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Enhancing quantum entanglement is important for many quantum information processing applications. In this
paper, we consider a protocol for entanglement enhancing in a two-mode squeezed vacuum state (TMSVS),
attained based on photon subtraction, photon catalysis, and photon addition. Central to such an operation is the
task of mixing and detecting number states with each mode of TMSVS. We analyze various settings and find an
optimal setup for improving the entanglement of the state.
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I. INTRODUCTION

Among various entangled states, continuous variable (CV)
systems have attracted considerable attention for their re-
markable characteristics and their usefulness in quantum
information tasks [1–5]. Prominent examples of CV systems
include both Gaussian and non-Gaussian states. It is well
known that Gaussian states, such as coherent and squeezed
states, offer a considerable platform for quantum applica-
tions. In a parallel line of research, it has been shown that
non-Gaussian states, as well as non-Gaussian operations, can
play a significant role in quantum information processing. For
example, two-mode non-Gaussian states present an advantage
over Gaussian states in enhancing entanglement [6–8]. This is
an interesting property due to the fact that highly entangled
states are of particular importance for both practical applica-
tions [9–15] and fundamental investigations in the quantum
discipline [13,15,16]. Moreover, non-Gaussian sources are
necessary for entanglement distillation since distilling Gaus-
sian states via Gaussian operations is not possible [17,18].

Non-Gaussian states can be obtained by simply adding or
subtracting photons to Gaussian states. Photon addition and
photon subtraction are important tools for improving quan-
tum correlations. The physical properties of photon-added and
photon-subtracted non-Gaussian states are studied both theo-
retically and experimentally, in recent years [8,19–22]. Photon
addition and photon subtraction on squeezing states and the
coherent state are used for entanglement distillation [6,23],
quantum commutation applications [24,25], and entanglement
and teleportation fidelity enhancements [6–8,22,26–32].

Photon subtraction is shown to be realized by taking a
small fraction out of the light beam [26,33]. Also, pho-
ton addition is demonstrated to be attained in parametric
downconversion processes in beta barium borate (BBO)
crystals [21]. Both experimental methods include conditional
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measurements. Considering these approaches, a similar non-
Gaussian operation, photon catalysis, was also studied by
Lvovsky and Mlynek [34]. Photon catalysis has been demon-
strated to enhance the entanglement of a two-mode squeezed
vacuum state [27].

The importance of the non-Gaussian entanglement en-
hancement recipes that were mentioned earlier becomes more
apparent by considering the fact that generating highly entan-
gled states is not an easy task in general and requires delicate
control and design of the quantum system [12,15,35]. For
example, a two-mode squeezed vacuum state (TMSVS) can
be attained using nonlinear crystals [36]. However, due to the
weak interaction of nonlinear processes, the squeezing factor
is usually small. To be more precise, the entanglement of a
TMSVS is determined by EN = log2 e2r , where EN is the
logarithmic negativity [37] and r is the squeezing factor.

In this paper, we consider the problem of enhancing the
entanglement in TMSVS based on schemes that take ad-
vantage of the photon addition, subtraction, and catalysis
phenomena. We first analyze and compare the performance
of all three operations [27,38]. As demonstrated in Fig. 1,
an auxiliary Fock state |m〉A is mixed with one of the modes
of a TMSVS via a beam splitter (BS; see Fig. 1). Using a
time-multiplexed photon-number-resolving detector [39,40],
conditional measurement can be performed on the auxiliary
mode of the output states, projecting it to |m′〉A. If m′ < m,
this process adds photons to the states, while m′ > m subtracts
photons from the state. For m′ = m it serves as a catalyst. The
operation can be performed on both modes of the TMSVS
as depicted in Fig. 2, where each mode gets mixed with an
independent Fock state. We find that photon catalysis provides
better results for both success probability and entanglement
enhancement compared with the photon addition and subtrac-
tion processes. However, even for the photon catalysis, the
success probability of the states does not exceed 20%.

