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Eigenstates of Maxwell’s equations in multiconstituent microstructures
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The eigenstates of Maxwell’s monochromatic equations in a multiconstituent composite medium are devel-
oped and used to expand a physical field that is created either by an externally given current density or by an
incident external field. The local electric permittivity κ (r), as well as the local magnetic permeability μ(r), are
assumed to have uniform values in each constituent, but to differ in the different constituents.
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I. INTRODUCTION

Eigenstates of Maxwell’s equations in a two-constituent
composite medium were first introduced in 1979 for the
quasistatic regime [1]. These were used to expand the
local electric field E(r) in such systems and subsequently
to calculate their macroscopic response [2], including the
situation where a strong, uniform, static magnetic field is
present [3]. This was extended to a similar treatment of static
elasticity in such systems [4]. It was also extended to treat
the full Maxwell equations [5]. These eigenstates were used
to expand the local physical field created by a given current
density Jex anywhere in the system. In these articles only
the dielectric constant ε and the electric conductivity σ were
assumed to have different values in the two constituents, but
the magnetic permeability μ was taken to be 1 everywhere.
More recently, eigenstates of the full Maxwell equations in
a two-constituent composite medium were defined for the
case where ε, σ , and μ are all heterogeneous [6]. In the latter
article the external field was expanded both when it results
from a given external current density Jex(r) and when it
results from a given incident field E0(r).

The eigenstates developed in this article are special
monochromatic fields, electric as well as magnetic, with a
given fixed angular frequency ω which is real. Thus the
material moduli of the various constituents—εi(ω), σi(ω),
μi(ω)—have well-defined values which can be measured ex-
perimentally. The eigenvalues of Maxwell’s equations in any
composite mixture of these constituents are special values
of the constituent moduli or their ratios for which nontriv-
ial solutions of those equations exist without any current
or charge sources. This scheme differs from other schemes,
such as the quasinormal modes, where the eigenvalues are
special, nonphysical values of the frequency ω [7,8]. Those
are usually complex quantities, therefore one needs to extend
the functions εi(ω), σi(ω), μi(ω) into the complex plane of
ω. In our approach the unphysical nature only appears in
the eigenvalues of εi, σi, μi. Also, the eigenstates are always
solutions of a linear partial differential equation. By contrast,
in the quasinormal mode scheme, where the eigenvalues are
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special, nonphysical, complex values of ω, and where εi, σi, μi

depend on that ω, the calculation of the eigenstates becomes a
nonlinear problem [7,8].

In this article, I continue to develop the approach described
in Ref. [6] to the case of a multiconstituent composite. This
can be applied to the case where the composite is an array of
spherical inclusions of various sizes and physical properties
(i.e., various different values of εi, σi, and μi) embedded in an
otherwise uniform host constituent. As an example we treat in
detail the case of a single metallic sphere which is excited by
a point-source electric current density.

Because the eigenstates of an isolated spherical inclusion
are known in essentially closed form, the calculation of the
local electric field is also achieved in essentially closed form.
That is quite different from calculations of the field in such
a system using COMSOL or other numerical procedures—see,
e.g., Ref. [9].

In Sec. II the basic theory of the eigenstates is presented.
In Sec. III the expansion of a physical field in the eigenstates
is presented. In Sec. IV the main conclusions resulting from
this article are described. In the Appendix the eigenstates of
an isolated sphere are developed. They are used in Sec. III
to calculate the physical field produced by a current density
source outside of the sphere. They are also used in that sec-
tion to set up the calculation of the eigenstates of a collection
of nonintersecting spherical inclusions.

II. THE BASIC THEORY

Maxwell’s equations, which are first-order partial differen-
tial equations (PDEs) for the two vector fields E(r), H(r),

∇ · (εE) = 4πρ, (1)

∇ × E = −1

c

∂ (μH)

∂t
, (2)

∇ · (μH) = 0, (3)

∇ × H = 1

c

∂ (εE)

∂t
+ 4π

c
(σE + Jex), (4)
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are first translated into a single second-order PDE for a
monochromatic version of either E or H, where the time
dependence is always given by a multiplicative factor e−iωt :

−∇ × (∇ × E) + k2
nE

= k2
n

∑
i

uiθiE −
∑

i

vi∇ × [θi(∇ × E)] − 4π iωμn

c2
Jex,

(5)

−∇ × (∇ × H) + k2
nH = k2

n

∑
i

wiθiH

−
∑

i

ti∇ × [θi(∇ × H)]

− 4π i

cκn
∇ ×

[(
1 +

∑
i

tiθi

)
Jex

]
.

