where we have used m = log2 d . �

2. Scaling of Number of Circuits Required

Lemma 2. The ( 1
2 d log2 d )2 Pauli operators for the x̂ ⊗ x̂

interaction in the binary encoding can be measured using (d −
1)2 circuits.

Proof. We define the cover of an M qubit Pauli operator
P̂ ∈ {1, X,Y, Z }M as

Cover(P̂)

= {B̂ ∈ {1, X,Y, Z}⊗M | B̂(i) = P̂(i) when P̂(i) �= 1},
(C6)

where P̂(i) is Pauli operator acting on the ith qubit. For a
collection of Pauli operators { P̂1, P̂2, P̂3, . . . } that qubit-wise
commute, there exists at least one basis B̂ which covers all of
the operators:

B̂ ∈ Cover(P̂1) ∪ Cover(P̂2) ∪ Cover(P̂3) ∪ · · · . (C7)

The expectation values of every operator in
{ P̂1, P̂2, P̂3, . . . } can be measured using a single circuit
in which qubit i is measured in the B̂(i) basis, where the
±1 measurement value is used if P̂(i) �= 1, and discarded
otherwise. Here we called bases independent if they do not
qubit-wise commute.

We show that there are (d − 1) independent covers for
terms in x̂ and therefore (d − 1)2 covers needed to measure
x̂ ⊗ x̂.
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We begin by considering the expansion of |n + 1〉 〈n| given
in (C4). Expanding out the

⊗m−1
i=k+1[1 + (−1)bin(n)i Z] term

on the first (m − k − 1) qubits will give tensor products of
only 1 and Z . The covers for this 2(m−k−1) operator subspace
will always contain the basis

⊗m−1
i=k+1 Z (i), which can be used

to measure them all. Then expanding the (X + iY ) ⊗ (X −
iY )⊗k term on the remaining (m − k + 1) qubits gives 2(k+1)

terms that do not qubit-wise commute and so each correspond
to a unique basis.

Thus, there are 2(k+1) independent bases for the terms in
|n + 1〉 〈n|. Using the argument that |n + 1〉 〈n| = |n〉 〈n + 1|†
as in Theorem 4, only the Hermitian terms remain when
summing the two. This halves the number of unique covers
and so 2k bases are required for |n + 1〉 〈n| + |n〉 〈n + 1|.

Again, for the sum of these terms given in (C5), there
are m unique values for k(n) ∈ { 0, 1, . . . , m − 1 } when writ-
ten in the form of (C1). For each unique value of k(n),
the value of bin(n) does not affect the coverings required
[since the first (m − k − 1) qubits are always covered with
Z⊗(m−k−1)], so each unique k(n) contributes a unique set of
2k coverings to the summation. Therefore, the total number
of coverings needed for the Pauli terms in x̂ are

∑m−1
k=0 2k =

2m − 1, where we have used a standard result for the
summation.

Finally, the number of unique coverings for the x̂ ⊗ x̂ inter-
action is then (2m − 1)2 = (d − 1)2. �

Definition 1 (Hypergraphs [101]). A hypergraph is a gen-
eralization of a graph in which edges can connect arbitrary
number (i.e., not just a pair) of vertices. Formally, a hyper-
graph G = (V, E ) consists of V a finite set of vertices and E a
set of nonempty subsets of V called hyperedges.

Definition 2 (Complete hypergraphs [101]). For 0 � r �
N , a complete hypergraph Kr

N = (V, E ) is a hypergraph with
vertices V and set of hyperedges E such that |V | = N and E
contains all r-subsets of V .

Lemma 3 (Baranyai’s Theorem [102]). For a complete hy-
pergraph Kr

N where 2 � r < N and r divides N , the N vertices
can be partitioned into subsets (called 1-factorization) of r
vertices in

(N−1
r−1

)
different ways, such that each r-element

subset (hyperedge) appears in exactly one partition.
Proof. See [[102], Chapter 38]. �
For example, the complete hypergraph K2

4 contains four
vertices, each connected by two-element hyperedges (i.e., tra-
ditional edges). Baranyai’s theorem states that the vertices can
be partitioned into

(4−1
2−1

) = 3 partitions. K2
4 and its correspond-

ing partitions are shown in Fig. 10.
Theorem 4. The number of circuits required for measure-

ment of the Hamiltonian of the form

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (C8)

for N � 2 d-level QDOs in the binary encoding is upper
bounded by

(d − 1)2(N − 1) + 1; N even

(d − 1)2N + 1; N odd, (C9)

which is O(d2N ).

FIG. 10. Fully connected graph K2
4 along with the three corre-

sponding partitions of edges.

Proof. All (x̂2 + p2) =∑d−1
n=0 n |n〉 〈n| terms within the

Hamiltonian can be decomposed into Pauli operators given
in (4) of the main text. All of these terms commute within
each QDO register as well between QDO registers and can
thus be measured using the single covering Z⊗Nm.

