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The general form of the coincidence Bell inequalities for an arbitrary (n, 2, 3) scenario [i.e., an n-party,
two-setting, and three-dimensional system (qutrit) scenario] is presented. To detect the nonlocal properties of the
noisy n-qutrit Greenberger-Horne-Zeilinger states, in this work we investigate the most robust (4,2,3)-scenario
and (5,2,3)-scenario coincidence Bell inequalities. By deriving the most robust (n − 1)-party coincidence in-
equalities, we have established two tight and inequivalent (n, 2, 3) coincidence Bell inequalities with a visibility
of 0.5 for n = 4 and, similarly, two tight and inequivalent (n, 2, 3) coincidence Bell inequalities with a visibility
of 0.488785 for n = 5. These inequalities are all tight. To our knowledge, up to now these inequalities have been
the most robust Bell inequalities for the corresponding scenarios. Our results are useful for building the iteration
formula of (n, 2, 3)-scenario coincidence Bell inequalities with the lowest critical visibility.
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I. INTRODUCTION

Bell nonlocality describes the fact that not all quantum-
mechanical correlations can be predicted by local-hidden-
variable (LHV) models [1,2]. The Bell inequality is at the
heart of the study of nonlocality and is the most famous
legacy of the late physicist John S. Bell [3,4]. For the sim-
plest composite quantum system, namely, a system of two
two-dimensional particles (or two qubits), the Clauser-Horne-
Shimony-Holt (CHSH) inequality [5] has a more amenable
form for experimental verification. Since then, Bell’s argu-
ments have been generalized to more complicated situations,
either for a larger number of particles [6–8] or more measure-
ment settings [9] or for two particles of dimension higher than
2 [10–13]. Bell inequalities have led to surprising insights into
quantum information processing. Examples are the connec-
tion between Bell inequalities and communication complexity
[14,15] and Bell inequalities that are useful for multiparty
conference key agreement [16].

For the bipartite d-dimensional systems (two-qudit),
Collins et al. presented a family of tight Bell inequalities,
which is called the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality [11] and belongs to the (2, 2, d )-
scenario Bell inequality. Independently, in [17], Kaszlikowski
et al. also introduced a tight coincidence Bell inequality for
two qutrits which is equivalent to the CGLMP inequality
for d = 3. However, when one moves to the multibody and
high-dimensional cases, it is difficult to identify all tight
Bell inequalities, i.e., facets of the convex polytope of local-
realistic models, due to the computational complexity of
characterizing the set of local correlations [18]. Interested
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in the robustness of the Greenberger-Horne-Zeilinger (GHZ)
state |�〉 to the mixture of white noise, the researchers in
Ref. [12] presented a coincidence Bell inequality for three
qutrits with the lowest critical visibility vc = 0.6. When v >

vc, the noisy GHZ state ρ = v|�〉〈�| + (1 − v) I/27 violates
the three-qutrit Bell inequality. Here I denotes the unit matrix
for the corresponding quantum system, and I/27 represents
the white noise for the three-qutrit system. To the best of our
knowledge, it is the most robust Bell inequality for the (3,2,3)-
scenario at present. Moreover, the three-qutrit inequality is
tight, and from the insight of iteration, it can reduce to the
CGLMP inequality for two qutrits.

All Bell inequalities can be grouped in equivalent families
by composing symmetry transformations [18], namely, rela-
beling the party index, the observable index, or the outcome
index. For the noisy n-qutrit GHZ state ρ = v|�〉〈�| + (1 −
v) I/3n, the most robust Bell inequalities are parameterized
by the lowest critical visibility vc satisfying the condition
that if v > vc, then the state ρ violates the n-qutrit Bell in-
equality. Apparently, two equivalent Bell inequalities have the
same visibility. In this paper, we focus on the coincidence
Bell inequalities for an arbitrary (n, 2, 3) scenario. For each
observer, the two von Neumann measuring apparatuses are
confined to the class of tritter measurements (or an unbiased
six-port beam splitter), which can be used to maximally vio-
late the coincidence Bell inequalities for the quantum systems
of qutrits and are experimentally realizable [19,20]. First,
we present the general form of coincidence Bell inequalities
for the (n, 2, 3) scenario. Then, with the constraint of being
reduced to the most robust coincidence Bell inequality for
three qutrits presented in [12], we construct two tight and
inequivalent coincidence Bell inequalities for four qutrits with
vc = 0.5. Increasing the number of particles, we also propose
two tight and inequivalent coincidence Bell inequalities for
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five qutrits with vc = 0.488785, where the former one can
degenerate into the first Bell inequality for four qutrits and the
latter one can degenerate into the second Bell inequality for
four qutrits. Moreover, we find that the two (4,2,3)-scenario
inequalities cannot detect more resistance to noise for the gen-
eralized GHZ states than the resistance to noise for the GHZ
state, while the two (5,2,3)-scenario inequalities can detect
more. These results are useful for building the iteration for-
mula of (n, 2, 3)-scenario coincidence Bell inequalities with
the lowest critical visibility.

II. GENERAL FORM OF (n, 2, 3)-SCENARIO
CONINCIDENCE BELL INEQUALITIES

Let us consider the (n, 2, 3) scenario: There are n space-
separated observers labeled by X (0), X (1), . . . , X (n−1); the ith
observer X (i) carries out two settings referred to as X (i)

0 and
X (i)

1 , and the results of measurement X (i)
j are denoted by x(i)

j

labeled by 0,1,2. Then (2 × 3)n probability terms P(X (0)
j0

=
x j0 , X (1)

j1
= x j1 , . . . , X (n−1)

jn−1
= x jn−1 ) are obtained. For simplic-

ity, we focus on the coincidence probabilities using the same
idea as in Ref. [12]; that is, the coincidence probability term
P(

∑n−1
i=0 X (i)

ji
= r) is expressed in the form

P

(
n−1∑
i=0

X (i)
ji

= r

)
=

∑
Mod[

∑n−1
i=0 x(i)

ji
,3]=r

P
(
X (0)

j0
= x j0 ,

X (1)
j1

= x j1 , . . . , X (n−1)
jn−1

= x j1

)
, (1)

where r = 0, 1, 2 and Mod[x, 3] = r means that the remain-
der of x module 3 is r. Now, we are ready to introduce the
general coincidence Bell inequality for the (n, 2, 3) scenario
in probability form,

In =
∑

j

2∑
r=0

ω j,rP

(
n−1∑
i=0

X (i)
ji

= r

)
LHV
� L, (2)

where j = ( j0, j1, . . . , jn−1) goes through all 2n possible
measurements for the n observers, ω j,rs are the real weight
coefficients, and L is the upper bound of the Bell function In

in the LHV theory. When the number of particles is small,
we shall follow the more acceptable notations for the body
index without any doubt, such as A, B,C for the three-particle
system.

All these inequalities can be grouped in families of equiv-
alent inequalities. Two Bell inequalities are equivalent if we
can transform one into the other by composing the follow-
ing symmetry transformations [18]: relabeling of the party
index, the observable index in each particle, and the out-
come index for one observable. For instance, the symmetry
transformations in the (2,2,3)-scenario contain party exchange
(party symmetry), P(Ai = a, Bj = b) �→ P(Aj = a, Bi = b);
observable exchange (observable symmetry), P(Ai = a, Bj =
b) �→ P(Aī = a, Bj̄ = b), where 0̄ = 1, 1̄ = 0; and relabel-
ing of outcomes (outcome symmetry), P(Ai = a, Bj =
b) �→ P(Ai = Mod[a + ai, 3], Bj = Mod[b + b j, 3]), where
ai, b j ∈ {0, 1, 2}. In addition, a Bell inequality is called
symmetric if it is invariant under any party-symmetric trans-
formation.