(6)

Here, θi(r) = 1 for r inside the subvolume Vi of the i con-
stituent and θi(r) = 0 elsewhere, while

κi ≡ εi + 4π iσi

ω
, k2

i = ω2

c2
κiμi, (7)

ui = 1 − κi

κn
, ti = 1 − κn

κi
= ui

ui − 1
, (8)

vi = 1 − μn

μi
, wi = 1 − μi

μn
= vi

vi − 1
, (9)

where εi, σi, and μi are the dielectric constant, electric con-
ductivity, and magnetic permeability of that constituent. Note
that un, tn, vn, and wn all vanish. The local externally given
current density Jex is assumed to differ from 0 only in the
n constituent. The constituent moduli κi and μi are complex
quantities, in general. If these constituents are real physical
materials, then Im(εi ), Re(σi ), and Im(μi ) are all non-negative
quantities. In that case these quantities represent energy dissi-
pation. However, when eigenstates are being considered, these
quantities can have negative values. The wave number kn is
given by

k2
n ≡ ω2

c2
κnμn,

i.e., it is the wave number in the n constituent.
The following equations define eigenstates of Eq. (5):

−∇ × (∇ × E(u)
im

) + k2
nE(u)

im = k2
nuimθiE

(u)
im , (10)

−∇ × (∇ × E(v)
im

) + k2
nE(v)

im = −vim∇ × [
θi

(∇ × E(v)
im

)]
.

(11)

Clearly, these are also eigenstates of Eq. (6):

H(w)
im = E(u)

im , wim = uim, H(t )
im = E(v)

im , tim = vim. (12)

The E(v)
im and H(w)

im eigenfunctions are related to each other by
means of Eq. (4) where Jex = 0,

∇ × E(u)
im ≡ ∇ × H(w)

im = − iω

c
κimE(v)

im ,

where κim is the value of κ in the eigenstate E(u)
im . Therefore,

when r ∈ Vi we get

E(v)
im = − c

iωκn(1 − uim)

(∇ × E(u)
im

)
. (13)

All the eigenfunctions are divergence free everywhere while
the physical fields E and H are divergence free only outside
Vn. Therefore we can only expand them in terms of the eigen-
functions outside of Vn.

We will assume that only Vp extends out to infinity and
that Jex does not. Therefore the local physical fields E, H,
as well as the various eigenfunctions, all behave asymptoti-
cally as aeikr/r with a ⊥ r when r → ∞, where k = kn in
all cases except for E(u)

pm and E(v)
pm, when k = kn

√
1 − upm and

k = kn
√

1 − wpm, respectively. From this asymptotic behavior
it follows that [10]

∇ × E = (n × a)
ik

r
eikr + O

(
1

r2

)
, n ≡ r

r
⊥ a. (14)

We now consider the following integral,∫
dV E · [ − ∇ × (∇ × F) + k2

nF
]
. (15)

This is easily transformed into the sum of a surface integral
over the system envelope and a volume integral that is sym-
metric in the two vector fields, which behave asymptotically
as E ∝ aEeikEr/r and F ∝ aFeikFr/r:∮

dS · [E × (∇ × F)]

−
∫

dV
[
(∇ × E) · (∇ × F)] − k2

n (E · F)
]
. (16)

In order that the volume integral converge and that the
surface integral tend to 0 when the system envelope is sent to
infinity, it is necessary that the wave numbers kE and kF have
an imaginary part which is greater than 0. This requirement
dictates which of the two square roots should be used in the
definition

k ≡
(

ω2

c2
κμ

)1/2

.

If κi and μi are both real and both positive or both negative,
then we need to regularize them by adding a small positive
imaginary part iδ to the wave number k. This will result in
a convergent behavior for eikr . At the end of the calculation
we then need to let δ tend to 0 through positive values, i.e.,
δ → 0+. These ideas and regularizations apply to the physical
field as well as to the eigenfunctions.

It follows that the integral in Eq. (15) equals the following
integral, ∫

dV F · [ − ∇ × (∇ × E) + k2
nE

]
. (17)

Applying this result to the two eigenfunctions E(u)
il , E(u)

im we
find that

0 = (uil − uim)
∫

dV θi
(
E(u)

il · E(u)
im

) ≡ (uil − uim)
〈
E(u)

il

∣∣E(u)
im

〉
i,

(18)
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where we have defined the i-scalar product of E and F as

〈E|F〉i ≡
∫

dV θi(E · F). (19)

We now get that E(u)
il and E(u)

im are orthogonal inside Vi unless
uil = uim. Applying the equality of the integrals of Eqs. (15)
and (17) to the two eigenfunctions E(v)

il and E(v)
im we find that

0 = (vil − vim)
∫

dV θi
(∇ × E(v)

il

) · (∇ × E(v)
im

)
. (20)

From this it follows that E(v)
il and E(v)

im are i orthogonal in the
sense that∫

dV θi
(∇ × E(v)

il

) · (∇ × E(v)
im

) ≡ 〈∇ × E(v)
il

∣∣∇ × E(v)
im

〉
i

(21)
vanishes unless vil = vim. The biorthogonality properties de-
scribed by Eqs. (18) and (20) can be used to expand physical
fields in terms of the eigenfunctions. We note that the scalar
product defined by Eq. (19), when F ≡ E, is not necessarily

a nonzero quantity. When this becomes a crucial property, as
sometimes in the case of eigenfunctions, this must therefore
be checked in each case.

We also note that in order to derive Eqs. (18) and (20)
it was necessary to define scalar products of vector fields in
Hilbert space by Eq. (19). The usual definition of such a scalar
product would have E replaced by its complex conjugate E∗.
That is why the eigenstates form a biorthogonal set and not an
orthogonal set.