For the pairwise coupling terms, from Theorem 2, a single
x̂ ⊗ x̂ term between two QDOs can be measured with (d − 1)2

circuits. The bases required to measure pairwise coupling
terms between disjoint pairs of QDOs are guaranteed to com-
mute since they act on different qubit registers. Therefore,
by measuring each of the bases concurrently for collections
of mutually disjoint interactions, the number of measurement
bases can be reduced in a predictable way.

We represent interaction terms as a graph in which each
vertex corresponds to one of the N QDOs and edges between
vertices correspond represent a nonzero pairwise coupling.
For all-to-all interactions this will be a fully connected graph.
For even N the number of partitions needed to separate inter-
action edges into disjoint sets is equal by Baranyai’s theorem
(Lemma 3) for the graph K2

N . For odd N the edges cannot be
partitioned exactly—there will always be one unpaired vertex
when collecting disjoint edges. Considering a dummy vertex
where an edge between that and an QDO vertex gives no
contribution to the Hamiltonian, the number of partitions is
given by Baranyai’s theorem for K2

N+1.
Using these collections, the number of bases that will need

to be measured of the pairwise interaction terms is

(d − 1)2

(
N − 1

1

)
= (d − 1)2(N − 1); N even,

(d − 1)2

(
N

1

)
= (d − 1)2N ; N odd. (C10)

Combining this with the single basis needed to measure the
noninteraction term gives an upper bound for the number of
bases that must be measured and thus the result. �

This upper bound is plotted as a function of N and d
in Fig. 11 as well as the number of circuits required when
using a heuristic sorting algorithm, namely largest-degree first
coloring [60]. We see that for N = 1 both curves agree as there
are no interaction terms and that the heuristic sorted saturates
the upper bound for N = 2 QDOs. For N > 2 we see that
the sorting significantly reduces the number of circuits below
the upper bound due to additional qubit wise commutation
between nondisjoint interaction terms.
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FIG. 11. Number of circuits required to measure Hamiltonian as (a) and (b) a function of N for two fixed values of d as well as (c) and
(d) a function of d for two fixed values of N . Red dashed line: upper bound scaling given by (C9), black solid line: using largest-degree first
coloring for grouping Paulis. In (c), the two lines coincide.

Corollary 4.1. The number of circuits required for mea-
surement of the Hamiltonian for N � r d-level QDOs with
r-order coupling in the binary encoding is O(d2Nr−1).

Proof. The proof is the same as that for Theorem 4 except
using r > 2 for the x̂⊗r interaction in Lemma 2 and the cor-
responding hypergraph Kr

N in Lemma 3. This gives an upper
bound on the total number of groups of

(d − 1)r

(
N − 1

r − 1

)
+ 1, (C11)

assuming r divides N , which is O(drN (r−1)). If r does not
divide N , the O(drN (r−1)) scaling will remain as dummy
vertices can be used to give the number of vertices that is
divisible for r. �

3. Number of circuits for three-dimensional QDOs

Theorem 5. The number of circuits required for measure-
ment of the Hamiltonian of the form

H =
N∑

i=1

(
p̂2

i

2μ
+ 2μωx̂2

i

)

+ q2
∑
j>i

3(x̂i · Ri, j )(x̂ j · Ri, j ) − x̂i · x̂ jR2
i, j

R5
i, j

, (C12)

for N three-dimensional QDOs with d levels per spatial di-
mension in the binary encoding

(d − 1)2(N − 1) + 1; N even, (d − 1)2N + 1; N odd.

(C13)
Proof. The uncoupled terms within (C12) will correspond

to operators
∑2m−1

n=0 n |n〉 〈n| for each of the three spatial di-
mensions for each QDO. As before, these require just Z
measurements on each of the qubits and can thus be measured
using a single circuit.

Written in terms of operators for each one-dimensional
component, the interaction part of (C12) will contain all nine
terms of the form { x̂i, ŷi, ẑi } ⊗ { x̂ j, ŷ j, ẑ j }, where across each
3m qubit register for a single QDO, the operators making up
x̂i are given by x̂i = x̂ ⊗ 1⊗m ⊗ 1⊗m, ŷi = 1⊗m ⊗ x̂ ⊗ 1⊗m,
and ẑi = 1⊗m ⊗ 1⊗m ⊗ x̂, following a similar pattern for x̂ j ,

p̂i, and p̂j. Since every single term of the form x̂x̂, x̂ŷ, ŷẑ,
etc., in the coupling interactions will consist of the same
decomposition of Pauli operators either acting on the same
or different QDO subregisters. These all qubit-wise com-
mute and each term each of the ( d

2 log2 d )2 Pauli terms for
all oscillator-oscillator interaction terms can be measured
together. Thus for each pair of coupled three-dimensional
QDOs, only ( d

2 log2 d )2 circuits are needed; the same number
required for a pairwise interaction between one-dimensional
QDOs.