To overcome this limitation and to attain even considerably
higher entanglement enhancement, we introduce a different
method compared with previous studies [6,7,26,27,29,38].
We show that by injecting the auxiliary Fock states into a
BS before mixing them with the modes of the TMSVS, the
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FIG. 1. Quantum state |ψ〉out is generated by mixing the Fock
state |m〉 and the input state |ψ〉in in the BS, where the state |m′〉 is
detected in the output mode.

entanglement can be drastically improved. With this setup,
we demonstrate that under photon addition, the success prob-
ability for a large entanglement enhancement can even exceed
70%. Our investigations show that adding a single photon to
the TMSVS, based on this protocol, is, in fact, optimal for
entanglement enhancement.

II. PHOTON SUBTRACTION, ADDITION, AND CATALYSIS

Now, we consider a general setting of non-Gaussian oper-
ations, where photons can be added, subtracted, or catalyzed
in the process. The protocol for enhancing entanglement is
depicted in Fig. 1, where an input state |ψ〉in is injected into
one port of a BS and the Fock state |m〉 is injected into the
other port. The BS has the transmittance T = cos2 θ . The
detector in the output mode detects m′ photons, which can be
realized using a time-multiplexed photon-number-resolving
detector [39,40].

Based on the configurations in Fig. 1, there are three possi-
ble scenarios: Photon subtraction for m′ > m, photon addition
for m′ > m, and photon catalysis for m′ = m. The BS opera-
tion can be described as B̂(θ ) = exp{θ (a†aA − aA

†a)}, where
for convenience we take θ to be real and the phase shift of

FIG. 2. The two modes of the TMSVS are injected into two BSs
separately, generating a two-mode output state |out〉.

the BS is set to be zero. Together with the photon number
measurement operation, the output state |ψ〉out is given by

|ψ〉out =A 〈m′|B̂(θ )|m〉A|ψ〉in, (1)

where index A denotes the auxiliary mode. Note that the BS
operator consists of two modes and hence A〈m′|B̂(θ )|m〉A is
an operator acting on the mode that is not measured. Thus the
transformation from |ψ〉in to |ψ〉out is expressed by

|ψ〉out = B̂m,m′ |ψ〉in,

B̂m,m′ = A〈m′|B̂(θ )|m〉A. (2)

Considering Eq. (2), in order to determine the output state,
we need to determine B̂m,m′ . As is shown in the Appendix, the
operator B̂m,m′ can be expressed in the Fock basis through

B̂m,m′ =A 〈m′|B̂(θ )|m〉A =
∑
k=0

Bm,m′,k|k + m − m′〉〈k|, (3)

where the explicit expression for the coefficient Bm,m′,k is
presented in Eq. (A3), in the Appendix. This provides a rather
general framework for non-Gaussian operations on a quantum
state.

To consider a particular setting, for the input state |ψ〉in =∑
k ck|k〉, the output state |ψ〉out can be obtained to be

|ψ〉out ∝ B̂m,m′ |ψ〉in =
∑
k=0

ckBm,m′,k|k + m − m′〉. (4)

Note that B̂m,m′ |ψ〉in is not normalized in general. There-
fore, considering the normalized factor Nm,m′ , determined by
N−2

m,m′ = ∑
k |ckBm,m′,k|2, the output state can be expressed as

|ψ〉out = Nm,m′
∑
k=0

ckBm,m′,k|k + m − m′〉. (5)

As a particular example, for the photon catalysis with
m = m′ = 1, we find for the output state

|ψ〉out = N1,1

∑
k=0

ck (cos θ )k−1[cos2 θ − k sin2 θ ]|k〉, (6)

which agrees with Refs. [27,41,42]. Taking into account the
fact that T = cos2 θ and R = sin2 θ , the equation above can

be expressed as |ψ〉out = N1,1
∑

k=0 ck

√
T

k−1
[T − kR]|k〉.

Therefore, for k = T/R, the contribution from the Fock state
|k〉 becomes eliminated in the output state. As a specific case,
for |ψ〉in = |k〉, we obtain |ψ〉out = 0. For a given state, if we
take T = R, for instance, there will be no contribution from
the number state |1〉 in the output. For T = 2R there will be
no contribution from the number state |2〉 in the output state,
for instance.