We recall that both types of eigenfunctions are divergence
free. By contrast, the physical fields are only divergence free
where Jex = 0. Therefore they can only be expanded in series
of the eigenfunctions inside Vi for i �= n. These expansions
will be represented as

θiE = θi

∑
l

Ail E
(u)
il = θi

∑
l

Bil E
(v)
il , i �= n. (22)

The expansion coefficients Ail are calculated by considering
the following vanishing differences of integrals:

0 =
∫

dV E(u)
im · [ − ∇ × (∇ × E) + k2

nE
] −

∫
dV E · [ − ∇ × (∇ × E(u)

im

) + k2
nE(u)

im

]
= k2

n

∑
j

u j

∫
dV θ j

(
E(u)

im · E
) −

∑
j

v j

∫
dV E(u)

im · [∇ × θ j (∇ × E)] − k2
nuim

∫
dV θi

(
E · E(u)

im

)

− 4πωμn

c2

∫
dV

(
E(u)

im · Jex
)
. (23)

In order to continue we use the first expansion from
Eq. (22) for the physical field E(r) to deal with terms such
as

θi∇ × [θ j (∇ × E jl )] (24)

in Eq. (23). Because we assume that there are no overlaps
between different subvolumes Vi, therefore the last expression

vanishes when j �= i. However, when j = i this expression
becomes problematic. In order to circumvent any possible
complications, we will take Vi to be slightly larger than Vj

in all directions. At the end of the calculations we will take
the limit Vi → Vj . We will therefore be able to ignore θi in
Eq. (24) and transform the second term on the right-hand side
of Eq. (23) as follows:

∫
dV E(u)

im · [∇ × θ j (∇ × E)] = −
∫

dV ∇ · [
E(u)

im × θ j (∇ × E)
] +

∫
dV θ j

(∇ × E(u)
im

) · (∇ × E)

= −
∮

θ jdS · [
E(u)

im × (∇ × E)
] + 〈∇ × E(u)

im

∣∣∇ × E
〉

j
. (25)

The surface integral is over the system envelope. It tends to zero when that envelope is sent to infinity. This leads from Eq. (23)
to the following set of inhomogeneous linear algebraic equations for the Ajl coefficients:

0 = k2
n (ui − uim)Aim

〈
E(u)

im

∣∣E(u)
im

〉
i
+ k2

n

∑
jl, j �=i

u jA jl
〈
E(u)

im

∣∣E(u)
jl

〉
j
−

∑
jl

v jA jl
〈∇ × E(u)

im

∣∣∇ × E(u)
jl

〉
j
− 4π iωμn

c2

〈
E(u)

im

∣∣Jex
〉
n
. (26)

A similar development leads to equations for the other expansion coefficients Bjl :

0 =
∫

dV E(v)
im · [ − ∇ × (∇ × E) + k2

nE
] −

∫
dV E · [ − ∇ × (∇ × E(v)

im

) + k2
nE(v)

im

]
= k2

n

∑
j

u j

∫
dV θ j

(
E(v)

im · E
) −

∑
j

v j

∫
dV E(v)

im · [∇ × θ j (∇ × E)] − 4πωμn

c2

∫
dV

(
E(v)

im · Jex
)

+vim

∫
dV E · [∇ × θi

(∇ × E(v)
im

)]
. (27)
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Using the second expansion from Eq. (22) for the physical field E(r) we get the following set of inhomogeneous linear algebraic
equations for the Bjl coefficients:

0 = (vim − vi )Bim
〈∇ × E(v)

im

∣∣∇ × E(v)
im

〉
i + k2

n

∑
jl

u jB jl
〈
E(v)

im

∣∣E(v)
jl

〉
j −

∑
jl, j �=i

v jB jl
〈∇ × E(v)

im

∣∣∇ × E(v)
jl

〉
j − 4π iωμn

c2

〈
E(v)

im

∣∣Jex
〉
n.

(28)

Note that Eq. (26) remains valid even if 〈E(u)
im |E(u)

im 〉i =
0. Likewise, Eq. (28) remains valid even if 〈∇ × E(v)

im |∇ ×
E(v)

im 〉i = 0. This means that even if those eigenstates are not
normalizable, the coefficients Aim and Bim can still be found,
and used to expand the physical fields.

III. EXPANDING A PHYSICAL FIELD

Because un, vn, tn, and wn all vanish, therefore all the θi-
dependent terms in Eqs. (5) and (6) can be expanded in the
various divergence-free eigenfunctions. For example,

k2
n

∑
i

uiθiE = k2
n

∑
im

uiθiAimE(u)
im

=
∑
im

ui

uim
Aim

[ − ∇ × (∇ × E(u)
im

) + k2
nE(u)

im

]
,

(29)

where we have used Eq. (10) to get the final result, which no
longer includes the step functions θi(r). Similarly, we get that

−
∑

i

vi∇ × [θi(∇ × E)]

= −
∑
im

viBim∇ × [
θi

(∇ × E(v)
im

)]

=
∑
im

vi

vim
Bim

[ − ∇ × (∇ × E(v)
im

) + k2
nE(v)

im

]
, (30)

where we have used Eq. (11) to get the final result, which no
longer includes the step functions θi(r).

