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High-dimensional entangled states are of crucial importance, as they provide higher channels for quantum
information. Angular position, as a continuous variable, provides an infinite Hilbert space theoretically. It is
usually represented in discrete bases experimentally because of the convenient modulation of the width of
the angular aperture. Thus the combination of the angular apertures will conveniently shape the two photon
states. And the entanglement of the two photon states can be naturally demonstrated by Hardy’s paradox.
Here, by testing Hardy’s paradox for two-setting high-dimensional angular subspaces with dimension ranging
from 2 to 7 and for multisetting three-dimensional subspaces with setting ranging from 3 to 5, we reveal the
high-dimensional entanglement in the angular-position degree of freedom. We show that the high-dimensional
angular-position entanglement can yield a much sharper contradiction between the quantum mechanics and
classical theories. Our work shows that the angular variable can be considered as an alternative discrete base to
provide the high-dimensional entangled states. Thus it may be used as a new platform for quantum information.

DOI: 10.1103/PhysRevA.105.062401

I. INTRODUCTION

Two photons, namely signal photon and idler photon pro-
duced by spontaneous parametric down conversion (SPDC),
can be entangled in various degrees of freedom, such as time
and energy [1,2], position and momentum [3–5], radial po-
sition and radial momentum [6], and angular position and
orbital angular momentum (OAM) [7–11]. Hitherto, much
attention has been paid to the two conjugate variables, i.e.,
the angular position and OAM, whose correlation is funda-
mentally different with the other degrees of freedom, since
the OAM is a discrete quantum observable of infinite dimen-
sion and the angular position is continuous but periodic, and
therefore bounded [12–14]. The angular position and OAM
are connected by the Fourier transformation [15]. As a result,
the optical interference and diffraction effects can be natu-
rally transformed into the angular version, i.e., measurement
of the OAM spectrum when a photon field passes through
the various angular apertures [16–19]. On the other hand,
the demonstration of EPR-Reid criterion sheds new light on
exploiting the two special conjugate variables for quantum
information, such as the efficient method for sorting both of
the OAM and angular modes for quantum information [20],
the high-dimensional quantum key distribution scheme [21],
and the new way to directly measure the 27-dimensional OAM
state vector [22].
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Apart from focusing on the exploration of both of these two
conjugate variables, photon’s OAM, as an independent degree
of freedom [23,24], has been paid considerable attention in
quantum information science and applications, such as super-
dense coding [25], quantum teleportation [26], entanglement
swapping [27], quantum cryptography [21,28,29], and quan-
tum key distribution [30,31].

In contrast with OAM, the angular-position entanglement
has not yet been considered separately. Recent schemes
have demonstrated angular two-photon interference in two-
dimensional angular two-qubit states [18] and even in
high-dimensional angular qudit states [19]. The two-qudit
quantum state could be actually represented in the discrete
angular-position bases, which suggested that such angular
qudit states could possibly be suitable for quantifying the
nonlocal feature of entanglement via applicable logical para-
dox. Here, we exploit the discrete angular-position bases to
formulate the general multisetting high-dimensional version
of Hardy’s paradox to verify its nonlocal feature. In com-
parison with the Bell-type inequalities [32], Hardy’s [33,34]
theory was an attempt to demonstrate the nonlocality without
inequalities, which gave a more intuitive way to show if the
system has quantum entanglement. In the two-dimensional
state spaces, Hardy’s paradox has been employed to show
the entanglement in photon’s polarization [35–37], energy
time [38], and OAM [39,40]. For high-dimensional sys-
tems, a general scenario with multisetting high-dimensional
systems was theoretically proposed [41,42] and experimen-
tally demonstrated in OAM subspaces [43] to showcase the
high-dimensional quantum correlation. However, the multi-
setting high-dimensional systems with OAM need complex
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entanglement concentration [44] to get the optimal Hardy
states. In contrast, the optimal angular-position states are more
convenient to produce just by varying the width of the angu-
lar aperture. Moreover, the angular-position bases may also
provide a high-dimensional Hilbert space by using the small
enough angular apertures. Therefore, the above points form
the major incentive of our present work to look at how to
formulate Hardy’s proof with the angular-position states and
thus demonstrate the high-dimensional entanglement in the
angular-position degree of freedom. Within these advantages,
the angular-position states are also more convenient to gener-
ate the maximal entangled states [19], which are the crucial
quantum resources in some quantum tasks such as the quan-
tum cryptography [21]. In addition, since the sensitivity of the
angle sensing can be increased by using multisector entangled
states [45], our proposed angular position entangled states
just correspond to the special states which may have potential
advantages in the quantum remote sensing applications.