Let us now consider the quantum system in the noisy n-
qutrit GHZ state. The density matrix of the system is given
by ρ = v|�〉〈�| + (1 − v) I/3n, with v ∈ [0, 1], and the pure
state

|�〉 = 1√
3

(|0〉⊗n + |1〉⊗n + |2〉⊗n) (3)

is the so-called n-qutrit GHZ state. Then inequality (2) can
detect the nonlocality of ρ if and only if v ∗ NL|�〉 + (1 − v) ∗
NLI > L, i.e.,

v > vc = (L − NLI )/(NL|�〉 − NLI ), (4)

where NL|�〉 and NLI are the maximal quantum violations
of In for state |�〉 and state I/3n, respectively. Hence, the
parameter vc exactly reflects the ability of inequality (2) to
detect nonlocal ρ. It is just the meaning of the critical visibil-
ity. Apparently, two equivalent Bell inequalities have the same
visibility. If a Bell inequality has a lower critical visibility,
then for more noise (I/3n) it still can detect the nonlocality of
ρ, which means that it is more robust.

Example 1. For the (3,2,3)-scenario coincidence Bell in-
equality in [12], if the outcomes c1 of C1 are denoted
Mod[c1 − 1, 3], then we obtain a coincidence Bell inequality,

I3 = P(A0 + B0 + C0 = 0) + P(A0 + B1 + C1 = 0)

+ P(A1 + B0 + C1 = 0) + P(A1 + B1 + C0 = 1)

+ 2P(A1 + B1 + C1 = 2) − P(A1 + B0 + C0 = 2)

− P(A0 + B1 + C0 = 2) − P(A0 + B0 + C1 = 1)
LHV
� 3,

(5)

which is outcome symmetric with the inequality in [12]. If the
measurement outcomes of C0 and C1 are both zero, then Bell
inequality (5) is reduced to

I2 = P(A0 + B0 = 0) + P(A0 + B1 = 0)

+ P(A1 + B0 = 0) + P(A1 + B1 = 1)

+ 2P(A1 + B1 = 2) − P(A1 + B0 = 2)

− P(A0 + B1 = 2) − P(A0 + B0 = 1)
LHV
� 3, (6)

which is a coincidence Bell inequality for the two-qutrit sys-
tem. It is easy to see that (6) is outcome symmetric with the
CGLMP inequality. For the Bell inequality (5), L = 3, when
the measurements are restricted to unbiased symmetric six-
port beam splitters [12], NL|�〉 = 13/3, NLI = 1. Then vc =
(L − NLI )/(NL|�〉 − NLI ) = 0.6. Suppose we would like to
generalize the two-qutrit inequality (6) to three qutrits such
that the (3,2,3)-scenario coincidence Bell inequality can re-
duce to inequality (6); then the Bell inequality (5) is the most
robust one by far.

In this work, the observables are also confined to the un-
biased symmetric (n × 2)-port beam splitters. The action of
these devices in the computational basis is as follows: First,
a phase factor is applied depending on the initial state, i.e.,
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| j〉 �→ eiφ j | j〉. Following this, a quantum Fourier transform
(QFT) is performed, and the resulting state is measured in
the computational basis. Therefore, any of these measure-
ments is defined by a three-phase vector 
φ = (φ0, φ1, φ2)
and the corresponding unitary transformation [UQFTU ( 
φ)]i j =

1√
3
ei 2π

3 (i−1)( j−1)eiφi−1 . Given a measurement apparatus for

n parties specified by the three-phase vectors 
φ(X (i) ) =
(φ(X (i) )

0 , φ
(X (i) )
1 , φ

(X (i) )
2 ) and an initial state |�〉 ∈ (C3)⊗n, the

probability of obtaining the outcome (x(0), x(1), . . . , x(n−1)) is

P(X (0) = x(0), X (1) = x(1), . . . , X (sn−1 ) = x(n−1))

=|〈x(0)x(1) · · · x(n−1)| ⊗n−1
i=0 UQFTU ( 
φ(X (i) ) )|�〉|2. (7)

The phase vectors can be changed by the observers; they
represent the local macroscopic parameters available to them.
For the coincidence terms appearing in the Bell inequality and
the maximally entangled state (3), the direct calculation yields

P

(
n−1∑
i=0

X (i)
ji

= r

)
= 1

9

{
3 + 2

1∑
t=0

2∑
s=t+1

cos

[
n−1∑
i=0

(
φ

(X (i)
ji

)
s − φ

(X (i)
ji

)
t

) + 2(s − t )rπ

3

]}
. (8)

III. MOST ROBUST (4,2,3)-SCENARIO COINCIDENCE
BELL INEQUALITIES

For the (2,2,3)-scenario, inequality (6) is the most robust
coincidence Bell inequality. When the number of particles
increases by one, the (3,2,3)-scenario coincidence Bell in-
equality in Example 1 is the most robust one. Moreover,
it has the popular iteration property; that is, (5) is re-
duced to inequality (6) when c0 = c1 = 0. In this section,
we focus on presenting the most robust (4,2,3)-scenario
coincidence Bell inequalities under the constraint of be-
ing reduced to the most robust (3,2,3)-scenario coincidence
inequality (5).

Form inequality (2) we have the (4,2,3)-scenario coinci-
dence Bell function as

I4 =
∑

i, j,k,�=0,1

2∑
r=0

ωi, j,k,�,rP(Ai + Bj + Ck + D� = r). (9)

For convenience, we introduce the coefficient matrix W =
(wi′+1, j′+1) associated with it, where i′ = i × 2 + j is the dec-
imal expression of i j and j′ = (k × 2 + �) × 3 + r, with k ×
2 + � being the decimal expression of k�, wi′, j′ = ωi, j,k,�,r .
We find two inequivalent and tight Bell inequalities with the
lowest critical visibility of 0.5. The first one is described in
the joint probability form as

I (1)
4 = −P(A0 + B0 + C0 + D0 = 2) − P(A0 + B0 + C0 + D1 = 1)

− P(A0 + B0 + C1 + D1 = 1) − P(A0 + B1 + C0 + D0 = 2)

− P(A0 + B1 + C1 + D0 = 2) − P(A0 + B1 + C1 + D1 = 1)

+ P(A1 + B0 + C0 + D0 = 0) + P(A1 + B0 + C0 + D1 = 1)

+ P(A1 + B0 + C1 + D1 = 0) + P(A1 + B1 + C0 + D0 = 1)

+ P(A1 + B1 + C1 + D0 = 2) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2, (10)

whose coefficient matrix is ⎛
⎜⎝

0 0 −1 0 −1 0 0 0 0 0 −1 0
0 0 −1 0 0 0 0 0 −1 0 −1 0
1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0 0 1

⎞
⎟⎠. (11)

It is upper bounded by L = 2 for the LHV theory, has maximal quantum violations NL|�〉 = 4 and NLI = 0 for states |�〉 and
I/34, respectively, and is reduced to (5) when d0 = d1 = 0. Therefore, vc = 1/2 = 0.5. The second one’s coefficient matrix is⎛

⎜⎝
1 −1 0 1 0 −1 0 −1 1 1 −1 0
1 0 −1 0 1 −1 1 −1 0 1 0 −1
1 0 −1 0 1 −1 0 1 −4 0 −4 1
0 1 −1 −1 1 0 0 −4 1 −4 0 1

⎞
⎟⎠, (12)

whose joint probability form is presented in Appendix A.
It is upper bounded by L = 2 for the LHV theory, has
maximal quantum violations NL|�〉 = 8 and NLI = −4 for
states |�〉 and state I/34, respectively, and is reduced to (5)
when d0 = d1 = 0. Therefore, its critical visibility is vc =

(2 + 4)/(8 + 4) = 0.5, which is the same as that of the first
(4,2,3)-scenario Bell inequality. In Appendix A, we prove
the above statements. Apparently, they are inequivalent. For
any deterministic outcome, A0 = a0, A1 = a1, B0 = b0, B1 =
b1,C0 = c0,C1 = c1, D0 = d0, D1 = d1, we can associate it
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with a generator,

|a0b0c0d0〉 ⊕ |a0b0c0d1〉 ⊕ |a0b0c1d0〉 ⊕ |a0b0c1d1〉
⊕ |a0b1c0d0〉 ⊕ |a0b1c0d1〉 ⊕ |a0b1c1d0〉 ⊕ |a0b1c1d1〉
⊕ |a1b0c0d0〉 ⊕ |a1b0c0d1〉 ⊕ |a1b0c1d0〉 ⊕ |a1b0c1d1〉
⊕ |a1b1c0d0〉 ⊕ |a1b1c0d1〉 ⊕ |a1b1c1d0〉 ⊕ |a1b1c1d1〉,

(13)

following Ref. [18], where ⊕ is the direct sum of vectors.
Since an inequality is tight if and only if the number of
linearly independent generators that saturate the inequality
turns out to be equal to the number of linearly independent
generators minus one [18], we can check the tightness of the
two inequalities by numerical computation.