Using these results to expand the terms in Eq. (5) which
depend upon θi we finally get the following PDE for the
physical field E:[ − ∇ × (∇×) + k2

n

]
·
[

E −
∑
im

ui

uim
AimE(u)

im −
∑
im

vi

vim
BimE(v)

im

]
= −4π iωμn

c2
Jex.

(31)

The quantity inside the large square brackets is just the “inci-
dent field E0,” which satisfies the following PDE:

−∇ × (∇ × E0) + k2
nE0 = −4π iωμn

c2
Jex. (32)

Therefore the local physical field in the composite medium is
given by

E = E0 +
∑
im

ui

uim
AimE(u)

im +
∑
im

vi

vim
BimE(v)

im (33)

for all values of r. Note that all the sums over i in Eqs. (29)–
(31) and (33) in practice do not include the value i = n.

In order to use a given incident field E0 to calculate the lo-
cal physical field consider the following vanishing difference
of two integrals:

0 =
∫

dV E(u)
im · [ − ∇ × (∇ × E0) + k2

nE0
]

−
∫

dV E0 · [ − ∇ × (∇ × E(u)
im

) + k2
nE(u)

im

]
= −4π iωμn

c2

〈
E(u)

im

∣∣Jex
〉
n − k2

nuim
〈
E0

∣∣E(u)
im

〉
i. (34)

From this it follows that

−4π iωμn

c2

〈
E(u)

im

∣∣Jex
〉
n = k2

nuim
〈
E0

∣∣E(u)
im

〉
i. (35)

This can be substituted for the inhomogeneous term in
Eq. (26) in order to calculate the Ajl expansion coefficients.

A similar treatment where E(v)
im replaces E(u)

im leads to

0 =
∫

dV E(v)
im · [ − ∇ × (∇ × E0) + k2

nE0
]

−
∫

dV E0 · [ − ∇ × (∇ × E(v)
im

) + k2
nE(v)

im

]
= −4π iωμn

c2

〈
E(v)

im

∣∣Jex
〉
n + vim

〈∇ × E0

∣∣∇ × E(v)
im

〉
i.

(36)

From this it follows that

−4π iωμn

c2

〈
E(v)

im

∣∣Jex
〉
n = −vim

〈∇ × E0|∇ × E(v)
im

〉
i. (37)

This can be substituted for the inhomogeneous term in
Eq. (28) in order to calculate the Bjl expansion coefficients.

A. One or two isolated spherical inclusions

A simple example is the field created by a source current
that is near an isolated sphere of volume V1 centered at the
origin. We assume that μ has the same value in the inclusions
and in the host and that only κ differs in the two constituents.
In order to calculate this field we specialize Eq. (26) to read

A1l = 1

u1 − u1l

4π i

ωκ2

〈E1l |Jex〉2

〈E1l |E1l〉1
. (38)

We assume that Jex is a point source, namely

Jex(r) = J0δ
3(r − r0).

It follows that, if the physical value of u1 is very close to
the eigenvalue u1l , then only one term is important in the

062213-4



EIGENSTATES OF MAXWELL’S EQUATIONS IN … PHYSICAL REVIEW A 105, 062213 (2022)

expansion of the physical field E(r) in Eq. (33):

E ≈ A1l
u1

u1l
E1l (r)

= u1

u1l

1

u1 − u1l

4π i

ωκ2

[J0 · E1l (r0)]E1l (r)

〈E1l |E1l〉1
.

When |k2a|  1, all the eigenvalues u(E )
bl and u(M )

bl , b � 1,
are large, real, and positive [see Eqs. (A6) and (A7)]. The pa-
rameters ε1 and ε2 are real and positive when both constituents
are dielectrics. However, if the sphere is metallic, and if the
electromagnetic (EM) frequency ω is much greater than the
inverse relaxation time 1/τ but much less than the plasma
frequency ωp, then ε1 is real and can be negative. Therefore
u1 can also be real, O(1), and positive. Consequently, usu-
ally the only eigenvalue that can be near u1 is one of the
u(M )

0l , i.e., a quasistatic eigenvalue. The series representation of
the physical field, Eq. (33), is always a useful expansion—it
allows that field to be calculated as a sum over the eigenfunc-
tions. Each of these is an electric multipole field of order l .
By contrast, the incident field E0, which would be observed
if the spherical inclusion were absent, is always an electric
dipole field at large distances—see Ref. [10]. In this simple
example all the eigenstates, as well as the local physical field,

are obtained as closed-form expressions—see Eqs. (A19)–
(A24) in the Appendix.

This will work also for a collection of nonoverlapping
spheres, even when those are quite close to each other.