II. EXPERIMENTAL SETUP AND RESULTS

Our experimental sketch is shown in Fig. 1(a). In the sim-
plest scenario, a Gaussian pump beam creates photon pairs,
namely the signal and idler photons, via the nonlinear process
of SPDC. On each hand, Alice (or Bob) takes signal pho-
ton (or idler photon) transmitting through d angular slits, as
shown in Fig. 1(a). The amplitude transmission function of
each of the individual angular slits in the angular aperture is
given by [18]

Aα (ϕ) =
{

1, pα − φα/2 < ϕ < pα + φα/2,

0, others,
(1)

where α = 1, 2, . . . , d labels the αth angular slit with its
angular aperture width φα and orientation pα , as illustrated
in Fig. 1(b). By adding a linear phase grating with the angular
aperture, we get the desired hologram which can be displayed
on a spatial light modulater (SLM) to shape the signal or idler
photon. The followed single mode fiber (SMF) and the single
photon detectors (Ds, Di) as well as the coincidence circuits
are used to ensure the correlation detection of the two photons.
It is noted that for signal photon and idler photon passing
through the d angular slits, there are in principle d2 alternative
pathways. So it can be denoted by the tensorial product of the
angular-position bases that

∣∣θ pα

φα

〉
s
⊗ ∣∣θ pβ

φβ

〉
i

for α, β = 1, 2, . . . , d, (2)

where |θ pα

φα
〉, |θ pβ

φβ
〉 denote the states of signal and idler photon

after they are passing by the φα, φβ slit with the direction
angle of pα, pβ . Based on the strong position correlations of
the two photons from SPDC, we suppose that only the case
of α = β, i.e., |θ pα

φα
〉s ⊗ |θ pα

φα
〉i, has the appreciable probabil-

ities. In other words, the signal photon and idler photon are
generated at the same angle position in the image plane of
the crystal, resulting in the positive correlation of the angular
position between the two photons. Therefore, we are al-
lowed to rewrite the d-dimensional angular-position quantum

FIG. 1. (a) Schematic of the proposed experimental setup.
(b) Angular apertures used to measure the angular-position super-
position states. The desired hologram is an example phase pattern
programed in SLM.

state as

|�〉d =
d∑

α=1

cα

∣∣θ pα

φα

〉
s

∣∣θ pα

φα

〉
i
, (3)

where cα indicates the amplitude probability of finding the
photon s and the photon i both in the angular slit α. It is
noted that the angular-position correlation states from the
SPDC are similar with the OAM entangled states, |ψ〉SPDC =∑

	 C	|	〉s|−	〉i [23]. We suppose that Eq. (3) can denote
the angular-position entangled states. However, as far as we
know, little research has directly demonstrated the entan-
glement property based on the angular position correlation.
We have recently realized Hardy’s paradox in a multisetting
high-dimensional scheme with OAM [43] and found that the
multisetting high dimensional of the Hardy paradox was a
good and useful way to demonstrate the high-dimensional
entanglement. Compared with the OAM that needs complex
entanglement concentration to get the optimal Hardy states,
the angular-position states are more convenient to product just
by varying the width of the angular aperture based on Eq. (1).
For the purpose of testing Hardy’s paradox in multisetting
high-dimensional angular-position systems, we define k sets
of the desired measurements by imparting the different ampli-
tudes to the angular-position eigenmodes as