Finally, using Lemma 3 and following the same logic
as Theorem 4, an upper bound for the number of circuits
needed to measure in (C12) is (N − 1)( d

2 log2 d )2 + 1 or
N ( d

2 log2 d )2 + 1, for even and odd N , respectively. �

APPENDIX D: SHOT REQUIREMENTS

In this section, we derive an upper bound for an estimate of
the number of shots required to achieve a given statistical error
on the measurement of 〈Ĥ〉 for a system of 1D coupled QDOs
using the grouping of measurements described in Theorem 4.

We write a Hamiltonian in the form

Ĥ =
∑
g∈G

∑
i∈g

aiP̂i, (D1)

where G = { g | [P̂i, P̂j] = 0,∀i, j ∈ g } is the set of all col-
lections for the Pauli operatos P̂i in which all operators in
a collection qubit-wise commute. A standard method [103]
using Lagrange multipliers to optimally distribute measure-
ments between circuits gives a total number experimental
shots of

S = 1

ε2

⎡
⎣∑

g∈G

√∑
i∈g

|ai|2VarP̂i

⎤
⎦2

(D2)

to achieve an expected measurement error of ε, assuming that
Cov[P̂i, P̂j] = 0 if i �= j. The variance of a Pauli operator is
given by VarP̂i = 1 − 〈P̂i〉. In the absence of knowledge about
the state that the expectation value is take with respect to, we
take the expectation of this variance with respect to a spherical
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measure (see [[64], Chapter 7] and following a similar method
to Ref. [59]):

E[VarP̂i] =
{

0; P̂i = 1

1 − 1
2ni +1 ; otherwise

, (D3)

where ni is the number of nonidentity Pauli operators
in P̂i. Additionally, in the uniform spherical measure,
E[Cov(P̂i, P̂j )] = 0 if i �= j. Thus the expected number of
shots S to achieve error ε is upper bounded by

E[S] = 1

ε2

⎡
⎣∑

g∈G

√√√√∑
i∈g

|ai|2
(

1 − 1

2ni + 1

)⎤⎦2

. (D4)

Theorem 6 (Expected shots over uniform measure when
grouping measurements). Given a Hamiltonian

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (D5)

for N � 2 d-level QDOs in the binary encoding and mea-
suring commuting operators according to the procedure
described in Theorem 4, the expected number of shots S
required to achieve a constant measurement error ε is upper
bounded by

S � 1

ε2

⎛
⎝√

2

3

√
N
√

d2 − 1 +
⎛
⎝ ∑

F∈Part(G)

√ ∑
〈i, j〉∈F

γ 2
i, j

⎞
⎠{2d − (4 + 2 log2 d )d2 +

[
2 + 2 log2 d + 1

2
(log2 d )2

]
d3

}⎞⎠2

, (D6)

when taken over the spherically symmetric distribution of
states, where Part(G) is the set of coverings for a given
1-factorization of the interaction graph G. Assuming G is
fully connected and that values of γi, j are independent of
both N and d and randomly distributed between different

F ∈ Part(G), then S ∈ O( γ 2N3(log2 d )4d6

ε2 ), where γ is a typical
scale for γi, j .

Proof. We consider the groupings described in Theorem 4.
Since interacting and noninteracting parts of the Hamiltonian
have different forms and groupings, we consider each one’s
contribution to the total shots separately:

ε2S = (εS̃non-int + εS̃int )
2
. (D7)

Starting with the uncoupled part of the Hamiltonian:

N∑
i=1

(
x̂2

i + p̂2
i

) =
N∑

i=1

2m1⊗mN −
m−1∑
j=0

2 jZ (im+ j), (D8)

where Z (im+ j) is the Z operator acting on the jth qubit of QDO
i, all terms form a single collection, which gives

εS̃non-int =
√√√√N

m−1∑
j=0

22 jVarZ =
√

2

9
N (22m − 1), (D9)

where we have used that E[VarZ] = 2
3 from (D3).

For the interacting terms, the collection to which a single
Pauli operators given by (C4) (i.e., which g ∈ G it is sorted
into) is determined by three things:

(1) Which of the (N − 1) (even N) or N (odd N) 1-
factorizations of the interaction graph the corresponding
interaction term belongs to.

(2) The value of k(n), the position of the rightmost zero in
the binary representation of integer n labeling the Fock state,
for each of the two the QDOs involved in an interaction term.

(3) For a given pair of k(n), which of the possible 2k+1 of
X and Y operators is applied to the right most (k + 1) qubits.
As before, the anti-Hermitian terms in (C4) are not needed in
the sum |n + 1〉 〈n| + |n〉 〈n + 1|.