When there are just two such spheres, i = 1, 2 for the
spheres, i = 3 for the homogeneous host medium, where
μ1 = μ2 = μ3, then Eqs. (26) become

(u1m − u1)
〈
E(u)

1m

∣∣E(u)
1m

〉
1A1m =

∑
l

u2A2l
〈
E(u)

1m

∣∣E(u)
2l

〉
2

− 4π i

ωκ3

[
E(u)

1m(r0) · J0
]
, (39)

(u2m − u2)
〈
E(u)

2m

∣∣E(u)
2m

〉
2A2m =

∑
l

u1A1l
〈
E(u)

2m

∣∣E(u)
1l

〉
1

− 4π i

ωκ3

[
E(u)

2m(r0) · J0
]
. (40)

Here, I have again assumed that

Jex = J0δ
3(r − r0), |r0| > a,

where r0 ∈ V3. From Eqs. (39) and (40) we obtain the follow-
ing equations, where A1m and A2m appear separately:

(u1m − u1)
〈
E(u)

1m

∣∣E(u)
1m

〉
1A1m −

∑
l,p

A1p
u1u2

u2l − u2

〈
E(u)

2l

∣∣E(u)
1p

〉
1

〈
E(u)

1m

∣∣E(u)
2l

〉
2〈

E(u)
2l

∣∣E(u)
2l

〉
2

= − 4π i

ωκ3

{[
(E(u)

1m(r0) · J0
] +

∑
l

u2

u2l − u2

〈
E(u)

1m

∣∣E(u)
2l

〉
2〈

E(u)
2l

∣∣E(u)
2l

〉
2

[
E(u)

2l (r0) · J0
]}

, (41)

(u2m − u2)
〈
E(u)

2m

∣∣E(u)
2m

〉
2A2m −

∑
l,p

A2p
u1u2

u1l − u1

〈
E(u)

2m

∣∣E(u)
1l

〉
1

〈
E(u)

1l

∣∣E(u)
2p

〉
2〈

E(u)
1l

∣∣E(u)
1l

〉
1

= − 4π i

ωκ3

{[
(E(u)

2m(r0) · J0
] +

∑
l

u1

u1l − u1

〈
E(u)

2m

∣∣E(u)
1l

〉
1〈

E(u)
1l

∣∣E(u)
1l

〉
1

[
E(u)

1l (r0) · J0
]}

. (42)

Although these two systems of equations are somewhat sim-
pler than Eqs. (39) and (40), since they can be solved
separately, they are still difficult to handle. In particular, they
do not allow a simple discussion of the case where u1 or u2 is
close to one of the cluster eigenvalues.

A different technique for treating a collection of nonin-
tersecting inclusions made of the same material is to first
calculate the eigenstates E(u)

α (r) of the cluster. This can be
done using the approach described in Eq. (44) of Ref. [6]: The
eigenstates of the cluster are expanded in those of the isolated
inclusions,

θiE(u)
α = θi

∑
m

A(α)
im E(u)

im .

The coefficients A(α)
im satisfy the following equations,

1

uα

A(α)
im =

∑
jl

Mim, jl A
(α)
jl , (43)

Mim, jl = 1

uim

〈
E(u)

im

∣∣E(u)
jl

〉
j〈

E(u)
im

∣∣E(u)
im

〉
i

, (44)

where M̂ is a symmetric matrix if 〈E(u)
im |E(u)

im 〉i = 1, i.e.,
Mjl,im = Mim, jl , which depends only on the isolated inclusion
eigenstates. If the source Jex(r) of the physical field is nonzero
only in the host medium, then that field can be expanded
inside the cluster of inclusions using the cluster eigenstates
as in Eq. (22).

The overlap integral of eigenstates from two different iden-
tical spheres

〈
E(u)

bm

∣∣E(u)
b′l

〉
b
=

∫
dV θb

(
E(u)

bm · E(u)
b′l

)
, b �= b′,

can be found in Ref. [11]. Here, we only reproduce it for the
case where both eigenstates are of the transverse electric field
type. The suffixes b, b′ characterize the locations of the partic-
ular spheres and the particular isolated sphere eigenstates in
question.

In order to calculate the overlap integrals of eigenstates
from two spheres, one of which is centered at the origin while
the other is centered at an arbitrary point b, we need to expand
the latter state in terms of the vector spherical harmonics
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around the origin [see Eq. (48) in Ref. [11]]:

fl (k|r − b|)YJlM (r−b =
∑

l ′J ′M ′λμ

il ′−l+λ(−1)1+l+l ′−M ′
[4π (2l + 1)(2l ′ + 1)(2J + 1)(2J ′ + 1)(2λ + 1)]1/2

×
(

λ J ′ J
μ M ′ −M

)(
λ l ′ l
0 0 0

){
λ J ′ J
1 l l ′

}
fλ(k|b|)Yλμ(b) jl ′ (kr)YJ ′l ′M ′ (r )

× for |b| > a and |r − b| > a. (45)

Using this expansion, we get the following result [see Eq. (32) in Ref. [11]],〈
E(M )

blm

∣∣E(M )
b′l ′m′

〉
b′ = A(M )

bl A(M )
b′l ′ (−1)1+l−l ′−m′

(4π )1/2(2l + 1)(2l ′ + 1)Il
(
a, u(M )

bl

)
×

∑
λμ

iλ(2λ + 1)1/2

(
λ l l ′
μ m −m′

)(
λ l l ′
0 0 0

){
λ l l ′
1 l ′ l

}
h(1)

λ (k|b′ − b|)Yλμ(b′−b), (46)

where

Il (a, u) ≡
∫ a

0
dr r2 jl [kr(1 − u)1/2] jl (kr) = − a3

kau
[ jl (x) jl−1(ka) − (1 − u)1/2 jl−1(x) jl (ka)]x=ka(1−u)1/2 ,

and where A(M )
bl , A(M )

b′l ′ are the normalization coefficients of the two eigenfunctions.