∣∣Ai
s

〉 =
d∑

α=1

ai
s,α

∣∣θ pα

φα

〉
,

∣∣B j
t

〉 =
d∑

β=1

a j
t,β

∣∣θ pβ

φβ

〉
, (4)

where i, j ∈ {1, 2, . . . , k} denotes the ith and jth set of mea-
surements; s, t ∈ {1, 2, . . . , d} labels d possible outcomes for
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FIG. 2. Venn diagrams for the events of Ai = 1, 2 and B j = 1, 2
with i, j = 1, 2, 3, satisfy the conditions of (I), (II), and (III). In clas-
sical logical, the sets A3 = 1 and B3 = 2, being internal to disjoint
sets, cannot intersect, so that (IV) follows immediately.

each set of all of the observable measurements. Within the ith
and jth set of measurements, the results satisfy 〈Ai

s | Ai
s′ 〉 =

δss′ and 〈B j
t | B j

t ′ 〉 = δtt ′ . We first take the two-dimensional an-
gular subspace as an example to demonstrate Hardy’s logical
structure. For the two-dimensional systems, the observable
measurements have only two possible outcomes, i.e., s, t =
1, 2. The paradox clarifies that, if observing the following
properties in their results, (I) the outcome A1 = 1 and Bk = 2
never occurs, i.e., P(A1

1, Bk
2) = 0, (II) the outcome Bi−1 =

1 and Ai−1 = 2 never occurs for all i = 2, 3, . . . , k, i.e.,
P(Bi−1

1 , Ai−1
2 ) = 0 for i = 2, 3, . . . , k, and (III) the outcome

Ai = 1 and Bi−1 = 2 never occurs for all i = 2, 3, . . . , k,

i.e., P(Ai
1, Bi−1

2 ) = 0 for i = 2, 3, . . . , k, then in the classi-
cal framework of local hidden-variable theory, if these three
properties hold true, they will force the following fourth prop-
erty: (IV) the outcome Ak = 1 and Bk = 2 never occurs, i.e.,
P(Ak

1, Bk
2) = 0.

However, quantum mechanics allows the suitable choice of
measurements to satisfy (I), (II), and (III), but P(Ak

1, Bk
2) > 0.

To graphically illustrate the logical structure of Hardy’s
paradox in a multisetting high-dimensional system, we
consider the case k = 3 for instance by using the Venn
diagrams [40]. The Venn sets associated with the outcomes
Ai = 1, 2 and B j = 1, 2 for i, j = 1, 2, 3 are shown in Fig. 2.
We first consider the Venn sets of events A2 = 1. From the
property of (II), with i = 3, we infer that each time Bob
measures B2, and find B2 = 1. Then if Alice measures A2,

she would certainly find A2 = 1. In other words, the event
B2 = 1 implies the event A2 = 1, which is represented by the
fact that the Venn set for the event B2 = 1 is internal to the
event A2 = 1. Similarly, from the property of (III), with i = 3,
we infer that the event A3 = 1 implies the event B2 = 1; that
is, the Venn set of the event A3 = 1 is internal to the event
B2 = 1. Another consideration is the Venn sets of events
B1 = 2. From the property of (II), with i = 2, we infer that
the event A1 = 2 implies the event B1 = 2; that is, the Venn
set of the event A1 = 2 is internal to the event B1 = 2. From
the property of (I), we infer that the event B3 = 2 implies
the event A1 = 2; that is, the Venn set of the event B3 = 2
is internal to the event A1 = 2. Now the property of (III) for
i = 2 ensures that the events of A2 = 1 and B1 = 2 have no
intersection. Therefore, the sets of events A3 = 1 and B3 = 2
cannot intersect either, in which the property of (IV) can
be obviously shown as the two discrete Venn sets in Fig. 2.
This paradox has been generalized to the high-dimensional
situation, where Alice and Bob can obtain k measurements
outcome, and the following chain of the probabilities
hold [41,42]: P(A1 < Bk ) = 0, P(Bi−1 < Ai−1) =
0, for i = 2, 3, . . . , k, P(Ai < Bi−1) = 0, for i =
2, 3, . . . , k, P(Ak < Bk ) > 0, where P(Ai < B j ) =∑

s<t P(Ai
s, B j

t ) denotes the total joint probability in the
case that the measurement outcome of Ai is strictly smaller
than B j .