In summary, we have given two inequivalent and
tight (4,2,3)-scenario coincidence Bell inequalities with
the lowest critical visibility of 0.5 and the iteration
property.

IV. MOST ROBUST (5,2,3)-SCENARIO COINCIDENCE
BELL INEQUALITIES

Since the most robust (4,2,3)-scenario coincidence Bell
inequalities in Sec. III are inequivalent, we need to research
at least the two most robust (5,2,3)-scenario coincidence Bell
inequalities, which can be reduced to the two inequivalent
(4,2,3)-scenario inequalities.

Like for the coefficient matrix representation of the
(4,2,3)-scenario coincidence Bell function, we associate
the (5,2,3)-scenario coincidence Bell function I5 =∑

i, j,k,�,t=0,1

∑2
r=0 ωi, j,k,�,t,rP(Ai + Bj + Ck + D� + Et = r)

with a coefficient matrix W = (wi′+1, j′+1), where
i′ = i × 22 + j × 2 + k, j′ = (� × 2 + t ) × 3 + r, and
wi′, j′ = ωi, j,k,�,r . Fortunately, under the constraint of
iteration, we find two inequivalent and tight coincidence
Bell inequalities for the (5,2,3) scenario with the same
lowest critical visibility of 0.488785. To avoid the complex
expression, we give only their associated matrices here. In
Appendix B, we provide their joint probability forms. The
first one’s associated matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
3 0 0 − 1

6 0 − 2
3 0 0 1

6 0

0 0 − 1
6 0 0 1

6 0 1
6 0 0 − 2

3 0

0 0 − 1
6 0 0 − 1

3 0 1
6 0 0 − 1

6 0

0 0 − 1
3 0 0 − 1

6 0 − 1
6 0 0 − 1

3 0
1
3 0 0 1

6 0 0 0 0 − 1
3 0 1

2
1
3

1
6 0 0 − 1

6 0 0 0 − 1
2 − 1

6 0 0 − 1
3

− 1
3 0 0 0 1

6 − 1
3 0 0 − 1

6 0 0 1
6

0 − 1
3

1
6 − 1

3 0 0 0 0 1
6 0 0 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The second one’s associated matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
3 0 0 0 − 1

6 0 − 1
6 0 0 0 − 1

3

0 − 1
6 0 0 0 1

6 0 − 1
3 0 0 0 − 1

6

0 1
6 − 1

3 0 − 1
3 0 0 1

3
1
3 0 − 1

6 − 1
2

0 − 1
6 − 1

6 0 − 1
6 0 0 − 1

3 − 1
3 0 1

6 0

0 − 1
6 0 0 0 − 1

3 0 1
6 0 0 0 − 1

6

0 1
6 0 0 0 − 2

3 0 − 2
3 0 0 0 1

6

0 − 1
6 − 1

6 0 1
3 0 0 1

6
1
6 0 1

6 0

0 − 1
3

1
6 0 − 1

3 0 0 1
3

1
3 0 1

3
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

For the first one, L = −1/6, NL|�〉 = 0.879225, and NLI =
−7/6. Hence, vc = (−1/6 + 7/6)/(0.879225 + 7/6) ≈
0.488785. For the second one, L = 0, NLI = −1, and
NL|�〉 = 1.04589. Hence, vc = (0 + 1)/(1.04589 + 1) ≈
0.488785. Their tightness and inequivalence can be checked
by numerical computation. Furthermore, the first one is
reduced to (10), and the second one is reduced to (12) for
e0 = e1 = 0. In Appendix B, we present the details of the
proof. Therefore, we have written two inequivalent and tight
(5,2,3)-scenario coincidence Bell inequalities with the lowest
critical visibility of 0.488785 and the iteration property.

For the above four Bell inequalities, it is interesting to ask
a question: Are the generalized GHZ states

|�(θ1, θ2)〉 = sin θ1 sin θ2|0〉⊗n + sin θ1 cos θ2|1〉⊗n

+ cos θ1|2〉⊗n (16)

more robust against white noise than the maximally entangled
GHZ state |�〉? For the generalized GHZ states |�(θ1, θ2)〉,
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TABLE I. Answers to whether the generalized GHZ states are more robust against white noise than the maximally entangled GHZ state
for the most robust (n, 2, d )-scenario coincidence Bell inequalities (Ineq.). A dash (−) denotes that we have no idea.

d = 2 d = 3 d = 4 d = 5

n = 2 CHSH Ineq., No CGLMP Ineq., Yes CGLMP Ineq., Yes CGLMP Ineq., Yes
n = 3 MABK Ineq., No Example 1, Yes (5) in Ref. [13], No (10) in Ref. [13], Yes
n = 4 MABK Ineq., No I (1)

4 � 2, No; I (2)
4 � 2, No − −

n = 5 MABK Ineq., No I (1)
5 � − 1

6 , Yes; I (2)
5 � 0, Yes − −

the coincidence terms have the form

P

(
n−1∑
i=0

X (i)
ji

= r

)

= 1

3
+ sin2 θ1 sin 2θ2 cos

(
2rπ

3 + ϕ
)

3

+ sin 2θ1 sin θ2 cos
(

4rπ
3 + ϕ′)

3

+ sin 2θ1 cos θ2 cos
(

2rπ
3 + ϕ′ − ϕ

)
3

, (17)

where ϕ = ∑n−1
i=0 φ

(X (i)
ji

)

1 , ϕ′ = ∑n−1
i=0 φ

(X (i)
ji

)

2 , and we assume
that the first phase of any three-phase vector is zero. Go-
ing through all quantum states |�(θ1, θ2)〉, θ1, θ2 ∈ [0, π/2]
and the unbiased symmetric (n × 2)-port beam splitters, the
maximal quantum violations of I (1)

4 and I (2)
4 are the same

as those for the maximally entangled GHZ state |�〉, while
the maximal violations of I (1)

5 and I (2)
5 are 0.879492 and

1.04616, respectively, which are slightly larger than those for
the maximally entangled GHZ state |�〉. Therefore, both an-
swers are negative for the inequalities I (1)

4 � 2 and I (2)
4 � 2,

and both answers are positive for the inequalities I (1)
5 � −1/6

and I (2)
5 � 0.

For the most robust (n, 2, d )-scenario coincidence Bell in-
equalities, are the generalized GHZ states more robust against
white noise than the maximally entangled GHZ state? Since
the (n, 2, 2)-scenario Mermin-Ardehali-Belinskiı̌-Klyshko
(MABK) inequalities, the (2, 2, d )-scenario CGLMP inequal-
ities, and the coincidence Bell inequalities (5) and (10) in
Ref. [13] are the most robust coincidence Bell inequalities

for the corresponding scenario, we summarize the answers in
Table I, where a dash (−) denotes that we have no idea.