Separating the terms within Ĥ according to these criteria
(their contributions to the equation labeled with curly braces),
the expected number of shots required is

εS̃int = 1

2

m−1∑
k1,k2=0︸ ︷︷ ︸

1.

∑
F∈Part(G)︸ ︷︷ ︸

2.

∑
P̂

(:k1+1)
1 ∈{ X,Y }⊗(k1+1)

P̂
(:k2+1)
2 ∈{ X,Y }⊗(k2+1)︸ ︷︷ ︸

3.

�(F, k1, k2),

(D10)

where Part(G) is the set of the interaction graph G.
From Lemma 3, if G is fully connected then |G| = (N −
1) or N (for N even or odd). We have defined Nk1 =
{ n | k(n) = k1, n ∈ Z, 0 � n < 2m } as the set of integers sat-
isfying a given k(n) (similarly for Nk2 ) and P̂(:k1+1)

1 is a
(k1 + 1) qubit Pauli operator (similarly for P̂(:k2+1)

2 ). The 1/2
prefactor results from the cancellation of anti-Hermitian terms
which make up half of the operators. The value of � is given
by

�(F, k1, k2) =

⎡
⎢⎢⎢⎢⎣
∑

〈i, j〉∈F

∑
n1∈Nk1
n2∈Nk2

∑
P̂

(k1+1:m)
1 ∈{1,Z }⊗(m−k1−1)

P̂
(k2+1:m)
2 ∈{1,Z }⊗(m−k2−1)

(2γi, j

√
n1 + 1

√
n2 + 1)2E[VarP̂1 ⊗ P̂2]

⎤
⎥⎥⎥⎥⎦

1
2

, (D11)

where, P̂(k1+1:m)
1 is an (m − (k1 + 1)) qubit Pauli operator and P̂1 = P̂(:k1+1)

1 ⊗ P̂(k1+1:m)
1 (similarly for P̂(k2+1:m)

2 ). This is the
equivalent of the square root term in (D4); the contribution to the variance from a single collection of commuting operators. In
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the above, 〈i, j〉 correspond to edges within 1-factorization F , n1 and n2 correspond to Fock terms satisfying the requirement of
k(n); the position of the rightmost X or Y operator. Using the expectation on the spherical measure from (D3) gives

E[VarP̂1 ⊗ P̂2] =
(

1 − 1

2k1+k2+α+β + 1

)
, (D12)

where integers 0 < α1 < m − k1 and 0 < α2 < m − k2 count the number of Z operators in P̂(k1+1:m)
1 and P̂(k2+1:m)

2 respectively.
By recognizing that when using the spherical measure, many of the expected variances are equivalent and only depend on the

total number of X, Y, or Z operators, the expected number of shots simplifies to

εS̃int = 1

2

m−1∑
k1,k2=0

∑
F∈Part(K2

N )

2k1+12k2+1�(F, k1, k2) (D13)

with

�(F, k1, k2) =

⎡
⎢⎢⎢⎣
∑

〈i, j〉∈F

∑
n1∈Nk1
n2∈Nk2

m−k1−1∑
α=0

m−k2−1∑
β=0

(
m − k1 − 1

α

)(
m − k2 − 1

β

)(
2γi, j

√
n1 + 1

√
n2 + 1

)2(
1 − 1

2k1+k2+α+β + 1

)⎤⎥⎥⎥⎦
1
2

.

(D14)

Now we aim to find a simple upper bound for S. We start by grouping terms:

εS̃int =
⎛
⎝ ∑

F∈Part(G)

√ ∑
〈i, j〉∈F

γ 2
i, j

⎞
⎠ m∑

k1,k2=1

2k1+12k2+1

√√√√√
∑

n1∈Nk1
n2∈Nk2

(n1 + 1)(n2 + 1)

×
√√√√m−k1−1∑

α=0

m−k2−1∑
β=0

(
m − k1 − 1

α

)(
m − k2 − 1

β

)(
1 − 1

2k1+k2+α+β + 1

)
. (D15)

We note that

∑
n1∈Nk1
n2∈Nk2

(n1 + 1)(n2 + 1) =
⎛
⎝2k1

2m−k1−1∑
γ=0

(2γ + 1)

⎞
⎠
⎛
⎝2k2

2m−k2−1∑
δ=0

(2δ + 1)

⎞
⎠ = 2−k1−2(2k1+1 + 2m)2 × 2−k2−2(2k2+1 + 2m)2 (D16)

and

m−k1−1∑
α=0

m−k2−1∑
β=0

(
m − k1 − 1

α

)(
m − k2 − 1

β

)(
1 − 1

2k1+k2+α+β + 1

)
�

m−k1−1∑
α=0

(
m − k1 − 1

α

) m−k2−1∑
β=0

(
m − k1 − 1

β

)