III. ENTANGLEMENT ENHANCEMENT OF THE TMSVS

Now that we have developed a platform for desired non-
Gaussian operations, we can implement specific setups for
enhancing entanglement in a continuous variable system.
Even though the input state introduced in Fig. 1 is quite
general, we apply the quantum enhancement protocols to
the two-mode squeezed vacuum state (TMSVS). The two-
mode squeezed vacuum state is defined by applying two-mode
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squeezing operator S(r) = exp{r(a†
1a†

2 − a1a2)} to the two-
mode vacuum state |0, 0〉 as [27,41,42]

|TMSVS〉 = S(r)|0, 0〉 = sechr
∑
k=0

λk|k, k〉, (7)

where λ = tanh r (for convenience, r is set to be real). The
operators a†

1(a1) and a†
2(a2) are the creation (annihilation)

operators for the two modes.
In particular, we consider two different setups for entan-

glement enhancements and determine the optimal scenario to
achieve the goal.

A. First setup

Now, we introduce the first scheme for the enhancement
of the entanglement in the TMSVS. The setup is presented
in Fig. 2, where each mode goes though the operation that is
explained in Fig. 1. Considering the formalism developed in
the previous section, the output state is given by

|out〉 = Nm,m′:n,n′ B̂m,m′ (θ )B̂n,n′ (ϕ)|TMSVS〉
= Nm,m′:n,n′

∑
k=0

Cm,m′:n,n′,k|k + m − m′, k + n − n′〉,

(8)

where Cm,m′:n,n′,k is the coefficient of
|k + m − m′, k + n − n′〉. Note that Nm,m′:n,n′ is the nor-
malization factor such that 〈out|out〉 = 1. Cm,m′:n,n′,k , which
we denote as Ck for convenience, can be obtained using the
two separate non-Gaussian operations operated on each mode.
In this setting, we have Ck = sechr λk Bm,m′,k (θ ) Bn,n′,k (ϕ).

In this operation, the success probability and the entan-
glement enhancement are the two quantities that determine
how useful the operation outcome is. N−2

m,m′:n,n′ quantifies
the success probability of the conditional measurement
m → m′ and n → n′, which is determined by N−2

m,m′:n,n′ =∑
k=0 |Ck|2. For quantifying entanglement, we use the loga-

rithmic negativity EN as a measure of entanglement which is
given by [37]

EN (ρ) = log2 ||ρTA ||1, (9)

where ||R||1 denotes the trace norm Tr
√

R†R and ρTA is the
partial transpose of the state ρ. In Eq. (8), |out〉 is in a Schmidt
form, for which the logarithmic negativity is given by

EN = log2

[
N2

m,m′:n,n′

(∑
k=0

|Ck|
)2]

. (10)

This formulation clearly shows that the entanglement is deter-
mined by the coefficient norms |Ck|. Considering the explicit
form of the coefficients as Ck = sechr λk Bm,m′,k (θ ) Bn,n′,k (ϕ),
it is evident that the characteristics of the beam splitters and
also m, m′, n, and n′ determine the entanglement. In general,
the entanglement can be increased or decreased for some
specific parameters. However, the interesting scenario is to
find the parameter space where the entanglement increases.

The initial entanglement for TMSVS, whose Schmidt form
is shown by Eq. (7), can be calculated from Eq. (10), which re-
sults in EN (TMSVS) = 2r log2 e. Therefore the entanglement
change is determined by

�EN = log2

[
N2

m,m′:n,n′

(∑
k=0

|Ck|
)2]

− 2r log2 e. (11)

This relation is central to the investigation of the entangle-
ment improvement by the protocol. In fact, if EN is positive,
then we can conclude that the entanglement has increased.
To find the parameter space in which entanglement can be
enhanced, we consider various settings and identify the cases
in which entanglement can be enhanced more efficiently. To
be more specific, we compare the enhancement for photon
addition, subtraction, and catalysis and determine which op-
eration can increase the entanglement better.

In some of the recent studies, photon subtraction (addition)
is implemented by directly applying an annihilation (creation)
operator to the input state, and the theoretical analysis is
based on the normalized state â|ψ〉in, â†|ψ〉in and the coherent
superposition (t â + râ†)|ψ〉in [6,7,19,43,44]. Our scheme in
Fig. 1 adds or subtracts photons or operates photon catalysis
using a beam splitter and a conditional measurement. The
analysis and simulation are based on the output state |ψ〉out
given by Eq. (5).