Then based on Eqs. (3) and (4), the joint probability can be
measured as

P(Ai < B j ) =
d−1∑
s=1

d∑
t=s+1

∣∣〈Ai
s

∣∣〈B j
t

∣∣�〉
d

∣∣2
. (5)

As a result, the maximum Hardy fraction, i.e., the max-
imum value of the nonlocal probability P(Ak < Bk ), can be
increased significantly with the increase of the number of
the dimension and setting. In order to obtain the maximum
value of Hardy’s fraction, we use a similar approach as we
did in Ref. [43], which is based on the Schmidt decomposi-
tion and numerical calculation, to obtain the optimal Hardy
states and the desired measurement bases in angular-position
subspaces. The obtained optimal Hardy states in two-setting
d-dimensional system, i.e., (2, d) scenario, can be denoted as

|ψ〉opt
(2,2) = 0.9070

∣∣θ0◦
100◦

〉
A

∣∣θ0◦
100◦

〉
B + 0.4211

∣∣θ180◦
60◦

〉
A

∣∣θ180◦
60◦

〉
B, (6a)

|ψ〉opt
(2,3) = 0.8585

∣∣θ0◦
158◦

〉
A

∣∣θ0◦
158◦

〉
B

+ 0.4040
∣∣θ120◦

78◦
〉
A

∣∣θ120◦
78◦

〉
B

+ 0.3159
∣∣θ240◦

58◦
〉
A

∣∣θ240◦
58◦

〉
B
, (6b)

|ψ〉opt
(2,4) = 0.8263

∣∣θ0◦
150◦

〉
A

∣∣θ0◦
150◦

〉
B + 0.3947

∣∣θ115◦
69◦

〉
A

∣∣θ115◦
69◦

〉
B + 0.3013

∣∣θ195◦
48◦

〉
A

∣∣θ195◦
48◦

〉
B + 0.2657

∣∣θ250◦
45◦

〉
A

∣∣θ250◦
45◦

〉
B, (6c)

|ψ〉opt
(2,5) = 0.8024

∣∣θ0◦
120◦

〉
A

∣∣θ0◦
120◦

〉
B + 0.3882

∣∣θ90◦
51◦

〉
A

∣∣θ90◦
51◦

〉
B + 0.2938

∣∣θ150◦
44◦

〉
A

∣∣θ150◦
44◦

〉
B

+ 0.2532
∣∣θ210◦

43.5◦
〉
A

∣∣θ210◦
43.5◦

〉
B + 0.2344

∣∣θ270◦
45◦

〉
A

∣∣θ270◦
45◦

〉
B, (6d)

|ψ〉opt
(2,6) = 0.7837

∣∣θ0◦
110◦

〉
A

∣∣θ0◦
110◦

〉
B + 0.3830

∣∣θ88◦
52.5◦

〉
A

∣∣θ88◦
52.5◦

〉
B + 0.2889

∣∣θ143◦
37.5◦

〉
A

∣∣θ143◦
37.5◦

〉
B

+ 0.2462
∣∣θ190◦

34◦
〉
A

∣∣θ190◦
34◦

〉
B + 0.2237

∣∣θ234◦
32.5◦

〉
A

∣∣θ234◦
32.5◦

〉
B + 0.2123

∣∣θ278◦
34.5◦

〉
A

∣∣θ278◦
34.5◦

〉
B, (6e)

|ψ〉opt
(2,7) = 0.7683

∣∣θ0◦
120◦

〉
A

∣∣θ0◦
120◦

〉
B + 0.3787

∣∣θ90◦
48◦

〉
A

∣∣θ90◦
48◦

〉
B + 0.2852

∣∣θ138◦
31◦

〉
A

∣∣θ138◦
31◦

〉
B

+ 0.2417
∣∣θ170◦

25◦
〉
A

∣∣θ170◦
25◦

〉
B + 0.2173

∣∣θ198◦
24◦

〉
A

∣∣θ198◦
24◦

〉
B + 0.2030

∣∣θ226◦
23◦

〉
A

∣∣θ226◦
23◦

〉
B + 0.1955

∣∣θ262◦
26◦

〉
A

∣∣θ262◦
26◦

〉
B. (6f)
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FIG. 3. Experimental results of the two-setting higher-dimensional angular-position subspaces with dimension (a) d = 2, (b) d = 3,
(c) d = 4, (d) d = 5, (e) d = 6, and (f) d = 7. The empty bars (purple edges) are the theoretical predictions, while the solid bars (light
yellow) are the experimental results. The insets in each graph are the experimental angular apertures used in the (2, d) scenario. (g) The
inequality parameter S of the (2, d) scenario.

