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Dynamically encircling an exceptional point in non-Hermitian systems shows a chiral state switching behavior
as a result of the nonadiabatic transition between nonorthogonal eigenstates. It has been revealed that the
chiral dynamics is protected by the topological structure of eigenvalue sheets where only one lowest-loss sheet
exists. This raises the question on what the dynamics would be in non-Hermitian systems possessing multiple
degenerate lowest-loss energy levels. Here, we address this question by studying a photonic-waveguide-array
non-Hermitian system where two exceptional points are encircled dynamically. The system possesses four
quasidegenerate lowest-loss eigenvalue sheets and such topological structure results in an exotic nonchiral
behavior for switching eigenstates such that the final state is always a superposition of the four lowest-loss
eigenstates. We find that this intriguing phenomenon is robust to a certain perturbation of the system parameters.
Our findings enrich the understanding of exceptional point-encirclement physics and may inspire potential
non-Hermitian applications for manipulating waves.
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I. INTRODUCTION

Open systems governed by non-Hermitian Hamiltonians
which extend the Hermiticity postulate and break conserva-
tion of energy induced by gain and loss, exhibit distinctive
singularities that are called exceptional points (EPs) [1–5],
at which the eigenvalues and the corresponding eigenvec-
tors coalesce simultaneously. The existence of EPs has been
realized, and relevant implementations have brought fruitful
works in various platforms including magnon polaritons [6–8]
in magnomechanics, acoustic cavities [9,10] or leaky waveg-
uides [11] in acoustics and especially coupled atom cavities
[12], optical microresonators [13–20] and coupled optical
waveguides [21–29] in optics. In addition, a series of appli-
cations associated with EPs in parity-time (PT ) symmetric
systems such as enhanced sensing [15,18,30,31], topolog-
ical photonics [32–36], unidirectional invisibility [37–40],
induced transparency [19,41,42], coherent perfect absorption
[43–46] and laser physics [13,16,20,47–49], have made fur-
ther progress over the past decade. An interesting feature of
the non-Hermitian system is its topological structure, which
is defined as the intersecting eigenvalue sheets around the EPs
in a parameter space. A remarkable phenomenon related to the
topological structure is the state switching when the EPs are
dynamically encircled [21–28,50–54]. In this process, a state
evolving on the eigenvalue sheets can experience nonadiabatic
transitions (NATs) due to the nonorthogonality of the eigen-
states in non-Hermitian systems [2,5,55]. The occurrence
of NATs is fundamentally related to the Stokes phenomena
of asymptotics [55], and accompanied by the nonadiabatic
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coupling between different eigenstates which can be expo-
nentially amplified, leading to a selective final state, which
is usually the one with lowest-loss [51,56]. As a result, the
NATs as well as the topological structure around the EPs give
rise to a chiral state switching behavior, i.e., the final state
is irrelevant to the initial state, but solely depends on the en-
circling direction [50–52,55,56]. This intriguing phenomenon
has been demonstrated and verified in a variety of experiments
[21–28,52]. Although a general rule governed the EP encir-
clement process has been proposed for periodic systems [28],
all previous studies focus on non-Hermitian systems with only
one energy level having the lowest loss. In this case, only the
NAT towards this lowest-loss sheet can occur, resulting in the
fact that the final state is a single eigenstate located on this
sheet. However, what happens to non-Hermitian systems with
multiple degenerate lowest-loss energy levels? This is still an
open question since the NAT has multiple targets, and the
dynamics would be quite different from that in the system
possessing only one lowest-loss energy level.