We plot the outcome for the three operations for the case
with m = 1 in Fig. 3. In this figure, for convenience and
without loss of generality, no operations are applied to the
lower mode of the TMSVS. For photon addition [Figs. 3(a)
and 3(b)], m′ = 0, one photon is added to the TMSVS. As is
shown in Fig. 3(b), there is no entanglement enhancement in
the whole parameter space in this case. Therefore such a pho-
ton addition is not useful for entanglement improvements. For
photon subtraction [Figs. 3(e) and 3(f)], m′ = 2, one photon is
subtracted from the TMSVS. As we can see from Fig. 3(e),
this operation has a quite small success probability in the
regions where entanglement can be enhanced.

Photon catalysis with m′ = 1 is shown in Figs. 3(c) and
3(d). These plots show that the entanglement can be en-
hanced using a catalysis setting. However, the entanglement
enhancement regions in Fig. 3(d) correspond to the regions
with the low success probability in Fig. 3(c). Nevertheless,
the entanglement enhancement in this case is better than both
the photon addition and the photon subtraction settings [27].
It is worth mentioning that, even though we presented the
m = 1 scenario in Fig. 3, this finding is true beyond this
specific case, where one can consider larger m and various
numbers of photons detected in the output mode. Therefore
our study unifies the previous consideration in the literature
in a comparative setting and shows how various proposals
can be compared with each other. Even though we observe
that photon catalysis is a better route to quantum entangle-
ment enhancement compared with the two other cases, in the
Fig. 2 framework, the outcome still is not very compelling
due to the low success probabilities. To overcome this limita-
tion, we propose a different protocol enabling much higher
success probabilities and large entanglement enhancements
in Sec. III B.
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FIG. 3. The three operations for m = 1. (a) and (b) Photon addi-
tion. (c) and (d) Photon catalysis. (e) and (f) Photon subtraction. (a),
(c), and (e) present the success probability vs the squeezing factor
r and the transmittance T = cos2 θ , while (b), (d), and (f) show the
entanglement enhancement for different cases.

B. Second setup

Now, we introduce a method for increasing entanglement
that is different from the one depicted in Fig. 2. We already
considered the three non-Gaussian operations on the TMSVS
where each mode undergoes a separate operation, using the
product Fock states |m〉 ⊗ |n〉 as auxiliary states. Among these
schemes, we found that photon catalysis has the best success
probability as well as entanglement improvement compared
with photon addition and subtraction. However, according to
Figs. 3(c) and 3(d), for a suitable r and T , the region which
corresponds to a considerable entanglement enhancement has
a moderately low success probability that is approximately
less than 20%.

We show that a slight adjustment in the setup can
drastically enhance both the entanglement and the success
probability. This adjustment requires an extra BS (BSA), as
is shown in Fig. 4. In this setting, the auxiliary input states for
each mode first undergo BSA before the operation of Fig. 2 is
performed. This process can entangle the two auxiliary modes
and finally apply the non-Gaussian operations to the modes
of the TMSVS [22,45]. Since this extra step is unitary, no
photon is lost in this process. This extra step is not challenging
to implement in the experiment due to the simplicity of BS

FIG. 4. A similar setting to Fig. 2, but the auxiliary states are first
mixed via BSA before the operations are carried out on the TMSVS.

operations in general. Therefore any improvement attained in
the process can be useful in a practical setting.

In Fig. 4, we simplify the auxiliary input source to one
single-photon state (m = 1, n = 0). Once |ψ〉A is mixed with
the TMSVS via BS(θ ), the conditional detection of |00〉A
(m′ = 0, n′ = 0) adds one photon to the TMSVS.

For m = 1, n = 0, before BSA, the entire state is

|ψ〉i = sechr
∑
k=0

λk|k〉U |k〉L|1〉UA|0〉LA

= sechr
∑
k=0

λk a†
UA |kk〉|00〉A

= sechr
∑
k=0

λk

k!
(a†

U )k (a†
UA) (a†

L )k |00〉|00〉A, (12)

where the creation operator of the upper TMSVS mode is
denoted as a†

U while the lower one is denoted as a†
L. Moreover,

the creation operator for the upper path (shown in green) of
the ancillary state in Fig. 4 is denoted as a†

UA, while the lower
one (shown in red) is a†

LA. In the second step of the above
equations, |i j〉A stands for |i〉UA| j〉LA, and |i j〉 is simply the
basis for the two modes of the TMSVS, |i〉U | j〉L.