= 2m−k1−1 × 2m−k2−1, (D17)

where we have used a standard result for the summation of binomial coefficients. Substituting (D16) and (D17) into (D15) gives

εS̃int �

⎛
⎝ ∑

F∈Part(G)

√ ∑
〈i, j〉∈F

γ 2
i, j

⎞
⎠ m−1∑

k1,k2=0

2m−1(4 × 2k1+k2 + 2m+1 × 2k1 + 2m+1 × 2k2 + 22m)

=
⎛
⎝∑

F∈(G)

√ ∑
〈i, j〉∈F

γ 2
i, j

⎞
⎠(2d − [4 + 2 log2 d]d2 + [2 + 2 log d + 1

2 (log2 d )2
]
d3
)
, (D18)

using standard results for the summations and substitution d = 2m. Combining this with (D9) gives the result. �
Theorem 7 (Expected shots over uniform measure when not grouping measurements.). Given a Hamiltonian

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (D19)
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for N � 2 d-level QDOs in the binary encoding and measuring each corresponding Pauli operator separately, the expected
number of shots required to achieve a constant measurement error ε is given by the upper bound

S � 1

ε2

{
N

√
6

3
(d − 1) +

( ∑
〈i, j〉∈G

|γi, j |
)[

(3 + 2
√

2)d2 − (2 +
√

2)d
5
2 −

(
7

2
+ 3

√
2

)
d3 + (1 +

√
2)d

7
2 +

(
3

2
+

√
2

)
d4

]}2

,

(D20)

when taken over the spherically symmetric distribution of states, where G is the interaction graph. Assuming G is fully connected
and, that values of γi, j are independent of both N and d , then S ∈ O( γ 2N4d8

ε2 ) where γ is a typical scale for γi, j .
Proof. As in Theorem 6, we consider contributions from noninteraction and interaction terms separately. Starting with the

uncoupled part of the Hamiltonian

εS̃non-int = N
m−1∑
j=0

√
22 jVarZ = N

√
6

3
(2m − 1). (D21)

For the interaction part of the Hamiltonian

εS̃int = 1

2

∑
〈i, j〉∈G

m−1∑
k1,k2=0

∑
P̂1∈{ X,Y }⊗k1+1⊗{1,Z }⊗m−k1−1

P̂2∈{ X,Y }⊗k2+1⊗{1,Z }⊗m−k2−1

⎡
⎢⎢⎢⎣
∑

n1∈Nk1
n2∈Nk2

4γ 2
i, j (n1 + 1)(n2 + 1)E(VarP̂1 ⊗ P̂2)

⎤
⎥⎥⎥⎦

1
2

=
∑

〈i, j〉∈G

|γi, j |
m−1∑

k1,k2=0

2k1+12k2+1

√√√√√
∑

n1∈Nk1
n2∈Nk2

(n1 + 1)(n2 + 1)

×
m−k1−1∑

α=0

m−k2−1∑
β=0

(
m − k1 − 1

α

)(
m − k2 − 1

β

)√(
1 − 1

2k1+k2+α+β + 1

)
. (D22)

Using (D17) and (D16) again and writing d = 2m, we get the inequality

εS̃int �
∑

〈i, j〉∈G

|γi, j |
m−1∑

k1,k2=0

(2k1+1 × 2k2+1)(2m−k1−1 × 2m−k2−1)
[
2− k1

2 −1(2k1+1 + 2m) × 2− k2
2 −1(2k2+1 + 2m)

]

=
( ∑

〈i, j〉∈G

|γi, j |
)[

(3 + 2
√

2)d2 − (2 +
√

2)d
5
2 −

(
7

2
+ 3

√
2

)
d3 + (1 +

√
2)d

7
2 +

(
3

2
+

√
2

)
d4

]
. (D23)

Combining this with (D21) gives the result. �
The preceding results assume no knowledge about the

states that are being measured and use an expectation over all
of Hilbert space respect to the spherically symmetric measure.
Here we make a second estimate for the number of shots
required using the pure state |ψ0〉 = |0〉⊗mN . |ψ0〉 corresponds
to the product state of all QDOs in their lowest Fock state and
is assumed to be reasonably close to the states that we seek
using the VQE procedure.

When not using the spherical measure, contributions
to the measurement error from the covariance of terms
within the same collection is nonzero may be nonzero. In this
case, the expected number of shots is given by

S = 1

ε2

⎡
⎣∑

g∈G

√∑
i, j∈g

aia jCov[P̂i, P̂j]

⎤
⎦2

, (D24)

where Cov[P̂i, P̂j] = 〈P̂iP̂j〉|ψ0〉 − 〈P̂i〉|ψ0〉〈P̂j〉|ψ0〉 with sub-
scripts indicating the state that expectation values are taken
with respect to.