In this paper, we address the above question by investigat-
ing a waveguide-based non-Hermitian system with multiple
quasidegenerate lowest-loss eigenvalue sheets and revealing
the physical consequence in the process of dynamical encir-
cling of the EPs. We establish a non-Hermitian Hamiltonian
to capture the physics of the system and calculate the output
field distribution by solving the Schrödinger-like equation. We
discover an exotic nonchiral feature by encircling the EPs,
which is distinct from the acquainted chiral dynamics. What-
ever the input state is and whichever the encircling direction
is, the final state is always a superposition of multiple quaside-
generate eigenstates with lowest loss. The nonchiral dynamics
is protected by the topological structure of eigenvalue sheets
so that it is robust to system perturbations such as the device
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FIG. 1. (a) Cross-section view of the non-Hermitian system
under study which consists of eight waveguides. (b) Coupling coeffi-
cient κ as a fitting function of the gap distance g between adjacent
waveguides. The three red circles mark the values of κ1, κ2, and
κ ′ defined in (a), corresponding to gap distances of g1 = 7 μm,
g2 = 8.5 μm and g′ = 12.5 μm. (c) Schematic diagram of the non-
Hermitian waveguide arrays, where waveguides 2 and 4 exhibit a
position-dependent losses while waveguides 1 and 3 have a position-
dependent propagation constant. (d) The variation of δ(z) and γ (z)
along the waveguiding direction.

length and the form of the encircling loop. Finally, we discuss
the difference between the nonchiral and chiral characteristics
in the EP encirclement process.

II. NONCHIRAL DYNAMICS IN SYSTEMS WITH
QUASIDEGENERATE ENERGY LEVELS

The system under study is a photonic waveguide array
consisting of eight waveguides. Figure 1(a) illustrates the
cross section of the waveguide array. The waveguides 2 and
4 are lossy while the other waveguides are lossless with a
refractive index of 1.504, while that of the background is set
to be 1.5. Each waveguide has a circle cross section with a
radius of 3 μm, under which only one eigenmode polarized
along the x axis is supported which is the working mode in
this work. Such a configuration can be realized in potential
experiments by using the femtosecond laser direct writing
techniques [28,57,58]. The gap distance g between adjacent
waveguides determines the coupling coefficient κ , and their
relationship is given in Fig. 1(b). The coupling coefficient
between waveguides 1 and 2 (or 3 and 4) is denoted by κ1, and
that between waveguides 1 and 4 (or 2 and 3) is represented by
κ2. The waveguides 1, 2, 3, and 4 are coupled with 5, 6, 7, and
8 respectively, through a coupling coefficient κ ′. The values
of the three coupling coefficients are marked in Fig. 1(b).

FIG. 2. Calculated real part (a) and imaginary part (b) of the
eigenvalues of the non-Hermitian system in the δ−γ parameter
space, where the blue sheet represents four quasidegenerate eigen-
states exhibiting the lowest loss. The inset of (a) shows the position
of the two EPs and the ellipse encircling loop in the parameter space.

Figure 1(c) shows a three-dimensional schematic diagram
of our system, where some structural parameters are chang-
ing along the waveguiding direction (i.e., the z axis). To be
specific, the cross section size of waveguide 1 (or 3) is nonuni-
form along the waveguiding direction so that the propagation
constant (i.e., the eigenvalue or on-site energy which is de-
noted by β1,3) is position-dependent as β1,3(z) = β0 + δ(z),
where β0 = 1.502k0 is the propagation constant of a uniform
waveguide (e.g., the waveguides 5–8) with k0 being the wave
vector in free space. Therefore, δ(z) can be considered as a
position-dependent detuning parameter. In waveguides 2 and
4, we have introduced position-dependent losses so that their
eigenvalues can be written as β2,4(z) = β0−iγ (z), where γ (z)
represents the loss of the mode which can be realized in poten-
tial experiment by introducing scatters inside the waveguide
[28]. Figure 1(d) plots the variation of δ(z) and γ (z) where
the length of the array is L. Here we can also consider them
in a δ−γ parameter space in which their variations along the
z axis exactly form a closed loop [see the inset of Fig. 2(a)].
The propagation of photonic modes in the waveguides along
the +z axis corresponds to the evolution in this parameter
space following a clockwise (CW) loop, and vice versa for
a counterclockwise (CCW) loop description.