After passing through BSA, we attain |ψ〉1. This state, when
it passes through BSU and BSL, degenerates to |ψ〉2, where
|ψ〉1 and |ψ〉2 are given by

|ψ〉1 = 1√
2

sechr
∑
k=0

λk

k!
(a†

U )k (a†
UA + a†

LA) (a†
L )k |00〉|00〉A,

|ψ〉2 = 1√
2

sechr
∑
k=0

λk

k!
(b†

U )k (b†
UA + b†

LA) (b†
L )k |00〉|00〉A.

(13)

Here, b† = cos θ a† + sin θ a†
A and b†

A = − sin θ a† +
cos θ a†

A. Note that b† denotes b†
U or b†

L while b†
A denotes b†

UA

or b†
LA.

In principle, detecting m′ = 0, n′ = 0 leads to one photon
addition to the TMSVS. Substituting b†

L, b†
U and b†

UA, b†
LA into
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the expression of |ψ〉2, it follows that

|ψ〉 f = N A〈00|ψ〉2

= N
sechr√

2

∑
k=0

λk

k!
(cos θa†

U )k (cos θa†
L )k

× (− sin θa†
U − sin θa†

L )|00〉

= N
sechr√

2

∑
k=0

(λ cos2 θ )k (− sin θa†
U − sin θa†

L )|kk〉

= −N
sechr√

2

∑
k=0

(λ cos2 θ )k sin θ
√

k + 1 [|k + 1, k〉

+ |k, k + 1〉], (14)

where N is the normalized factor.
Up to an unimportant global phase, and for θ 	= 0, the state

at the output can be expressed as

|ψ〉 f = (1 − λ2 cos4 θ )
∑
k=0

[(λ cos2 θ )k
√

k + 1]|φ〉k, (15)

where |φ〉k = 1√
2
(|k + 1, k〉 + |k, k + 1〉). Alternatively, we

can write the state as |ψ〉 f = ∑
k=0

√
pk|φ〉k , in which pk

is the probability of having the state |φ〉k given by pk =
(1 − λ2 cos4 θ )2(λ cos2 θ )2k (k + 1). The state |φ〉k is a maxi-
mally entangled state with any k. Therefore the output state
|ψ〉 f reduces to superposition of different maximally en-
tangled states with the probability determined by pk . An
interesting observation is to find which entangled state (|φ〉k)
is most probable given the probability distribution pk . To this
end, one can easily find pk+1/pk = (λ2 cos4 θ )(k + 2)/(k +
1). When the squeezing factor r is small enough (λ = tanhr),
we have pk+1/pk < 1. Therefore the most probable state can
be attained for k = 0, i.e., |φ〉0 = (|1, 0〉 + |0, 1〉)/

√
2. How-

ever, for the case when 2λ2 cos4 θ > 1, one can determine the
peak in the probability distribution by setting pk+1 = pk . This
gives k = [1/(1 − λ2 cos4 θ )] − 2.

The output state for photon catalysis and photon subtrac-
tion can be obtained by applying A〈10| (or A〈01|) and A〈11| to
|ψ〉2, respectively.

The success probability as well as the entanglement en-
hancement can be calculated from Eq. (14). It is worth
mentioning that, for |ψ〉2 in the last step of Eq. (14), we apply
Schmidt decomposition to |ψ〉 f to get the singular eigenvalue
Ck and then use Eqs. (10) and (11) to obtain the entanglement
enhancement.

In Fig. 5 we present the photon addition operation for the
protocol presented Fig. 4. In Fig. 5 we have m = 1, n = 0, and
m′ = n′ = 0. Therefore the detectors do not click in this case,
i.e., the detected state is |00〉A. Figure 5(a) presents the success
probability varying with squeezing factor r and T = cos2 θ ,
while Fig. 5(b) shows the enhancement entanglement.