And the obtained optimal Hardy states in the k-setting three-dimensional system, i.e., (k, 3) scenario, can be written as

|ψ〉opt
(3,3) = 0.8006

∣∣θ0◦
130◦

〉
A

∣∣θ0◦
130◦

〉
B + 0.4578

∣∣θ120◦
70◦

〉
A

∣∣θ120◦
70◦

〉
B + 0.3865

∣∣θ240◦
60◦

〉
A

∣∣θ240◦
60◦

〉
B, (7a)

|ψ〉opt
(4,3) = 0.7630

∣∣θ0◦
120◦

〉
A

∣∣θ0◦
120◦

〉
B + 0.4856

∣∣θ120◦
72◦

〉
A

∣∣θ120◦
72◦

〉
B + 0.4267

∣∣θ240◦
60◦

〉
A

∣∣θ240◦
60◦

〉
B, (7b)

|ψ〉opt
(5,3) = 0.7366

∣∣θ0◦
118◦

〉
A

∣∣θ0◦
118◦

〉
B

+ 0.5025
∣∣θ120◦

75◦
〉
A

∣∣θ120◦
75◦

〉
B

+ 0.4526
∣∣θ240◦

60◦
〉
A

∣∣θ240◦
60◦

〉
B
. (7c)

Standing on the point of the experimental realization, unlike
the other degrees of freedom, such as the OAM that needs
mode concentration [43], the optimal Hardy states in the
angular-position subspaces are more convenient to produce
just by varying the width of the angular slit. Besides, the
angular-position bases can also provide a high-dimensional
Hilbert space by use of the small enough angular apertures.
In our experimental implementation, we first concentrate on
the high-dimensional situation. We consider the two-setting
Hardy proof for the high-dimensional angular-position sub-
spaces with the dimension d ranging from d = 2 to 7. The
measurement bases can be obtained based on the given opti-
mal angular-position Hardy states by ranging over all unitary
matrices. Interestingly enough, we find the measurement
bases are exactly the same as our previous measurement bases
in OAM with (2, d) and (k, 3) [43]. This can be explained by
the same form of Eq. (3) with the OAM entanglement states.

In an effort to experimentally achieve the maximal proba-
bility of the nonlocal events, we vary the width of the angular
slits to product the optimal angular-position states. Specially,
we preset each of the angular-position bases |θ pα

φα
〉, α =

1, 2, . . . d , at the width φα (φα ∝ C2
α ) and the orientation pα =

2πα/d to measure the weight amplitudes. For each of the
weight amplitudes of the angular states, if it is larger (or
lower) than the optimal Hardy state, we decrease (or increase)
the width φα and adjust the orientation pα to ensure that any
of them are no overlap. Therefore, the weight amplitudes of
each of the angular states in experiment can be equalized with
the optimal Hardy states. Then, we load the angular-position
superposition states in the SLMs and record the coincidence
counts. Our results are shown in Figs. 3(a)–3(f), where the
empty bars (purple edges) are the theoretical predictions,
while the solid bars (light yellow) are the experimental re-
sults. The insets of each graph are the experimental angular
apertures used in the (2, d ) scenario. It can be seen that
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FIG. 4. Experimental results of the multisetting three-dimensional angular-position subspaces with setting (a) k = 3, (b) k = 4, and (c) k =
5. The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j and B jAi stand
for P(Ai < B j ) and P(B j < Ai ), respectively. The insets in each graph are the experimental angular apertures used in the (k, 3) scenario. (g)
The inequality parameter S of the (k, 3) scenario.