We show that this loop encloses two EPs so that wave
propagations in the proposed structure correspond to the dy-
namical encircling of two EPs in the considered parameter
space. To show this point, we solve the eigenvalue of the
non-Hermitian system by considering its Hamiltonian

H =
(

H ′ D
D 0

)
, (1)

where

H ′ =

⎛
⎜⎜⎜⎝

δ κ1 0 κ2

κ1 −iγ κ2 0

0 κ2 δ κ1

κ2 0 κ1 −iγ

⎞
⎟⎟⎟⎠ (2)
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and

D =

⎛
⎜⎝

κ ′ 0 0 0
0 κ ′ 0 0
0 0 κ ′ 0
0 0 0 κ ′

⎞
⎟⎠. (3)

In the Hamiltonian, the on-site energy term β0 is omitted.
We then calculate the eigenvalues of the Hamiltonian char-
acterized by the 8 × 8 matrix in the δ−γ parameter space.
The results are shown in Figs. 2(a) (real part) and 2(b) (imag-
inary part). The blue sheet represents four quasidegenerate
eigenstates that share the same lowest-loss, while the other
four eigenstates constitute the eigenvalue sheets of pairwise
bifurcation which involve two EPs. We choose the point with
δ = γ = 0 in the parameter space [see the inset of Fig. 2(a)]
as the starting point of the loop, where we label the four
eigenstates with nonzero losses as eigenmodes 1, 2, 3, and
4, which will be used as the initial states in the following
analysis. The positions of the two EPs are shown in the inset
of Fig. 2(a), namely at γ = 1.68 × 10−4k0 and γ = 3.71 ×
10−4k0(δ = 0 for both). The elliptical loop trajectory follows
the parametric equations δ(z) = 2 × 10−4k0 sin(2πz/L) and
γ (z) = 2.5 × 10−4k0(1− cos(2πz/L)), where z ∈ [0, L] for
CW loops and z ∈ [L, 0] for CCW loops. The field distribu-
tion in the evolution process can be simulated by numerical
software, but it is too time consuming and impractical. For the
sake of simplicity, the overall evolution process can be solved
by the Schrödinger-like equation i∂z|φ(z)〉 + H (z)|φ(z)〉 = 0,

where |φ(z)〉 is the instantaneous state vector. The reason
why we treat this way is that the waveguide arrays meet the
paraxial approximation conditions with a refractive index con-
traction of ∼0.004. Since the amplitude of the state vector is
decreased significantly along the waveguiding direction due to
the losses in the non-Hermitian system, we introduce a renor-
malization method for the instantaneous field to improve the
readability. Specifically, we denote |φi| (i.e., the magnitude of
the ith element of the state vector) as the “instantaneous field”
in waveguide i(i = 1, 2, . . . , 8) and |φ| as the normalization
of the instantaneous state vector. In this way, we will show the
ratio |φi|/|φ| in the following results.

We numerically calculate the evolution of the normalized
components of |φ(z)〉 in a device following a CW loop, with
the eigenmodes 1, 2, 3, and 4 being the initial state, respec-
tively. The device length is set to be L = 200 mm. The results
are shown in Figs. 3(a)–3(d). In each figure, the input (left
panel) and output field distributions (right panel) are also
drawn by considering the calculated state vector. Note that at
the output side, the phase information is not that important so
that it is shown as intensity, distinct from the input field, which
contains phase information marked with different colors. We
find that encircling two EPs in a CW loop causes the phe-
nomenon that whichever eigenmode the input is, the output
state will be approximately evenly distributed in the edge
waveguides 5–8. The output field strengths in waveguides 5
and 7 (as well as 6 and 8) are always the same, which is
governed by the symmetry of the system. The symmetry lies
in the fact that when κ ′ is significantly smaller than κ1 and
κ2, the Hamiltonian can be approximately partitioned into two
independent components: H ′ and a 4 × 4 zero matrix, while