Compared with Fig. 3, there is a considerable improvement
in both success probability and entanglement with the same
resources (m = 1, n = 0, and m′ = n′ = 0). An interesting
observation is that in the configuration of Fig. 4, photon catal-
ysis does not provide a better result compared with photon

FIG. 5. Photon addition operation for detecting |00〉A in the pro-
tocol presented in Fig. 4. In other words, m = 1, n = 0, and m′ =
n′ = 0. (a) is the success probability varying with squeezing factor r
and T = cos2 θ , while (b) is the entanglement enhancement.

addition. Instead, the single-photon addition with this pro-
cess shows a much better outcome when compared with the
settings from the previous setup. Therefore the protocol in
Fig. 4 provides a better route for entanglement enhancing
using beam splitters and photon detection operations. This
observation improves the previous efforts for enhancing the
entanglement of the TMSVS in Refs. [27,41,42].

Considering the setup in Fig. 2, the entanglement en-
hancement of the state by photon catalysis, obtained from
the TMSVS, is shown to be higher than that of the photon-
subtracted and photon-added state [27], which is in agreement
with the observations of this paper. In multimode squeezing
state, the superiority of photon subtraction to photon addition
has been reported [46]. However, our investigations for the
TMSVS show that photon addition performs better than either
photon subtraction or photon catalysis.

We also note that one might assume that the existence of
the entanglement in the auxiliary modes, after BSA, is the
reason for the better performance in this setting. However, this
might not necessarily be the case. To illustrate this, we con-
sider the setting m = 1, n = 1, for which the entangled state
after passing though BSA is |ψ〉A = 1√

2
(−|20〉A + |02〉A),

which is a maximally entangled state [47]. However, the result
of such a process is not as good as what we can get in Fig. 4.
Specific settings are presented in Fig. 6 by way of illustration.
As is shown in Figs. 6(a) and 6(c), the success probabilities
are much lower than the result in Fig. 5(a). Therefore it is
not proper to assume that the entanglement from the auxiliary
modes is “transmitted” to the TMSVS. As a result, single-
photon addition through the setup given in Fig. 4 provides an
optimal enhancement in the entanglement of a TMSVS. We
in fact analyzed several different settings beyond the scope of
Fig. 6; however, none of the scenarios provides a better result
than what we presented in Fig. 5. Therefore the desirable
method for enhancing entanglement seems to be the setting
used in Fig. 5.

An appealing feature of our optimal quantum entan-
glement in the second setup is that it does not require
high-number Fock states. Basically, we only need a single-
photon input state and dark detection in the detectors, as is
analyzed in Fig. 5. Even the scenario described in Fig. 6
does not rely on high-number Fock states. In Figs. 6(a) and
6(b), for photon catalysis with the |10〉 auxiliary state, the
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FIG. 6. (a) Success probability and (b) entanglement enhance-
ment for photon catalysis for a single-photon auxiliary source (m =
1, n = 0) and conditionally detecting m′ = 1, n′ = 0. (c) Success
probability and (d) entanglement enhancement for photon catalysis
for an ancillary source m = 1, n = 1 and conditionally detecting
m′ = 1, n′ = 1.

detected state is |10〉. Similarly, in Figs. 6(c) and 6(d), for
photon catalysis with the |11〉 auxiliary state, the detected
state is |11〉.

The optimal situation, which requires a single-photon
source as auxiliary input and detecting zero photons, pro-
vides another advantage from the photon detection point of
view. Considering the fact that the dark counts of a single-
photon avalanche detector (SPAD) can be as low as 50
per second while the weak photon signal reads as high as
104 per second [48–50], ensuring that a no-photon event
can conveniently be distinguished from single-photon Fock
states. Also, the detection of high-number Fock states is
more challenging in general, while our proposed scenario
does not rely on that. The conditional measurements can be
done just with a single-photon detector, which simplifies the
detection processing as well as improves the detection accu-
racy.

Besides the photon detection error, the other imperfection
may be accumulated from the BSs. Since the existing BSs
are highly efficient in realistic experiments, the error in BSs
can usually be neglected. In fact, systems containing even
a network of many BSs have intensively been considered
in the literature. In this paper, there is no need for a high
number of BSs, and thus the imperfections cannot impair the
performance of the protocols.