V. CONCLUSION AND DISCUSSION

In conclusion, the general form of the coincidence Bell
inequality for any multiparty, three-dimensional system with
two-measurements has been presented. Due to the limita-
tion of our computers, we focus on the (4,2,3)-scenario and
(5,2,3)-scenario coincidence Bell inequalities. Fortunately, we
have found the Bell inequalities with the lowest critical visi-
bility and the popular iteration property. If we pay attention
to the variation of the critical visibility value vc with respect
to the number n of parties, then we may conjecture that vc

will decline as n increases. For the two (4,2,3)-scenario in-
equalities, the generalized GHZ states cannot violate them
more than the GHZ state, while for the two (5,2,3)-scenario
inequalities, the generalized GHZ states (some nonmaximally
entangled states) can violate them a little more. These results
may be very helpful for setting up the iteration formula of
the most robust coincidence Bell inequalities for any (n, 2, 3)
scenario.
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APPENDIX A: THE TWO (4,2,3)-SCENARIO COINCIDENCE BELL INEQUALITIES

In this Appendix, we give the two (4,2,3)-scenario coincidence Bell inequalities with joint probability forms and prove that
both of them have the critical visibility of 0.5.

The first (4,2,3)-scenario Bell inequality is

I (1)
4 = −P(A0 + B0 + C0 + D0 = 2) − P(A0 + B0 + C0 + D1 = 1) − P(A0 + B0 + C1 + D1 = 1)

− P(A0 + B1 + C0 + D0 = 2) − P(A0 + B1 + C1 + D0 = 2) − P(A0 + B1 + C1 + D1 = 1)

+ P(A1 + B0 + C0 + D0 = 0) + P(A1 + B0 + C0 + D1 = 1) + P(A1 + B0 + C1 + D1 = 0)

+ P(A1 + B1 + C0 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2. (A1)

We prove that it is reduced to inequality (5) for d0 = d1 = 0. Moreover, L = 2 is the upper bound of I (1)
4 in LHV theory.

Traversing the class of tritter measurements, I (1)′
4 s maximal quantum violations for the maximally entangled state |�〉 and the

maximally mixed state I/34 are NL|�〉 = 4 and NLI = 0, respectively, which imply vc = 0.5.
Proof. First, we prove that in LHV theory (A1) holds for the cases of d0 = 0, d1 = 0, 1, 2.
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Case (i). When d0 = d1 = 0, (A1) is reduced to

P(A0 + B0 + C0 = 0) − P(A0 + B0 + C1 = 1) − P(A0 + B1 + C0 = 2) + P(A0 + B1 + C1 = 0)

− P(A1 + B0 + C0 = 2) + P(A1 + B0 + C1 = 0) + P(A1 + B1 + C0 = 1) + 2P(A1 + B1 + C1 = 2)
LHV
� 3, (A2)

which is just the (3,2,3)-scenario Bell inequality (5). Hence, when ai = b j = ck = dl = 0 ∀ i, j, k, l = 0, 1, I (1)
4 reaches a value

of 2.
Case (ii). When d0 = 0, d1 = 1, (A1) is reduced to

P(A0 + B0 + C0 = 1) − P(A0 + B0 + C1 = 0) − P(A0 + B1 + C0 = 2) + P(A0 + B1 + C1 = 1)

+ 2P(A1 + B0 + C0 = 0) + P(A1 + B0 + C1 = 2) + P(A1 + B1 + C0 = 1) − P(A1 + B1 + C1 = 0)
LHV
� 3. (A3)

Composed of the observable symmetric transformations B0 ↔ B1 and C0 ↔ C1 and the outcome symmetric transformation
ai �→ Mod[ai + 2, 3], (A3) degenerates into the (3,2,3)-scenario Bell inequality (5).

Case (iii). When d0 = 0, d1 = 2, (A1) is reduced to

−2P(A0 + B0 + C0 = 2) − P(A0 + B0 + C1 = 2) − P(A0 + B1 + C0 = 2) − 2P(A0 + B1 + C1 = 2)

−P(A1 + B0 + C0 = 1) + P(A1 + B0 + C1 = 1) + P(A1 + B1 + C0 = 1) − P(A1 + B1 + C1 = 1)
LHV
� 0. (A4)

Case (iii a). When P(A1 + B0 + C1 = 1) = P(A1 + B1 + C0 = 1) = 1, we have 2a1 + b0 + b1 + c0 + c1 = 2 and b1 +
c0 − b0 − c1 = 0, and then P(A0 + B0 + C1 = 2) = P(A0 + B1 + C0 = 2), and P(A1 + B0 + C0 = 1) = P(A1 + B1 + C1 = 1).
Hence, provided one of the above four probabilities equals 1, (A4) holds. Therefore, we need to consider only the case that any
one of them equals zero. In this case,

a1 + b0 + c1 = 1, a1 + b1 + c0 = 1, a0 + b0 + c1 = 0, a0 + b1 + c0 = 0, a1 + b0 + c0 = 0, a1 + b1 + c1 = 2; or

a1 + b0 + c1 = 1, a1 + b1 + c0 = 1, a0 + b0 + c1 = 0, a0 + b1 + c0 = 0, a1 + b0 + c0 = 2, a1 + b1 + c1 = 0; or

a1 + b0 + c1 = 1, a1 + b1 + c0 = 1, a0 + b0 + c1 = 1, a0 + b1 + c0 = 1, a1 + b0 + c0 = 0, a1 + b1 + c1 = 2; or

a1 + b0 + c1 = 1, a1 + b1 + c0 = 1, a0 + b0 + c1 = 1, a0 + b1 + c0 = 1, a1 + b0 + c0 = 2, a1 + b1 + c1 = 0. (A5)

For the first and last cases, P(A0 + B0 + C0 = 2) = 1. For the second and third cases, P(A0 + B1 + C1 = 2) = 1. In other words,
(A4) holds.

Case (iii b). In this case, we assume P(A1 + B0 + C1 = 1) = 1 and P(A1 + B1 + C0 = 1) = 0. If any one of P(A0 + B0 +
C1 = 2), P(A0 + B1 + C0 = 2), P(A1 + B0 + C0 = 1), and P(A1 + B1 + C1 = 1) equals 1, then (A4) holds. Hence, we need to
consider only that any one of them equals zero.

If a1 + b1 + c0 = 0, then 2a1 + b0 + b1 + c0 + c1 = 1, and b1 + c0 − b0 − c1 = 2, which imply a0 + b0 + c1 = a0 + b1 +
c0 = 1 and a1 + b0 + c0 = a1 + b1 + c1 = 2. These yield P(A0 + B0 + C0 = 2) = P(A0 + B1 + C1 = 2) = 1. Hence, (A4)
holds.

If a1 + b1 + c0 = 2, then 2a1 + b0 + b1 + c0 + c1 = 0, and b1 + c0 − b0 − c1 = 1, which imply a0 + b0 + c1 = 0, a0 +
b1 + c0 = 1, a1 + b0 + c0 = 0, and a1 + b1 + c1 = 0. These yield P(A0 + B0 + C0 = 2) = 1. Hence, (A4) holds.

Case (iii c). When P(A1 + B0 + C1 = 1) = 0 and P(A1 + B1 + C0 = 1) = 1, the proof is similar to that of
case (iii b).