If the separation between any pair of spheres is much
greater than the radii a, then the spheres can often be treated as
isolated. The only case when this is unjustified is when the two
isolated-sphere eigenstates are the same and the eigenvalues
u(F )

1m = u(F )
2m are very close to u1 = u2. In that case the isolated-

sphere eigenvalue is split by the interaction and one of the
split values can be very close to u1 = u2. This can lead to an
enhanced response of the pair of spheres to the field source
Jex which would depend sensitively on the sphere separation.

The two-sphere eigenstates were calculated in detail for
the case where μ is homogeneous in Refs. [11,12]. They
were then used to calculate the lifetimes of eigenstates in
such systems, including both quasistatic and nonquasistatic
eigenstates.

In a future publication the procedure outlined in this article
will be applied to more complex microstructures, e.g., to a
dense cluster of spherical inclusions, to a periodic array of
such inclusions, and to cases where both κ (r) and μ(r) are
heterogeneous.

IV. CONCLUSIONS

Eigenstates of Maxwell’s equations in a composite medium
have been extended to deal with a multiconstituent structure
where each constituent i has a subvolume Vi where it is a
uniform material with its own values of electric permittivity κi

and magnetic permeability μi. The eigenfunctions are vector
functions Eiα of the electric field which are divergence free
in each constituent. The eigenvalues are essentially special
values of κi and μi. The physical fields E(r) and H(r) were
assumed to be produced by a given electric current density
Jex(r) which is nonzero only in one constituent, denoted by
the suffix n. Consequently ∇ · E = ∇ · H = 0 in all the sub-
volumes Vi, with the exception of Vn. Therefore the physical
fields can be expanded in a series of eigenfunctions only
inside Vi, i �= n. This is sufficient for obtaining expressions
for the physical fields that are valid everywhere, i.e., even
inside Vn. I assumed that the eigenfunctions form a complete
set inside all Vi, i �= n. I showed how E(r) can be calculated

in a collection of nonintersecting inclusions in terms of the
eigenfunctions of the isolated inclusions. This was shown in
detail for a collection of spherical inclusions, in particular for
a single pair of spheres. This works even if the spheres are
very close to each other and the constituent permittivities are
very close to some of the eigenvalues.
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APPENDIX: EIGENFUNCTIONS OF
AN ISOLATED SPHERE

This Appendix is based upon the Appendix of Ref. [6]. Our
discussion will therefore be brief. More details appear in that
article.

The inside of the sphere, of radius a, is called V1, and its
outside is called V2. The sphere is taken to be centered at the
origin. The E(u)

blm eigenfunctions are of two types—transverse
electric field and transverse magnetic field [these are eigen-
states for the inside of the sphere]:

E(uE )
blm (r) ∝ jl (kbl r)Yllm(), r < a,

H(uM )
blm (r) ∝ jl (kbl r)Yllm(), r < a.

(A1)

Here, YJlm() is a vector spherical harmonic (VSH), defined
by

YJlM () =
∑
mq

Ylm()eq(lm1q|l1JM ), (A2)

jl is the regular spherical Bessel function, and

k2
bl ≡ ω2

c2
κ2μ2(1 − ubl ),
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where ubl is the eigenvalue of E(u)
blm in Eq. (10). The vectors eq,

q = −1, 0, 1 are the complex spherical unit vectors

e0 ≡ ez, e±1 ≡ ∓ 1√
2

(ex ± iey)

and (lm1q|l1JM ) is a Clebsch-Gordan coefficient. Note
that Yllm = −i(r × ∇)Ylm/

√
l (l + 1) is perpendicular to the

position vector r. When r > a, the above two eigenfunc-
tions have jl (kbl r) replaced by h(1)

l (k2r), where h(1)
l is the

singular outgoing spherical Bessel function. The eigenfunc-
tions must satisfy the usual continuity conditions on the
tangential components of the electric and magnetic fields at
the sphere surface. These are quite straightforward to apply in
the case of the transverse electric field eigenfunctions, since
YllM () ⊥ r. In the case of the transverse magnetic field
eigenfunctions the electric field is no longer transverse, in
contrast with the magnetic field, since E ∝ 1

κ
(∇ × H), from

which it follows that [see Eq. (5.9.19) in Ref. [13]]

E ∝ 1

κ (r)
∇ × fl (kr)Yllm = i

κ (r)

[(
l

2l + 1

)1/2( d

dr
− l

r

)
fl (kr)Yl l+1 m +

(
l + 1

2l + 1

)1/2( d

dr
+ l + 1

r

)
fl (kr)Yl l−1 m

]

= − ik

κ (r)

[(
l

2l + 1

)1/2

fl+1(kr)Yl l+1 m −
(

l + 1

2l + 1

)1/2

fl−1(kr)Yl l−1 m

]
, (A3)

where fl can be any spherical Bessel function. This is not
perpendicular to r. The component of this electric field which
is perpendicular to r can be obtained by noting that, for any
function φ(r), the following equality holds,

r × [∇ × φ(r)Yllm()] = − ∂

∂r
[rφ(r)]Yllm()].