IV. SUMMARY AND CONCLUSION

In this paper, we considered a protocol for entanglement
enhancing in a TMSVS based on photon subtraction, photon
catalysis, and photon addition. Central to such an operation

is the task of mixing and detecting number states with each
mode of the TMSVS and nondeterministic detection. We
analyzed various settings for the improvement of quantum
entanglement and found an optimal setup for enhancing the
entanglement of the state. To be more specific, we consid-
ered two different schemes for enhancing entanglement. In
the first scheme each mode interacts with a Fock state in
a beam splitter. In the second scheme, Fock states undergo
a beam splitter before interacting with the modes of the
TMSVS.

In the first scheme, photon catalysis outperforms both
photon addition and subtraction operations. Nonetheless, the
improvement and the success probability remain rather low
even for photon catalysis. Of course, entanglement, in this
case, can be improved more by using higher-number Fock
states for resources. However, generating as well as detecting
a high-number Fock state |m〉 is quite challenging.

In contrast to the first scheme, it turns out that the opti-
mal performance of the second setup can be achieved simply
using single-photon sources. This, in fact, simplifies both
photon generation and detection processes from a practi-
cal point of view. The optimal scenario presented in this
paper can drastically outperform all the settings of the first
scheme, with a more than threefold improvement of the en-
tanglement.

Quantum entanglement improvement based on non-
Gaussian operations has been investigated from various
perspectives in recent years [8,19–22,34]. Such operations
are shown to be useful for entanglement distillation [6,23],
quantum commutation [24,25], and quantum teleportation
[8,22,26,27]. Therefore the optimal entanglement enhance-
ment proposed here can provide an important tool for such
applications.
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APPENDIX: DERIVATION OF B̂m,m′

The BS operator B̂(θ ) performs a transformation to the
input modes by

bA
† = B̂(θ ) a†

A B̂(θ )† = cos θ a†
A + sin θ a†,

b† = B̂(θ ) a† B̂(θ )† = − sin θ a†
A + cos θ a†. (A1)

From Eq. (2), in order to determine the output state, we
need to compute B̂m,m′ .

B̂m,m′ =A 〈m′|B̂(θ )|m〉A =A 〈m′|B̂(θ )
∑
k=0

|m〉A|k〉〈k|

=A 〈m′|
∑
k=0

B̂(θ )(a†
A)m(a†)k 1√

m!

1√
k!

|0〉A|0〉〈k|

=A 〈m′|
∑
k=0

(b†
A)m(b†)k 1√

m!

1√
k!

|0〉A|0〉〈k|

=
∑
k=0

Bm,m′,k|k + m − m′〉〈k|. (A2)
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Considering A〈m′|, which is inserted from the measurement, the nonzero term must contain (a†
A)m′ |0〉. Substituting the expres-

sions for b†
A and b† from Eq. (A1) into Eq. (A2), we have

B̂m,m′ =A 〈m′|
∑
k=0

(cos θ a†
A + sin θ a†)m(− sin θ a†

A + cos θ a†)k 1√
m!

1√
k!

|0〉A|0〉〈k|

=A 〈m′|
∑
k=0

m′∑
i=0

(
m

i

)
(cos θ )i(sin θ )m−i

(
k

m′ − i

)
(− sin θ )m′−i(cos θ )k+i−m′

(a†
A)m′

(a†)m+k−m′ 1√
m!

1√
k!

|0〉A|0〉〈k|

=
∑
k=0

m′∑
i=0

(−1)m′−i

(
m

i

)(
k

m′ − i

)
(cos θ )k+2i−m′

(sin θ )m+m′−2i

√
m′!√
m!

√
(k + m − m′)!√

k!
|k + m − m′〉〈k|

=
∑
k=0

Bm,m′,k|k + m − m′〉〈k|,

with Bm,m′,k =
m′∑

i=0

(−1)m′−i

(
m

i

)(
k

m′ − i

)
(cos θ )k+2i−m′

(sin θ )m+m′−2i

√
m′!√
m!

√
(k + m − m′)!√

k!
. (A3)

Note that
(a

b

) = 0 if a < b, thus, the situation when m′ > m or m′ < m, m′ > k is included in Eq. (A3).
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