FIG. 3. Numerically simulated evolution of the normalized com-
ponents of |φ(z)〉 (middle) by solving the Schrödinger-like equation
in our device with eigenmodes 1 (a), 2 (b), 3 (c), and 4 (d) being
the initial state. The left panel and right panel show, respectively, the
input (real part of the field) and output (field intensity) field distri-
butions. In the device, two EPs are dynamically encircled in a CW
direction which corresponds to the case that waves are propagating
along the +z axis.

four quasidegenerate eigenstates are supported in the latter
subspace. This phenomenon is different from the previous re-
sults by encircling EPs in a non-Hermitian system possessing
only one lowest-loss eigenvalue sheet, where the output state
is composed of only one eigenstate [22–28,52]. Our system
possesses four quasidegenerate lowest-loss eigenvalue sheets
and as a result, the encircling outcomes are superposition
states that consist of all the four lowest-loss eigenmodes.

The above phenomenon is related to the NATs that oc-
curred in the encircling process [21,50,55]. For a more
in-depth understanding of the mechanism, we demonstrate
the detailed physics associated with the NATs. We can
solve the Schrödinger-like equation to obtain the evolution of
the state vector |φ(z)〉 during the whole period of evolution.
This means that there are eight instantaneous eigenvectors that
can be projected onto the instantaneous state vector |φ(z)〉 at
any position on the z axis. The one with the largest amplitude
among the eight coefficients is selected as that of the domi-
nant instantaneous eigenstate. We extract the real part of the
eigenvalue of the dominant instantaneous eigenstate and plot
them in Fig. 4(a), when the eigenmodes 1–4 are used as the
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FIG. 4. (a) Calculated real part of the eigenvalue of the dominant
eigenstate in the evolution process where two EPs are dynamically
encircling in a CW direction, with eigenmodes 1, 2, 3 and 4 being
the initial condition. (b)–(e) The exacted trajectory of the dominant
eigenstate on the energy sheets with mode 1 (b), mode 2 (c), mode
3 (d) and mode 4 (e) being the initial state. Each initial state under-
goes a NAT process and evolves to be a superposition of the four
quasidegenerate states exhibiting the lowest loss eventually.

initial state (from left to right). We find that after a particular
evolutionary length, each value will abruptly drop to zero (i.e.,
β = β0), indicating the emergence of NATs from a higher-loss
state to a lower-loss one. The NAT process is irreversible so
that the states are stable when it evolves on the lowest-loss
eigenvalue sheet (i.e., the blue sheet). These NAT processes
finally result in the linear combination of the four lowest-loss
eigenstates as the output. In Figs. 4(b)–4(e), we also label the
results for the four cases separately on the real part eigenvalue
sheets, which can demonstrate the trajectories of the dominant
eigenstate in our CW-loop device. Regardless of the input, the
results clearly suggest that the final state is on the lowest-loss
degenerate sheet.

We also change the direction to encircle the EPs (i.e.,
looping in a CCW trajectory) and repeat the calculation of
Fig. 3. The results are given in Fig. 5 where the input states
are as same as the former. We present these results in the
opposite arrangement in order to distinguish them from the

FIG. 5. Numerically simulated evolution of the normalized com-
ponents of |φ(z)〉 with eigenmodes 1 (a), 2 (b), 3 (c), and 4 (d) being
the initial state. All conditions are the same as those in Fig. 3 except
for a CCW loop direction, corresponding to wave transmissions
along the -z axis.