So far, we have proved that (A1) holds for the d0 = 0, d1 = 0, 1, 2 cases. For the arbitrary case d0 = d, d1 = d ′, we can
accomplish the proof by repeating that for the case with d0 = 0, d1 = Mod[d − d ′, 3] and replacing the outcomes ai by Mod[ai +
d, 3] since the general term is the coincidence probability. Hence, the maximal value of I (1)

4 is 2 in LHV theory.
When the quantum system is in the maximally entangled GHZ state, we go through the class of tritter measurements and

obtain NL|�〉 = 4. Especially, I (1)
4 = 4 is arrived at
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(A0 )
2 = − π

12
, φ

(B0 )
2 = −φ
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In this case,

P(A0 + B0 + C0 + D0 = 2) = 1
9 , P(A0 + B0 + C0 + D1 = 1) = 1

9 , P(A0 + B0 + C1 + D1 = 1) = 1
9 ,

P(A0 + B1 + C0 + D0 = 2) = 1
9 , P(A0 + B1 + C1 + D0 = 2) = 1

9 , P(A0 + B1 + C1 + D1 = 1) = 1
9 ,

P(A1 + B0 + C0 + D0 = 0) = 7
9 , P(A1 + B0 + C0 + D1 = 1) = 7

9 , P(A1 + B0 + C1 + D1 = 0) = 7
9 ,

P(A1 + B1 + C0 + D0 = 1) = 7
9 , P(A1 + B1 + C1 + D0 = 2) = 7

9 , P(A1 + B1 + C1 + D1 = 2) = 7
9 . (A7)

Apparently, NLI = 0. Hence, vc = 0.5. �
The second (4,2,3)-scenario Bell inequality with the probability form is

I (2)
4 = P(A0 + B0 + C0 + D0 = 0) − P(A0 + B0 + C0 + D0 = 1) + P(A0 + B0 + C0 + D1 = 0)

− P(A0 + B0 + C0 + D1 = 2) − P(A0 + B0 + C1 + D0 = 1) + P(A0 + B0 + C1 + D0 = 2)

+ P(A0 + B0 + C1 + D1 = 0) − P(A0 + B0 + C1 + D1 = 1) + P(A0 + B1 + C0 + D0 = 0)

− P(A0 + B1 + C0 + D0 = 2) + P(A0 + B1 + C0 + D1 = 1) − P(A0 + B1 + C0 + D1 = 2)

+ P(A0 + B1 + C1 + D0 = 0) − P(A0 + B1 + C1 + D0 = 1) + P(A0 + B1 + C1 + D1 = 0)

− P(A0 + B1 + C1 + D1 = 2) + P(A1 + B0 + C0 + D0 = 0) − P(A1 + B0 + C0 + D0 = 2)

+ P(A1 + B0 + C0 + D1 = 1) − P(A1 + B0 + C0 + D1 = 2) + P(A1 + B0 + C1 + D0 = 1)

− 4P(A1 + B0 + C1 + D0 = 2) − 4P(A1 + B0 + C1 + D1 = 1) + P(A1 + B0 + C1 + D1 = 2)

+ P(A1 + B1 + C0 + D0 = 1) − P(A1 + B1 + C0 + D0 = 2) − P(A1 + B1 + C0 + D1 = 0)

+ P(A1 + B1 + C0 + D1 = 1) − 4P(A1 + B1 + C1 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2)

− 4P(A1 + B1 + C1 + D1 = 0) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2. (A8)

We prove that it is reduced to (5) for d0 = d1 = 0, L = 2, NL|�〉 = 8, and NLI = −4, which yield vc = 0.5.
Proof. By the proof of (A1), it is sufficient to prove that (A8) holds for the cases d0 = 0, d1 = 0, 1, 2.
Case (i). When d0 = d1 = 0, (A8) is reduced to

P(A0 + B0 + C0 = 0) − P(A0 + B0 + C1 = 1) − P(A0 + B1 + C0 = 2) + P(A0 + B1 + C1 = 0)

− P(A1 + B0 + C0 = 2) + P(A1 + B0 + C1 = 0) + P(A1 + B1 + C0 = 1) + 2P(A1 + B1 + C1 = 2)
LHV
� 3, (A9)

which is just the (3,2,3)-scenario inequality (5). Hence, when ai = b j = ck = dl = 0 ∀ i, j, k, l = 0, 1, I (2)
4 reaches a value of 2.

Case (ii). When d0 = 0, d1 = 1, (A8) is reduced to

− P(A0 + B0 + C0 = 1) + P(A0 + B0 + C1 = 2) + P(A0 + B1 + C0 = 0) − P(A0 + B1 + C1 = 1)

+ P(A1 + B0 + C0 = 0) + 2P(A1 + B0 + C1 = 1) − P(A1 + B1 + C0 = 2) + P(A1 + B1 + C1 = 0)
LHV
� 3. (A10)

Composed of the observable symmetric transformation B0 ↔ B1 and the outcome symmetric transformation b1 �→ Mod[b1 +
1, 3], (A10) becomes the (3,2,3)-scenario Bell inequality (5).

Case (iii). When d0 = 0, d1 = 2, (A8) is reduced to

−P(A1 + B0 + C1 = 2) − P(A1 + B1 + C1 = 1)
LHV
� 0, (A11)

which holds forever.
In order to arrive at the maximal quantum violation of (A8) for the state |�〉, we can take
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Then

P(A1 + B0 + C1 + D0 = 1) = 4
9 , P(A1 + B0 + C1 + D0 = 2) = 1

9 , P(A1 + B0 + C1 + D1 = 1) = 1
9 ,

P(A1 + B0 + C1 + D1 = 2) = 4
9 , P(A1 + B1 + C1 + D0 = 1) = 1

9 , P(A1 + B1 + C1 + D0 = 2) = 4
9 ,

P(A1 + B1 + C1 + D1 = 0) = 1
9 , P(A1 + B1 + C1 + D1 = 2) = 4

9 .

For other terms, if their coefficient is positive, then the joint probability term equals 7/9; if their coefficient is negative, then the
joint probability term equals 1/9. Hence, NL|�〉 = 8. If the system is in the maximally mixed state, then NLI = −4. Therefore,
vc = (2 + 4)/(8 + 4) = 0.5. �

APPENDIX B: THE TWO (5,2,3)-SCENARIO COINCIDENCE BELL INEQUALITIES

In this Appendix, we give the two (5,2,3)-scenario coincidence Bell inequalities with the joint probability form and prove that
both of them have the critical visibility of 0.488785.

The first (5,2,3)-scenario Bell inequality is

I (1)
5 = − 1

3 P(A0 + B0 + C0 + D0 + E0 = 2) − 1
6 P(A0 + B0 + C0 + D0 + E1 = 2)

− 2
3 P(A0 + B0 + C0 + D1 + E0 = 1) + 1

6 P(A0 + B0 + C0 + D1 + E1 = 1) − 1
6 P(A0 + B0 + C1 + D0 + E0 = 2)

+ 1
6 P(A0 + B0 + C1 + D0 + E1 = 2) + 1

6 P(A0 + B0 + C1 + D1 + E0 = 1) − 2
3 P(A0 + B0 + C1 + D1 + E1 = 1)

− 1
6 P(A0 + B1 + C0 + D0 + E0 = 2) − 1

3 P(A0 + B1 + C0 + D0 + E1 = 2) + 1
6 P(A0 + B1 + C0 + D1 + E0 = 1)

− 1
6 P(A0 + B1 + C0 + D1 + E1 = 1) − 1

3 P(A0 + B1 + C1 + D0 + E0 = 2) − 1
6 P(A0 + B1 + C1 + D0 + E1 = 2)

− 1
6 P(A0 + B1 + C1 + D1 + E0 = 1) − 1

3 P(A0 + B1 + C1 + D1 + E1 = 1) + 1
3 P(A1 + B0 + C0 + D0 + E0 = 0)

+ 1
6 P(A1 + B0 + C0 + D0 + E1 = 0) − 1

3 P(A1 + B0 + C0 + D1 + E0 = 2) + 1
2 P(A1 + B0 + C0 + D1 + E1 = 1)

+ 1
3 P(A1 + B0 + C0 + D1 + E1 = 2) + 1

6 P(A1 + B0 + C1 + D0 + E0 = 0) − 1
6 P(A1 + B0 + C1 + D0 + E1 = 0)

− 1
2 P(A1 + B0 + C1 + D1 + E0 = 1) − 1

6 P(A1 + B0 + C1 + D1 + E0 = 2) − 1
3 P(A1 + B0 + C1 + D1 + E1 = 2)

− 1
3 P(A1 + B1 + C0 + D0 + E0 = 0) + 1

6 P(A1 + B1 + C0 + D0 + E1 = 1) − 1
3 P(A1 + B1 + C0 + D0 + E1 = 2)

− 1
6 P(A1 + B1 + C0 + D1 + E0 = 2) + 1

6 P(A1 + B1 + C0 + D1 + E1 = 2) − 1
3 P(A1 + B1 + C1 + D0 + E0 = 1)

+ 1
6 P(A1 + B1 + C1 + D0 + E0 = 2) − 1

3 P(A1 + B1 + C1 + D0 + E1 = 0) + 1
6 P(A1 + B1 + C1 + D1 + E0 = 2)

+ 1
3 P(A1 + B1 + C1 + D1 + E1 = 2)