the optimal probability in two-setting d-dimensional systems,
i.e., the (2, d ) scenario, can reach Popt

(2,2) = 8.84% ± 0.61%,

Popt
(2,3) = 16.97% ± 0.69%, Popt

(2,4) = 18.91% ± 0.72%, Popt
(2,5) =

20.53% ± 0.88%, Popt
(2,6) = 25.44% ± 1.70%, and Popt

(2,7) =
24.33% ± 1.75%. The measurement results are in reason-
able agreement with the quantum-mechanical predictions.
so it clearly demonstrates our assumptions in Eq. (3). The
angular-position entanglement has been verified up to seven
dimensions. To take into account the imperfect states, mea-
surements, and detectors, we adopt a statistical measurement
procedure to characterize the degree of violation of the
localism as

S(k,d ) = P(Ak < Bk ) −
k∑

i=2
P(Ai < Bi−1)

−
k∑

i=2
P(Bi−1 < Ai−1) − P(A1 < Bk ). (8)

Following Mermin’s theory [46], Sk,d > 0 can be seen as the
entanglement signature of the system, while Sk,d � 0 holds
true in any local realistic theories. Quantum predictions al-
low all of the other probabilities to be zero except for the
first term of Eq. (8). We can calculate all of the S(2,d ) value
based on Eq. (8), as illustrated in Fig. 4(g). It can be seen
that in two-setting d-dimensional systems, i.e., the (2, d )
scenario, the inequality can reach Sopt

(2,2) = 3.72% ± 0.93%,

Sopt
(2,3) = 12.51% ± 1.00%, Sopt

(2,4) = 11.63% ± 1.02%, Sopt
(2,5) =

13.00% ± 1.27%, Sopt
(2,6) = 15.49% ± 2.19%, and Sopt

(2,7) =
12.01% ± 2.56%, all of which clearly show the contradiction
with the local realism. And thus again our results verify the
entanglement in the angular-position degree of freedom.

Our second parts of the experiment further consider
the multisetting situation in the angular-position bases.
Without loss of generality, we choose the multisetting three-
dimensional systems with the setting ranging from k = 3

to 5. Following a similar line of the measurement scheme,
our results are shown in Figs. 4(a)–4(c). We experimentally
obtain the successful probabilities, Popt

(3,3) = 25.84% ± 0.50%,

Popt
(4,3) = 35.86% ± 0.68%, and Popt

(5,3) = 41.91% ± 0.73%, re-
spectively. It can be seen that the probabilities of the nonlocal
events can be greatly increased with the increase of the num-
ber of the setting k, which is consistent with our prediction
in Eq. (5). Thus we demonstrate that the angular-position
entanglement can be worked even in three dimensions with
up to five settings. Again, we show the parameter of S
in the (k, 3) scenario in Fig. 4(d), in which the value
of S can reach Sopt

(3,3) = 18.98% ± 0.62%, Sopt
(3,4) = 25.18% ±

1.07%, and Sopt
(3,4) = 25.06% ± 0.98%. All of them clearly

satisfy the entanglement signature of Sk,d > 0 and violate the
inequality of S(k,d ) � 0 by 31, 24, and 26 standard deviations,
respectively, and thus confirm the well behavior of the high-
dimensional entangled states in the angular-position bases.

III. CONCLUSIONS

In summary, we have shown the experimental tests of the
multisetting and high-dimensional Hardy’s proof in a two-
photon angular-position degree of freedom. Our experimental
results demonstrate evidently that the angular variable can
be considered as a discrete variable to construct a larger but
finite Hilbert space. Thus it is expected to be exploited for
further quantum information science and technology. At the
same time, our demonstrations of the (2, d ) scenario with d
ranging from 2 to 7 and the (k, 3) scenario with k ranging
from 3 to 5 clearly show the nonlocal quantum effect. In this
regard, the multisetting and high-dimensional Hardy proof
can be an alternative tool which is used to verify the existence
of high-dimensional quantum entanglement. Thus the angular
position degree of freedom may inspire a new platform for
high-dimensional quantum information technology.
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