Theorem 8 (Expected shots for uncoupled state when
grouping measurements.). Given a Hamiltonian

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (D25)

for N � 2 d-level QDOs in the binary encoding and mea-
suring commuting operators according to the procedure
described in Theorem 4, the expected number of shots S
required to achieve a constant measurement error ε for state
|0〉⊗mN is upper bounded by

S = 1

ε2

1

16

⎛
⎝ ∑

F∈Part(G)

√ ∑
〈i, j〉∈F

γ 2
i, j

⎞
⎠2

d4, (D26)

062409-19



LEWIS W. ANDERSON et al. PHYSICAL REVIEW A 105, 062409 (2022)

where Part(G) is the set of coverings for a given 1-
factorization of the interaction graph G. Assuming G is fully
connected and that values of γi, j are independent of both
N and d and randomly distributed between different F ∈
Part(G), then S ∈ O( γ 2N3d4

ε2 ), where γ is a typical scale for
γi, j .

Proof. Again we consider noninteracting and interacting
contributions separately. For the noninteracting contribution,
we note that for |ψ〉 = |0〉⊗mN , 〈Z (i)〉 = 〈Z ( j)〉 = 〈Z (i)Z ( j)〉 =
1 ∀ i, j. Therefore,

εS̃non-int =
√√√√N

m−1∑
i, j=0

2i2 jCov[Z (i), Z ( j)] = 0. (D27)

The contribution from the coupling terms is

εS̃int = 1

2

m−1∑
k1,k2=0

∑
F∈Part(K2

N )

∑
P̂

(:k1 )
1 ∈{ X,Y }⊗(k1+1)

P̂
(:k2 )
2 ∈{ X,Y }⊗(k2+1)

�(F, k1, k2),

(D28)

where Part(K2
N ) is the set of the (N − 1) or N (for N

even or odd) partitions of the interaction graph K2
N , Nk1 =

{ n | k(n) = k1, n ∈ Z, 0 � n < 2m } is the set of integers sat-
isfying a given k(n) (similarly for Nk2 ) and P̂(:k1+1)

1 is a
(k1 + 1) qubit Pauli operator (similarly for P̂(:k2+1)

2 ). � is given
by

�(G, k1, k2)

=

⎡
⎢⎢⎢⎣
∑

〈i, j〉∈F

∑
〈i′, j′〉∈F

∑
n1∈Nk1
n2∈Nk2

∑
n′

1∈Nk1
n′

2∈Nk2

× 22γi, jγi′, j′
√

n1 + 1
√

n2 + 1
√

n′
1 + 1

√
n′

2 + 1

× Cov
[
Â〈i, j〉(k1, k2, n1, n2), Â〈i′, j′〉(k1, k2, n′

1, n′
2)
]
⎤
⎥⎥⎥⎦

1
2

,

(D29)

where

Â〈i, j〉(k1, k2, n1, n2)

=
(

P̂(:k1 )
1 ⊗

m−1⊗
α=k1+1

[1 + (−1)bin(n1 )α Z]

)
QDO i

× ⊗
(

P̂(:k2 )
2 ⊗

m−1⊗
β=k2+1

[1 + (−1)bin(n2 )β Z]

)
QDO j

(D30)

acts on the subregisters corresponding to QDOs i and j.

We note that P̂(:k1 )
1 ∈ { ±1 } × { X,Y }⊗(k1+1) (recalling

only Hermitian terms remain in Ĥ ) and so 〈P̂(:k1 )
1 〉|ψ0〉 = 0 ∀k1

and similarly for P̂(:k2 )
2 , from which it follows

〈i, j〉 �= 〈i′, j′〉
⇒ Cov[Â〈i, j〉(k1, k2, n1, n2), Â〈i′, j′〉(k1, k2, n′

1, n′
2)] = 0

(D31)

and

Cov
[
Â〈i, j〉(k1, k2, n1, n2), Â〈i, j〉(k1, k2, n′

1, n′
2)
]

= 〈Â〈i, j〉(k1, k2, n1, n2)Â〈i, j〉(k1, k2, n′
1, n′

2)
〉
|ψ0〉

= 〈P̂(:k1 )
1 P̂(:k1 )

1

〉
|ψ0〉
〈
P̂(:k2 )

2 P̂(:k2 )
2

〉
|ψ0〉

×
〈

m−1⊗
α=k1+1

(1 + (−1)bin(n1 )α Z )(1 + (−1)bin(n′
1 )α Z )

〉
|ψ0〉

×
〈

m−1⊗
α=k1+1

(1 + (−1)bin(n2 )α Z )(1 + (−1)bin(n′
2 )α Z )

〉
|ψ0〉

,

(D32)

where all expectation values are with respect to |ψ0〉. Trivially
〈P̂(:k1 )