LHV
� − 1

6 . (B1)

We prove that it is reduced to (A1) for e0 = e1 = 0, L = −1/6, NL|�〉 = 0.879225, and NLI = −7/6. Hence, vc ≈ 0.488785.
Proof. It is sufficient to prove that (B1) holds for the cases e0 = 0, e1 = 0, 1, 2.
Case (i). When e0 = e1 = 0, (B1) is reduced to

− P(A0 + B0 + C0 + D0 = 2) − P(A0 + B0 + C0 + D1 = 1) − P(A0 + B0 + C1 + D1 = 1)

− P(A0 + B1 + C0 + D0 = 2) − P(A0 + B1 + C1 + D0 = 2) − P(A0 + B1 + C1 + D1 = 1)

+ P(A1 + B0 + C0 + D0 = 0) + P(A1 + B0 + C0 + D1 = 1) + P(A1 + B0 + C1 + D1 = 0)

+ P(A1 + B1 + C0 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2, (B2)

which is just the (4,2,3)-scenario Bell inequality (A1). Then the Bell function reaches a value of −1/6 for any ai = b j = ck =
dl = es = 0.

Case (ii). When e0 = 0, e1 = 1, (B1) is reduced to

P(A0 + B0 + C0 + D0 = 0) − P(A0 + B0 + C0 + D0 = 2) + P(A0 + B0 + C0 + D1 = 0)

− 4P(A0 + B0 + C0 + D1 = 1) + P(A0 + B0 + C1 + D0 = 1) − P(A0 + B0 + C1 + D0 = 2)

− 4P(A0 + B0 + C1 + D1 = 0) + P(A0 + B0 + C1 + D1 = 1) + P(A0 + B1 + C0 + D0 = 0)

− P(A0 + B1 + C0 + D0 = 1) − P(A0 + B1 + C0 + D1 = 0) + P(A0 + B1 + C0 + D1 = 1)

+ P(A0 + B1 + C1 + D0 = 0) − P(A0 + B1 + C1 + D0 = 2) − P(A0 + B1 + C1 + D1 = 0)

+ P(A0 + B1 + C1 + D1 = 2) + P(A1 + B0 + C0 + D0 = 0) − P(A1 + B0 + C0 + D0 = 1)

+ P(A1 + B0 + C0 + D1 = 0) − 4P(A1 + B0 + C0 + D1 = 2) + P(A1 + B0 + C1 + D0 = 0)
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− P(A1 + B0 + C1 + D0 = 2) + P(A1 + B0 + C1 + D1 = 0) − 4P(A1 + B0 + C1 + D1 = 1)

− P(A1 + B1 + C0 + D0 = 1) + P(A1 + B1 + C0 + D0 = 2) + P(A1 + B1 + C0 + D1 = 1)

− P(A1 + B1 + C0 + D1 = 2) + P(A1 + B1 + C1 + D0 = 0) − P(A1 + B1 + C1 + D0 = 1)

− P(A1 + B1 + C1 + D1 = 0) + P(A1 + B1 + C1 + D1 = 1)
LHV
� 2. (B3)

Composed of the four symmetric transformations (1) A ↔ B, (2) A0 ↔ A1, (3) C ↔ D, and (4) b1 �→ b1 + 1, c0 �→ c0 +
2, d0 �→ d0 + 1, d1 �→ d1 + 1, (B3) becomes

+ P(A0 + B0 + C0 + D0 = 0) − P(A0 + B0 + C0 + D0 = 1) + P(A0 + B0 + C0 + D1 = 0)

− P(A0 + B0 + C0 + D1 = 2) − P(A0 + B0 + C1 + D0 = 1) + P(A0 + B0 + C1 + D0 = 2)

+ P(A0 + B0 + C1 + D1 = 0) − P(A0 + B0 + C1 + D1 = 1) + P(A0 + B1 + C0 + D0 = 0)

− P(A0 + B1 + C0 + D0 = 2) + P(A0 + B1 + C0 + D1 = 1) − P(A0 + B1 + C0 + D1 = 2)

+ P(A0 + B1 + C1 + D0 = 0) − P(A0 + B1 + C1 + D0 = 1) + P(A0 + B1 + C1 + D1 = 0)

− P(A0 + B1 + C1 + D1 = 2) + P(A1 + B0 + C0 + D0 = 0) − P(A1 + B0 + C0 + D0 = 2)

+ P(A1 + B0 + C0 + D1 = 1) − P(A1 + B0 + C0 + D1 = 2) + P(A1 + B0 + C1 + D0 = 1)

− 4P(A1 + B0 + C1 + D0 = 2) − 4P(A1 + B0 + C1 + D1 = 1) + P(A1 + B0 + C1 + D1 = 2)

+ P(A1 + B1 + C0 + D0 = 1) − P(A1 + B1 + C0 + D0 = 2) − P(A1 + B1 + C0 + D1 = 0)

+ P(A1 + B1 + C0 + D1 = 1) − 4P(A1 + B1 + C1 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2)

− 4P(A1 + B1 + C1 + D1 = 0) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2, (B4)

which is just the (4,2,3)-scenario Bell inequality (A8).
Case (iii). When e0 = 0, e1 = 2, (B1) is reduced to

P(A0 + B0 + C0 + D0 = 1) − P(A0 + B0 + C0 + D0 = 2) − 4P(A0 + B0 + C0 + D1 = 1)

+ P(A0 + B0 + C0 + D1 = 2) + P(A0 + B0 + C1 + D0 = 0) − P(A0 + B0 + C1 + D0 = 2)

+ P(A0 + B0 + C1 + D1 = 1) − 4P(A0 + B0 + C1 + D1 = 2) − P(A0 + B1 + C0 + D0 = 0)

+ P(A0 + B1 + C0 + D0 = 1) + P(A0 + B1 + C0 + D1 = 1) − P(A0 + B1 + C0 + D1 = 2)

+ P(A0 + B1 + C1 + D0 = 1) − P(A0 + B1 + C1 + D0 = 2) + P(A0 + B1 + C1 + D1 = 0)

− P(A0 + B1 + C1 + D1 = 2) + P(A1 + B0 + C0 + D0 = 0) − P(A1 + B0 + C0 + D0 = 2)

+ P(A1 + B0 + C0 + D1 = 0) − P(A1 + B0 + C0 + D1 = 1) + P(A1 + B0 + C1 + D0 = 0)

− P(A1 + B0 + C1 + D0 = 1) − P(A1 + B0 + C1 + D1 = 1) + P(A1 + B0 + C1 + D1 = 2)

− 4P(A1 + B1 + C0 + D0 = 0) + P(A1 + B1 + C0 + D0 = 2) + P(A1 + B1 + C0 + D1 = 0)

− P(A1 + B1 + C0 + D1 = 2) − 4P(A1 + B1 + C1 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2)

+ P(A1 + B1 + C1 + D1 = 0) − P(A1 + B1 + C1 + D1 = 1)
LHV
� 2. (B5)

Case (iii a). When d0 = 0, d1 = 0, (B5) is reduced to

− P(A0 + B0 + C0 = 1) − 2P(A0 + B0 + C1 = 2) + P(A0 + B1 + C0 = 1) − P(A0 + B1 + C1 = 2)

+ P(A1 + B0 + C0 = 0) − P(A1 + B0 + C1 = 1) − P(A1 + B1 + C0 = 0) − 2P(A1 + B1 + C1 = 1)
LHV
� 0. (B6)

Composed of the three symmetric transformations (1) A0 ↔ A1, B0 ↔ B1,C0 ↔ C1, (2) A ↔ C, and (3) c0 �→ c0 + 1, (B5)
becomes