The continuity requirements at the sphere surface lead to
the following equations for the eigenvalues u(E )

bl and u(M )
bl :

y j′l (y)

jl (y)

∣∣∣∣
y=k2a

√
1−u(E )

bl

= xh(1)′
l (x)

h(1)
l (x)

∣∣∣∣
x=k2a

, (A4)

[
1

y2
+ j′l (y)

y jl (y)

]
y=k2a

√
1−u(M )

bl

=
[

1

x2
+ h(1)′

l (x)

xh(1)
l (x)

]
x=k2a

.

(A5)

These are transcendental equations which can usually only be
solved numerically. Only when the sphere is much smaller
than the incident wavelength 2π/k2, i.e., |k2|a  1, can the
small argument form of h(1)

l (x) be used to get the following
closed-form results [ybl , b � 1 is the bth zero of jl (y)],(

k(E )
bl

k2

)2

≡ 1 − u(E )
bl ≈ y2

b l−1

k2
2a2

= O

(
1

|k2|2a2

)
� 1, (A6)

where

jl−1
(
k(E )

bl a
) ≈ (k2a)2

(2l − 1)yb l−1
jl (yb l−1);

(
k(M )

bl

k2

)2

≡ 1 − u(M )
bl ≈ y2

bl

k2
2a2

= O

(
1

|k2|2a2

)
� 1, (A7)

where

jl
(
k(M )

bl a
) ≈ − (k2a)2

lybl
jl−1(ybl );

(
k(M )

0l

k2

)2

≡ 1 − u(M )
0l = − l + 1

l
+ O(|k2|2a2). (A8)

From these results it follows that, when |k2|a  1, then
u(E )

bl � 1 and u(M )
bl � 1 for all b � 1 while u(M )

0l ≈ (2l +
1)/l = O(1).

Because of the spherical symmetry, the eigenvalues
u(E )

bl , u(M )
bl have much degeneracy—they are independent of

m. Also, we can reorganize the biorthogonality properties of
the eigenstates as follows [5]: First, we now define the scalar
product in the more standard way as

〈E|F〉i ≡
∫

dV θi(E∗ · F) = 〈F|E〉∗i .
Second, the left eigenfunction that is conjugate to any of the
right eigenfunctions is defined by

C[ fnl (r)Yllm()] ≡ f ∗
nl (r)Yllm(),

C[∇ × fnl (r)Yllm()] ≡ ∇ × f ∗
nl (r)Yllm(),

i.e., only the radial part is complex conjugated. It follows that

C
{

1

κ (r)
[∇ × fl (kr)Yllm()]

}∗
= −i

k

κ (r)

[(
l

2l + 1

)1/2

fl+1(kr)Y∗
l l+1 m −

(
l + 1

2l + 1

)1/2

fl−1(kr)Y∗
l l−1 m

]
. (A9)

Using Eqs. (A3) and (A9) with fl (kr) = jl (k
(M )
bl r) when r < a and fl (kr) = h(1)

l (k2r) when r > a for the transverse magnetic
field eigenfunctions E(uM )

1blm , which will henceforth be denoted as E(M )
blm , we now get

E(M )
blm ≡ ic

ωκ (r)

(∇ × H(M )
blm

) = k(M )
bl

κ
(M )
bl

A(M )
bl

[(
l

2l + 1

)1/2

jl+1
(
k(M )

bl r
)
Yll+1 m() −

(
l + 1

2l + 1

)1/2

jl−1
(
k(M )

bl r
)
Yll−1 m()

]
, r < a,

E(M )
blm = k2

κ2
B(M )

bl

[(
l

2l + 1

)1/2

h(1)
l+1(k2r)Yll+1 m() −

(
l + 1

2l + 1

)1/2

h(1)
l−1(k2r)Yll−1 m()

]
, r > a.

062213-7



DAVID J. BERGMAN PHYSICAL REVIEW A 105, 062213 (2022)

The normalization properties of the V1 eigenfunctions become

1 =
∫

r< a
dV

[
CE(E )

blm

]∗ · E(E )
blm

= [
A(E )

bl

]2
∫

r<a
dV

[
jl
(
k(E )

bl r
)]2|Yllm|2 ≈ [

A(E )
bl

]2
∫

r<a
r2 dr

[
jl
(
k(E )

bl r
)]2

= [
A(E )

bl

]2
{

r3

2

([
jl
(
k(E )

bl r
)]2 − jl−1

(
k(E )

bl r
)

jl+1
(
k(E )

bl r
))}a

0

≈ [
A(E )

bl

]2 a3

2
j2
l (ybl−1), (A10)