1 P̂(:k1 )
1 〉|ψ0〉 = 〈P̂(:k2 )

2 P̂(:k2 )
2 〉|ψ0〉 = 1. It can be seen that〈

m−1⊗
α=k1+1

[
1 + (−1)bin(n1 )α Z

][
1 + (−1)bin(n′

1 )α Z
]〉

|ψ0〉

=
{

4m−k1−1, if n1 = n′
1 = 0,

0, otherwise,
(D33)

and similarly for n2 and n′
2. Therefore

Cov
[
Â〈i, j〉(k1, k2, n1, n2), Â〈i′, j′〉(k1, k2, n′

1, n′
2)
]

= 24m−2k1−2k2−4δi,i′δ j, j′δn1,0δn2,0δn′
1,0δn′

2,0, (D34)

where δ is the Kronecker delta. We note that δn1,0 =
δn1,0δk1,0 ∀k1 : n1 ∈ Nk1 and similarly for δn2,0. Then substi-
tuting this into (D29) gives

�(G, k1, k2) =
∑
〈i, j〉

22γ 2
i, j2

4m−k1−k2−4δk1,0δk2,0, (D35)

which substituting into (D28) gives

εS̃int = 1

4

∑
F∈PartG

√ ∑
〈i, j〉∈F

γ 2
i, jd

4, (D36)

from which the result follows. �
Theorem 9 (Expected shots for uncoupled state when not

grouping measurements.). Given a Hamiltonian

Ĥ =
N∑

i=1

(
x̂2

i + p̂2
i

)+
∑
j>i

γi, j x̂ix̂ j, (D37)

for N � 2 d-level QDOs in the binary encoding and measur-
ing each corresponding Pauli operator separately, the expected
number of shots S required to achieve a constant measurement
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error ε for state |0〉⊗mN is upper bounded by

S = 1

ε2

1

16

( ∑
〈i, j〉∈G

|γi, j |
)2

d4, (D38)

where G is the interaction graph. Assuming G is fully con-
nected and that values of γi, j are independent of both N and d
and randomly distributed between different F ∈ Part(G), then
S ∈ O( γ 2N4d4

ε2 ), where γ is a typical scale for γi, j .
Proof. Again we consider noninteracting and interacting

contributions separately. As in Theorem 8, the uncoupled
contribution is zero.

The contribution from the coupling terms is

εS̃int = 1

2

m−1∑
k1,k2=0

∑
〈i, j〉∈G

∑
P̂

(:k1 )
1 ∈{ X,Y }⊗(k1+1)

P̂
(:k2 )
2 ∈{ X,Y }⊗(k2+1)

×
∑

n1∈Nk1
n2∈Nk2

√
22γ 2

i, jVar
[
Â〈i, j〉(k1, k2, n1, n2)

]
, (D39)

where

Â〈i, j〉(k1, k2, n1, n2)

=
(

P̂(:k1 )
1 ⊗

m−1⊗
α=k1+1

[
1 + (−1)bin(n1 )α Z

])
QDO i

× ⊗
(

P̂(:k2 )
2 ⊗

m−1⊗
β=k2+1

[
1 + (−1)bin(n2 )β Z

])
QDO j

(D40)

acts on the subregisters corresponding to QDOs i and j. Us-
ing (D34), this simplifies to

εS̃int = 1

4

( ∑
〈i, j〉∈G

|γi, j |
)

d2, (D41)

from which the result follows. �

APPENDIX E: NOISE MITIGATION FOR ANHARMONIC
EXPERIMENTS

Unlike for the harmonic systems, for anharmonic sys-
tems it is not possible perform the subtraction method given
in (10). This is because we do not have a good way to
estimate λ as the ground state of the zero field system is
not simply given by the zero Fock state. Therefore, we
use more costly error mitigation techniques in order to
reduce the effect of device noise in the final energy mea-
surements. We choose to use a combination of two error
mitigation schemes, namely, zero-noise extrapolation [76,77]
and an algorithmic error mitigation scheme based on Lanczos
extrapolation [78].

To reduce the effect of noise on the measurement of 〈Ĥ〉
using zero-noise extrapolation, the expectation value is mea-
sured multiple times with the noise in the system artificially
increased to various levels. The amount that the noise is am-
plified in the system is parameterized by a variable which
we call � such that we have values {〈H〉�} evaluated at

each chosen value of �. A curve is then fitted to the val-
ues of � and 〈Ĥ〉� which can then be extrapolated back to
� = 0 to hopefully remove the effect of noise on the sys-
tem. Zero noise extrapolation requires no more qubits than
the original system and can be performed fairly easily. The
difficulty lies in finding a good method to amplify the noise
to enough values of � such that a good fit can be found, as
well as choosing a good fitting function for your device noise
model.