− 2P(A0 + B0 + C0 = 2) − P(A0 + B0 + C1 = 2) − P(A0 + B1 + C0 = 2) − 2P(A0 + B1 + C1 = 2)

− P(A1 + B0 + C0 = 1) + P(A1 + B0 + C1 = 1) + P(A1 + B1 + C0 = 1) − P(A1 + B1 + C1 = 1)
LHV
� 0, (B7)

which is just the inequality (A4)
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Case (iii b). When d0 = 0, d1 = 1, (B5) is reduced to

− P(A0 + B0 + C0 = 0) + P(A0 + B0 + C0 = 1) + P(A0 + B0 + C1 = 0) − P(A0 + B0 + C1 = 1)

− P(A1 + B1 + C0 = 0) + P(A1 + B1 + C0 = 2) − P(A1 + B1 + C1 = 1) + P(A1 + B1 + C1 = 2)
LHV
� 2. (B8)

If three probabilities with positive coefficients equal 1, then one joint probability with a negative coefficient equals 1. Hence
(B8) holds. For example, if P(A0 + B0 + C0 = 1) = P(A0 + B0 + C1 = 0) = P(A1 + B1 + C0 = 2) = 1, then a0 + b0 + c0 =
1, a0 + b0 + c1 = 0, a1 + b1 + c0 = 2, which yield a1 + b1 + c1 = 1, i.e., P(A1 + B1 + C1 = 1) = 1.

Case (iii c). When d0 = 0, d1 = 2, (B5) is reduced to

− 2P(A0 + B0 + C0 = 2) − P(A0 + B0 + C1 = 0) − P(A0 + B1 + C0 = 0) + P(A0 + B1 + C1 = 1)

− P(A1 + B0 + C0 = 2) + P(A1 + B0 + C1 = 0) − 2P(A1 + B1 + C0 = 0) − P(A1 + B1 + C1 = 1)
LHV
� 0. (B9)

Composed of the three symmetric transformations (1) A ↔ C, (2) A ↔ C, and (3) a1 �→ a1 + 1, b1 �→ b1 + 2, (B9) becomes

− 2P(A0 + B0 + C0 = 2) − P(A0 + B0 + C1 = 2) − P(A0 + B1 + C0 = 2) − 2P(A0 + B1 + C1 = 2)

− P(A1 + B0 + C0 = 1) + P(A1 + B0 + C1 = 1) + P(A1 + B1 + C0 = 1) − P(A1 + B1 + C1 = 1)
LHV
� 0, (B10)

which is just the inequality (A4).
In order to arrive at the maximal quantum violation of (B1) for state |�〉, we can take

φ
(A0 )
0 = φ

(A1 )
0 = φ

(B0 )
0 = φ

(B1 )
0 = φ

(C0 )
0 = φ

(C1 )
0 = φ

(D0 )
0 = φ

(D1 )
0 = φ

(E0 )
0 = φ

(E1 )
0 = 0,

φ
(A0 )
1 = 0, φ

(A0 )
2 = π

2
, φ

(A1 )
1 = π

3
, φ

(A1 )
2 = π

6
, φ

(B0 )
1 = 0, φ

(B0 )
2 = π

3
, φ

(B1 )
1 = 11π

36
, φ

(B1 )
2 = π

36
,

φ
(C0 )
1 = 0, φ

(C1 )
1 = −π

3
+ φ

(C0 )
2 , φ

(C1 )
2 = π

3
, φ

(D0 )
1 = −23π

36
, φ

(D0 )
2 = −7π

36
− φ

(C0 )
2 ,

φ
(D1 )
1 = π

3
, φ

(D1 )
2 = 5π

6
− φ

(C0 )
2 ,

φ
(E0 )
1 = −φ

(C1 )
1 = π

3
− φ

(C0 )
2 , φ

(E0 )
2 = φ

(C1 )
1 = −π

3
+ φ

(C0 )
2 , φ

(E1 )
1 = −φ

(B0 )
1 = 0, φ

(E1 )
2 = 0. (B11)

Then

I (1)
5 = 1

54

[
− 47 + 32 cos

(
π

36
− φ

(C0 )
2

)
+ 36 cos

(
π

3
+ 2φ

(C0 )
2

)
+ 32 sin

7π

36

+ 16 sin

(
5π

36
− φ

(C0 )
2

)
+ 8 sin

(
π

6
+ φ

(C0 )
2

)]
,

(B12)

which arrives at its maximal value of 0.879225 at φ
(C0 )
2 = −0.429805. Hence, NL|�〉 = 0.879225. If the system is in the

maximally mixed state, then NLI = −7/6. Hence, vc = (−1/6 + 7/6)/(0.879225 + 7/6) ≈ 0.488785. �
The second (5,2,3)-scenario Bell inequality with the joint probability form is

I (2)
5 = − 1

3 P(A0 + B0 + C0 + D0 + E0 = 1) − 1
6 P(A0 + B0 + C0 + D0 + E1 = 2)

− 1
6 P(A0 + B0 + C0 + D1 + E0 = 1) − 1

3 P(A0 + B0 + C0 + D1 + E1 = 2) − 1
6 P(A0 + B0 + C1 + D0 + E0 = 1)

+ 1
6 P(A0 + B0 + C1 + D0 + E1 = 2) − 1

3 P(A0 + B0 + C1 + D1 + E0 = 1) − 1
6 P(A0 + B0 + C1 + D1 + E1 = 2)

+ 1
6 P(A0 + B1 + C0 + D0 + E0 = 1) − 1

3 P(A0 + B1 + C0 + D0 + E0 = 2) − 1
3 P(A0 + B1 + C0 + D0 + E1 = 1)

+ 1
3 P(A0 + B1 + C0 + D1 + E0 = 1) + 1

3 P(A0 + B1 + C0 + D1 + E0 = 2) − 1
6 P(A0 + B1 + C0 + D1 + E1 = 1)

− 1
2 P(A0 + B1 + C0 + D1 + E1 = 2) − 1

6 P(A0 + B1 + C1 + D0 + E0 = 1) − 1
6 P(A0 + B1 + C1 + D0 + E0 = 2)

− 1
6 P(A0 + B1 + C1 + D0 + E1 = 1) − 1

3 P(A0 + B1 + C1 + D1 + E0 = 1) − 1
3 P(A0 + B1 + C1 + D1 + E0 = 2)

+ 1
6 P(A0 + B1 + C1 + D1 + E1 = 1) − 1

6 P(A1 + B0 + C0 + D0 + E0 = 1) − 1
3 P(A1 + B0 + C0 + D0 + E1 = 2)

+ 1
6 P(A1 + B0 + C0 + D1 + E0 = 1) − 1

6 P(A1 + B0 + C0 + D1 + E1 = 2) + 1
6 P(A1 + B0 + C1 + D0 + E0 = 1)

− 2
3 P(A1 + B0 + C1 + D0 + E1 = 2) − 2

3 P(A1 + B0 + C1 + D1 + E0 = 1) + 1
6 P(A1 + B0 + C1 + D1 + E1 = 2)

− 1
6 P(A1 + B1 + C0 + D0 + E0 = 1) − 1

6 P(A1 + B1 + C0 + D0 + E0 = 2) + 1
3 P(A1 + B1 + C0 + D0 + E1 = 1)
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+ 1
6 P(A1 + B1 + C0 + D1 + E0 = 1) + 1

6 P(A1 + B1 + C0 + D1 + E0 = 2) + 1
6 P(A1 + B1 + C0 + D1 + E1 = 1)

− 1
3 P(A1 + B1 + C1 + D0 + E0 = 1) + 1

6 P(A1 + B1 + C1 + D0 + E0 = 2) − 1
3 P(A1 + B1 + C1 + D0 + E1 = 1)

+ 1
3 P(A1 + B1 + C1 + D1 + E0 = 1) + 1

3 P(A1 + B1 + C1 + D1 + E0 = 2) + 1
3 P(A1 + B1 + C1 + D1 + E1 = 1)

+ 1
2 P(A1 + B1 + C1 + D1 + E1 = 2)