1 =
∫

r<a
dV

[
CE(M )

blm

]∗ · E(M )
blm

=
(

k(M )
bl

κ
(M )
bl

)2 ∫
r<a

dV
[
A(M )

bl

]2
[

jl+1
(
k(M )

bl r
)( l

2l + 1

)1/2

Y∗
l l+1 m() − jl−1

(
k(M )

bl r
)( l + 1

2l + 1

)1/2

Y∗
l l−1 m()

]

×
[

jl+1
(
k(M )

bl r
)( l

2l + 1

)1/2

Yl l+1 m() − jl−1
(
k(M )

bl r
)( l + 1

2l + 1

)1/2

Yl l−1 m()

]

=
(

k(M )
bl

κ
(M )
bl

)2[
A(M )

bl

]2
∫

r<a
r2dr

{
l

2l + 1

[
jl+1

(
k(M )

bl r
)]2 + l + 1

2l + 1

[
jl−1

(
k(M )

bl r
)]2

}

=
(

k(M )
bl

κ
(M )
bl

)2[
A(M )

bl

]2 a3

2

[
l

2l + 1

(
j2
l+1

(
k(M )

bl a
) − jl

(
k(M )

bl a
)

jl+2
(
k(M )

bl a
))

+ l + 1

2l + 1

(
j2
l−1

(
k(M )

bl a
) − jl−2

(
k(M )

bl a
)

jl
(
k(M )

bl a
))] ≈ a

2

[
A(M )

bl

]2 (k2a)4 j2
l+1(ybl )

κ2
2 y2

bl

, (A11)

1 =
∫

r<a
dV

[
CE(M )

0lm

]∗ · E(M )
0lm =

(
k(M )

0l

κ
(M )
0l

)2
(A(M )

0l )2

2l + 1

∫
r<a

r2dr
[
l j2

l+1

(
k(M )

0l r
) + (l + 1) j2

l−1

(
k(M )

0l r
)]

≈ a(l + 1)
[
A(M )

0l

]2

κ2
2

(
− l + 1

l

)l−2 (k2a)2l

[(2l + 1)!!]2
. (A12)

These expressions determine the normalization coefficients A(E )
bl and A(M )

bl . These eigenfunctions will be used to expand the
physical field when that field is divergence free.

In this way the following results are obtained for the normalization coefficients of the E(E )
blm and E(M )

blm eigenfunctions when
|k2|a  1:

A(E )
bl ≈

(
2

a3

)1/2 1

jl (yb l−1)
, (A13)

B(E )
bl ≈ i

(
2

a3

)1/2 (k2a)l+3

(2l − 1)!!
, (A14)

A(M )
bl ≈

(
2

a

)1/2 yblκ2

(k2a)2 jl+1(ybl )
, (A15)

B(M )
bl ≈ −i

(
2

a

)1/2 (k2a)l+1κ2

(2l − 1)!!
, (A16)

A(M )
0l ≈ 1√

a(l + 1)

(
− l

l + 1

) l−2
2 κ2(2l + 1)!!

(k2a)l
, (A17)

B(M )
0l ≈ −iκ2

(
l + 1

a

)1/2 (k2a)l+2

(2l + 1)!!
. (A18)

Note that the sign used when calculating the square root of (A(F )
bl )2 to get A(F )

bl was chosen arbitrarily. This does not affect the
final results for the physical fields. From these results we can write the following closed-form expressions for the eigenfunctions
when |k2|a  1:

E(E )
blm ≈

(
2

a3

)1/2 jl (ryb l−1/a)

jl (yb l−1)
Yllm, r < a, (A19)

E(E )
blm ≈ i

(
2

a3

)1/2 (k2a)l+3

(2l − 1)!!
h(1)

l (k2r)Yllm, r > a, (A20)

062213-8



EIGENSTATES OF MAXWELL’S EQUATIONS IN … PHYSICAL REVIEW A 105, 062213 (2022)

E(M )
blm ≈

(
2

(2l + 1)a3

)1/2 1

jl−1(ybl )
[l1/2 jl+1(rybl/a)Yll+1m() − (l + 1)1/2 jl+1(rybl/a)Yll−1m()], r < a, (A21)

E(M )
blm ≈ −i

(
2(2l + 1)

a3

)1/2 (k2a)l+2

(2l + 1)!!

[
l1/2h(1)

l+1(k2r)Yll+1m() − (l + 1)1/2h(1)
l−1(k2r)Yll−1m()

]
, r > a, (A22)

E(M )
0lm ≈

(
2l + 1

(l + 1)a3

)1/2(
− l

l + 1

) l−1
2 (2l − 1)!!

(k2a)l−1

× [l1/2 jl+1[ik2r
√

(l + 1)/l]Yll+1m() − (l + 1)1/2 jl−1[ik2r
√

(l + 1)/l]Yll−1m()], r < a, (A23)

E(M )
0lm ≈ −i

(
l + 1

a3(2l + 1)

)1/2 (k2a)l+3

(2l + 1)!!

[
l1/2h(1)

l+1(k2r)Yll+1m() − (l + 1)1/2h(1)
l−1(k2r)Yll−1m()

]
, r > a. (A24)
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