In our experiments we boost the device noise by replacing
each two-qubit controlled-NOT (CNOT) gate by an odd number
of CNOT gates. Since in the noiseless setting an odd number
of CNOT gates has the same effect as a single CNOT gate,
this has the effect of artificially boosting the two-qubit gate
noise—which is expected to be the main source of noise in
the superconducting system. We use three different values of
� which correspond to using one, three, and five CNOTs in
place of each CNOT in the circuit. A linear fit was found to
match values of {〈H〉�} well and used to extrapolate to the
� = 0 to achieve a zero noise estimate.

For the further mitigation based on the Lanczos algorithm,
we follow the method described in Ref. [78] to perform an
m = 2 Krylov subspace expansion of the Hamiltonian. In the
m = 2 case, this requires measuring 〈H〉, 〈Ĥ2〉, and 〈Ĥ3〉 on
the noisy device to create the Krylov basis. Minimization in
this basis (performed by exact matrix diagonalization) is then
used to find a minimum value for 〈Ĥ〉 which satisfies the
variational principle.

The zero-noise extrapolation and Lanczos algorithm were
combined as in Ref. [78] to give an increased level of noise
reduction. First zero noise extrapolation was used on expec-
tation values of 〈Ĥ〉, 〈Ĥ2〉, and 〈Ĥ3〉 which were then used
in the Lanczos mitigation method. As with measurements of
the cost function 〈H〉 in the main text, the Pauli strings for
each operator were grouped into collections that qubit-wise

0 1 2
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0 1 2 3 4

(b) (c)

0 1 4 7 10 12 15 18 21 23

6 17

2 13 24

3 5 8
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11 14 16 19 22 25 26

20
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FIG. 12. Coupling map of the IBM Quantum devices used to pro-
duce the results of the paper. The devices used are (a) ibmq_montreal,
(b) ibm_lagos, and (c) ibmq_santiago with 27, 7, and 5 qubits,
respectively.
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commuted and each group measured with approximately 16
million shots. Operators Ĥ , Ĥ2, and Ĥ3 consist of 6, 7, and 8
Pauli strings which were grouped into 2, 3, and 3 commuting
groups respectively.

APPENDIX F: IBM QUANTUM HARDWARE

For practical reasons related to device availability and
queue-times we used three different quantum processors to
evaluate our algorithm. All three processors were provided
by IBM via the Qiskit [104] open source framework. We
used ibmq_montreal (27 qubits, Processor type Falcon r4),
ibm_lagos (7 qubits, processor type Falcon r5.11H) and
ibmq_santiago (5 qubits, processor type Falcon r4L). The
reported quantum volume of the aforementioned devices is
128, 32 and 32 respectively.

The experiments in Sec. III use 4 qubits on every processor,
namely qubits 13, 14, 16, and 19 in ibmq_montreal, qubits
1, 3, 4, and 5 in ibm_lagos and qubits 1, 2, 3, and 4 in
ibmq_santiago following the coupling map show in Fig. 12.
The experiments were performed in a time frame of 2 months
and the noise parameters (and qubit properties) were var-
ied along the period of the experiments. The experiments in
Sec. V A used qubits 14 and 16 on ibmq_montreal and were
performed over a period of two days.

APPENDIX G: SYMPLECTIC EIGENVALUES OF
HARMONIC OSCILLATORS WITH LINEAR COUPLING

In the case of purely harmonic oscillators with linear
coupling given by the Hamiltonian in Eqn. (1), the exact

ground-state energy (without any truncation of the Fock
space) can be found by calculating the eigenspectrum of a
2N × 2N matrix.

The Hamiltonian in (1) can be rewritten as

Ĥ = q̂THq̂, (G1)

where we have defined the vector operator q̂T =
(q̂1, q̂2, . . . , q̂2N−1, q̂2N ) := (x̂1, p̂1, . . . , x̂N , p̂N ) and
correlation matrix H ∈ R2N×2N which has elements Hi, j

equal to the coefficients of the q̂iq̂ j operator in Ĥ . In this
representation, the bosonic commutation relation can be
written as elements of a matrix [q̂i, q̂ j] = �i, j where

� =
N⊕

k=1

ω ∈ R2N×2N , ω =
(

0 1
−1 0

)
. (G2)

The eigenspectrum of the matrix |i�H| (where the ab-
solute value is defined in the operatorial sense [105]) is
{ε1, ε2, . . . , ε2N }, where {εi} are known as the symplectic
eigenvalues. The ground-state energy of the system is given by
E0 = 1

2

∑2N
i=1 εi. We consider systems of increasing coupling

strength up to the point at which mini εi = 0 and the system
becomes critical. For further details see [105,106].

We note that this method for calculating the ground-state
energy works only for Hamiltonians that can be written in the
quadratic form of (G1) for which ground states and thermal
states are Gaussian.
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