LHV
� 0. (B13)

We prove that it is reduced to (A8) for e0 = e1 = 0, L = 0, NLI = −1, and NL|�〉 = 1.04589, which lead to vc ≈ 0.488785.
Proof. It is sufficient to prove that (B13) holds for the cases e0 = 0, e1 = 0, 1, 2.
Case (i). When e0 = e1 = 0, (B13) is reduced to

P(A0 + B0 + C0 + D0 = 0) − P(A0 + B0 + C0 + D0 = 1) + P(A0 + B0 + C0 + D1 = 0)

− P(A0 + B0 + C0 + D1 = 2) − P(A0 + B0 + C1 + D0 = 1) + P(A0 + B0 + C1 + D0 = 2)

+ P(A0 + B0 + C1 + D1 = 0) − P(A0 + B0 + C1 + D1 = 1) + P(A0 + B1 + C0 + D0 = 0)

− P(A0 + B1 + C0 + D0 = 2) + P(A0 + B1 + C0 + D1 = 1) − P(A0 + B1 + C0 + D1 = 2)

+ P(A0 + B1 + C1 + D0 = 0) − P(A0 + B1 + C1 + D0 = 1) + P(A0 + B1 + C1 + D1 = 0)

− P(A0 + B1 + C1 + D1 = 2) + P(A1 + B0 + C0 + D0 = 0) − P(A1 + B0 + C0 + D0 = 2)

+ P(A1 + B0 + C0 + D1 = 1) − P(A1 + B0 + C0 + D1 = 2) + P(A1 + B0 + C1 + D0 = 1)

− 4P(A1 + B0 + C1 + D0 = 2) − 4P(A1 + B0 + C1 + D1 = 1) + P(A1 + B0 + C1 + D1 = 2)

+ P(A1 + B1 + C0 + D0 = 1) − P(A1 + B1 + C0 + D0 = 2) − P(A1 + B1 + C0 + D1 = 0)

+ P(A1 + B1 + C0 + D1 = 1) − 4P(A1 + B1 + C1 + D0 = 1) + P(A1 + B1 + C1 + D0 = 2)

− 4P(A1 + B1 + C1 + D1 = 0) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2, (B14)

which is just the (4,2,3)-scenario Bell inequality (A8). Hence, when ai = b j = ck = dl = es = 0 ∀ i, j, k, l, s = 0, 1, I (2)
5 reaches

a value of zero.
Case (ii). When e0 = 0, e1 = 1, (B13) is reduced to

− P(A0 + B0 + C0 + D0 = 1) − P(A0 + B0 + C0 + D1 = 1) − P(A0 + B0 + C1 + D1 = 1)

+ P(A0 + B1 + C0 + D0 = 1) + P(A0 + B1 + C0 + D1 = 2) + P(A0 + B1 + C1 + D1 = 0)

− P(A1 + B0 + C0 + D0 = 1) − P(A1 + B0 + C1 + D0 = 1) − P(A1 + B0 + C1 + D1 = 1)

+ P(A1 + B1 + C0 + D0 = 0) + P(A1 + B1 + C1 + D0 = 2) + P(A1 + B1 + C1 + D1 = 1)
LHV
� 2. (B15)

The proof of (B15) is similar to that of (B2).
Case (iii). When e0 = 0, e1 = 2, (B13) is reduced to

−P(A0 + B0 + C0 + D0 = 1) + P(A0 + B0 + C0 + D0 = 2) − P(A0 + B0 + C0 + D1 = 0)

+P(A0 + B0 + C0 + D1 = 2) + P(A0 + B0 + C1 + D0 = 0) − P(A0 + B0 + C1 + D0 = 1)

−P(A0 + B0 + C1 + D1 = 1) + P(A0 + B0 + C1 + D1 = 2) + P(A0 + B1 + C0 + D0 = 1)

−4P(A0 + B1 + C0 + D0 = 2) − 4P(A0 + B1 + C0 + D1 = 0) + P(A0 + B1 + C0 + D1 = 1)

+P(A0 + B1 + C1 + D0 = 0) − P(A0 + B1 + C1 + D0 = 2) + P(A0 + B1 + C1 + D1 = 0)

−P(A0 + B1 + C1 + D1 = 1) − P(A1 + B0 + C0 + D0 = 0) + P(A1 + B0 + C0 + D0 = 2)

−P(A1 + B0 + C0 + D1 = 0) + P(A1 + B0 + C0 + D1 = 1) − 4P(A1 + B0 + C1 + D0 = 0)

+P(A1 + B0 + C1 + D0 = 1) + P(A1 + B0 + C1 + D1 = 0) − 4P(A1 + B0 + C1 + D1 = 1)

−P(A1 + B1 + C0 + D0 = 1) + P(A1 + B1 + C0 + D0 = 2) − P(A1 + B1 + C0 + D1 = 0)

+P(A1 + B1 + C0 + D1 = 2) + P(A1 + B1 + C1 + D0 = 0) − P(A1 + B1 + C1 + D0 = 1)

−P(A1 + B1 + C1 + D1 = 1) + P(A1 + B1 + C1 + D1 = 2)
LHV
� 2. (B16)

The proof of (B16) is similar to that of (B5).
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In order to arrive at the maximal quantum violation of (B13) for state |�〉, we can take

φ
(A0 )
0 = φ

(A1 )
0 = φ

(B0 )
0 = φ

(B1 )
0 = φ

(C0 )
0 = φ

(C1 )
0 = φ

(D0 )
0 = φ

(D1 )
0 = φ

(E0 )
0 = φ

(E0 )
1 = 0,

φ
(A0 )
1 = −π

3
− 4φ

(D1 )
2 − 6φ
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2 , φ

(A0 )
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2 = π

6
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2 ,

φ
(B0 )
1 = −π

3
+ 4φ

(D1 )
2 + 8φ
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2 , φ

(B0 )
2 = −π

4
, φ
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1 = π

3
+ 4φ

(D1 )
2 + 8φ

(C1 )
2 , φ

(B1 )
2 = π
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,

φ
(C0 )
1 = π

6
+ 2φ

(D1 )
2 + 2φ

(C1 )
2 , φ

(C0 )
2 = π

6
+ 2φ

(D1 )
2 + 4φ

(C1 )
2 , φ

(C1 )
1 = −π

6
− 2φ

(D1 )
2 − 4φ

(C1 )
2 ,

φ
(D0 )
1 = −π

6
− 2φ

(D1 )
2 − 4φ

(C1 )
2 , φ

(D0 )
2 = −π

4
− 2φ

(D1 )
2 − 4φ

(C1 )
2 , φ

(D1 )
1 = π

3
+ 4φ

(D1 )
2 + 4φ

(C1 )
2 , φ

(D1 )
2 = 0.331520,

φ
(E0 )
1 = 0, φ

(E0 )
2 = 0, φ

(E1 )
1 = 5π

6
− 6φ

(D1 )
2 − 8φ

(C1 )
2 . (B17)

In this case,

I (2)
5 = 2

27

[
− 14 + 8 cos

(
π

12
+ φ

(C1 )
2 + φ

(D1 )
2

)
+ 8 cos

(
π

6
+ 2φ

(C1 )
2 + 3φ

(D1 )
2

)]

+ 2

27

[
2 cos

(
π

4
+ 3φ

(C1 )
2 + 4φ

(D1 )
2

)
− 4 sin

(
π

12
− 5φ

(C1 )
2 − 7φ

(D1 )
2

)
+ 9 sin (8φ

(C1 )
2 + 6φ

(D1 )
2 )

]
+ 1

3
, (B18)

which arrives at its maximal value of 1.04589 at φ
(C1 )
2 = −0.075739, φ

(D1 )
2 = 0.331520. Hence, NL|�〉 = 1.04589. If the system

is in the maximally mixed state, then NLI = −1. Hence, vc = (0 + 1)/(1.04589 + 1) ≈ 0.488785. �
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