CW loop case. Comparing the two situations with each other,
we can observe similar phenomenon that during either CW
or CCW loops, the final state is always a superposition state
that is composed of the four lowest-loss eigenmodes and the
NAT occurs merely once in the evolution process. We state
that the crossing of the calculated coefficients in the mid-
dle panel of Figs. 3 and 5 is also a hallmark of the NAT.
The results in CW and CCW loops indicate that encircling
the two EPs in our structure exhibits a nonchiral feature for
switching eigenstates. As a result, one cannot discriminate
the encircling direction by simply measuring the final state in
our system, which is in stark contrast to the system with only
one lowest-loss sheet [21–28,52], where the chiral dynamics
allows one to distinguish the encircling direction simply via
the measurement of the final state.

III. ROBUSTNESS OF THE DYNAMICS

One might ask whether these calculations are under adia-
batic conditions in the presence of NATs, which means that
the “time scale” of evolution (i.e., the length of the waveg-
uide) should be large enough. In fact, the adiabatic theorem is
indeed a prerequisite for observing EP encirclement induced
dynamics [51,56]. The system we study already satisfies the
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FIG. 6. Calculated ratio of the components of |φ(z)〉 when the
EPs are encircled in a CW loop with mode 1 being the initial state,
where the device length is (a) L = 400 mm, (b) L = 800 mm. The
right panel shows the output field patterns. (c) Calculated output
power at waveguides 5(or 7) and 6(or 8) as a function of the device
length when excited by mode 1.

adiabatic condition in terms of the length selection. This can
be verified by the fact that a similar phenomenon can be
observed when the length of the waveguide is increased. To
throw light on this opinion further, we repeat the calcula-
tion in the device analyzed in Fig. 3(a) (i.e., the dynamical
encircling in a CW loop when eigenmode 1 is used as the
input) but choose a different device length. The results with
L = 400 mm and L = 800 mm are shown in Figs. 6(a) and
6(b), respectively. Compared with Fig. 3(a), we find that under
different lengths the phenomena are the same, i.e., the fields
in edge waveguides rapidly outgrow due to NATs, while those
of the inner waveguides 1 to 4 decline to zero. However, with
the increase in the waveguide length, the NAT will appear
at a shorter relative position of the system z/L. This reveals
the so-called topological robustness of non-Hermitian systems
in the existence of NATs, which is quite different from that
in Hermitian systems as the phenomenon here is robust and
independent of the device length. We also calculate the output
power at waveguides 5 (or 7) and 6 (or 8) for lengths from 200
to 1000 mm by assuming the input power is in normalized

FIG. 7. Calculated ratio of the components of |φ(z)〉 with a
rhombus CW loop (a) and CCW loop (b) in the parameter space. The
initial state is mode 1. The inset of (a) shows the exacted position of
the two EPs and the rhombus encircling loop.

unit. The results are plotted in Fig. 3(c), which is used to
clarify the above robustness. Obviously, non-Hermitian sys-
tems possess losses, therefore the output power decays with
increasing waveguide length. Despite this, the output powers
are still distributed in the four edge waveguides, which clearly
demonstrates the robustness of the discovered phenomenon
by dynamically encircling EPs in non-Hermitian systems with
quasidegenerate energy levels.

The discovered phenomenon is also robust to the form of
the trajectories around the EPs. Let us consider a rhombus en-
circling loop in the parameter space [see the inset of Fig. 7(a)]
rather than the elliptical loop before. The starting point of
the rhombus is the same as the previous configuration, and
the coordinates of the other three vertices (on the δ−γ axis)
are (5 × 10−4k0, 0) and (2.5 × 10−4k0,±2 × 10−4k0) to en-
sure that both EPs are enclosed. We repeat the circumstances
in Figs. 3(a) and 5(a) and recalculate the mode evolution with
the results given in Figs. 7(a) (CW loop) and 7(b) (CCW
loop). Since the robust dynamics is protected by the topolog-
ical structure surrounding the EPs, the exact form of the loop
does not affect the dynamics as long as the EPs are enclosed.
The results show nothing unique compared to the elliptical
loop, except that the NAT occurs at shorter distances, which
manifests the topological robustness to the encircling loop.

IV. DISCUSSION

Finally, we discuss the difference between the chiral be-
havior brought by EP encirclement in non-Hermitian systems
with only one lowest-loss energy level [22–28] and the
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FIG. 8. A system for comparison where the edge waveguides are removed so that only one lowest-loss sheet exists. (a) and (b) The
evolution of the components of |φ(z)〉 in the EP-encirclement process in a CW (a) and CCW direction (b). (c) and (d) The trajectory of the
dominant eigenstate on the energy sheets, corresponding to the processes in (a) and (b), respectively.

nonchiral feature found in our system with multiple quaside-
generate energy levels. We build a new system for comparison
by simply removing the edge waveguides 5–8, in which only
the four eigenstates with defined nonzero losses in the previ-
ous configuration are left. The Hamiltonian then degenerates
to a 4 × 4 matrix and exhibits only one lowest-loss eigenstate
instead of the four mentioned above. We apply the same
method to explore the evolutionary chirality of this system
in both CW and CCW loops. We select the first eigenmode
(which is nearly the same as the previous defined eigenmode
1 in the eight-waveguide system) as input to demonstrate the
evolution of field and output field distribution [see Figs. 8(a)
and 8(b)] for both encircling directions. The dominant eigen-
vector projection of the corresponding process is also given
in Figs. 8(c) and 8(d). We find that the eigenmode 1 from the
upper sheet always shifts to lowest-loss one represented by the
magenta sheet in Figs. 8(c) and 8(d) after going through NAT
once. The same dynamics can also be found when the initial
state is the eigenmode 2–4 (the results are not shown here).
The output state is found to be independent of the input, but
is solely determined by the encircling direction. The output
of the CW loop is always the eigenmode 3, while that of
the CCW loop is the eigenmode 2. In this consideration, a
starting point at the PT -symmetric phase where the eigen-
states of the system share the same lowest-loss bifurcating
on both sides of the eigenvalue topology space can account
for the chiral dynamics [22,24–26,51]. Although the starting
point in the eight-waveguide system is also located at this
“PT -symmetric phase”, the four edge waveguides enable the
support of four quasidegenerate states with even lower losses,
which then can be regarded as the new target of the NATs.
Since the quasidegenerate eigenvalue sheets do not possess

the bifurcation topology, the dynamics by encircling the two
EPs is nonchiral, which is completely different from the phe-
nomenon in conventional EP-encirclement systems. We also
discuss the “time step” at which the NAT occurs in devices
with different lengths. Without loss of generality, we consider
the CW-loop device with eigenmode 1 being the input. We cal-
culate the relative position of NAT (i.e., z/L) as a function of
the device length in Fig. 9(a) and the corresponding location
in the δ−γ parameter space is also marked in Fig. 9(b). We
find that the NAT occurs at an “earlier time” when increasing
the device length. The phenomenon can be attributed to the
fact that the NAT requires that the state experiences losses for
some time on the higher-loss energy sheet. When the length
of device is longer, experiencing the same loss will make the
relative position decrease.

FIG. 9. (a) The calculated relative position of the NAT as a
function of the device length L. (b) The position of NAT in the δ−γ

parameter space for different L.
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V. CONCLUSION

In summary, we have theoretically investigated the physics
in the process of dynamically encircling EPs in a non-
Hermitian system with quasidegenerate lowest-loss eigen-
value sheets. We found a nonchiral behavior of switching
eigenstates, where the final state is a superposition of multiple
quasidegenerate states. This is in stark contrast to the previous
chiral dynamics found in the EP-encircling process where the
output is a single mode. The phenomenon is protected by the
multiple quasidegenerate eigenvalue sheets, and as a result,

it is robust to a certain disturbance of the system parameters
including the device length and the exact form of the loop. Our
work has extended the understanding in the EP-encirclement
process from another perspective and may provide new ways
to manipulate waves in non-Hermitian systems.
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