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Zitterbewegung of massless particles with an arbitrary spin is analyzed in various representations. Dynamics
of the group velocity of a massless particle as a whole and of the corresponding radius vector is determined. This
radius vector defines any fixed point of the envelope of the moving wave packet characterizing the particle
and its group velocity differs from the group velocities of any points of the wavefront. We consider free
massless scalar and Dirac particles, the photon, and massive and massless particles with an arbitrary spin and
describe them in different representations. For particles with an arbitrary spin, the generalized Feshbach-Villars
representation and the Foldy-Wouthuysen one are used. Zitterbewegung takes place in any representation except
for the Foldy-Wouthuysen one. Formulas describing the motion of a “trembling” free particle are the same in
any representation. In the Foldy-Wouthuysen representation, the operators of the velocity and momentum of
a free particle are proportional and Zitterbewegung does not take place. Since the radius vector (position) and
velocity operators are the quantum-mechanical counterparts of the classical position and velocity just in the
Foldy-Wouthuysen representation, Zitterbewegung is not observable. The same conclusion has been previously
made for free massive particles. For relativistic massive particles with spins 0, 1/2, 1 and massless particles
with spins 0, 1/2 in arbitrarily strong electromagnetic fields, independent of the external fields Zitterbewegung
does not appear in the Foldy-Wouthuysen representation either. This conclusion is made for leading terms in the
Hamiltonian proportional to the zero and first powers of the Planck constant and for such terms proportional to
h̄2 which describe contact interactions.
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I. INTRODUCTION

Zitterbewegung is one of the most important and widely
discussed problems of quantum mechanics (QM). It is a
well-known effect consisting in a superfast trembling motion
of a free particle. This effect has been first described by
Schrödinger [1] for relativistic electrons in a free space as a
result of an interference between positive and negative energy
states. This effect is also known for a scalar particle [2–4]
and for a massive Proca one [4,5]. There are plenty of works
devoted to Zitterbewegung. In the past, Schrödinger’s inter-
pretation of Zitterbewegung was generally accepted [6–8].
Evidently, Zitterbewegung appears due to mixing states with
positive and negative total energies. The Foldy-Wouthuysen
(FW) transformation eliminates this mixing and, therefore,
Zitterbewegung. Since just operators and equations of motion
in the FW representation are counterparts of corresponding
classical variables and equations (see Ref. [12] and references
therein), Zitterbewegung is not an observable physical effect.
We focus our attention on papers presenting a correct analysis
of the observability of this effect for Dirac and scalar particles.
The correct conclusions about the origin and observability
of this effect have been made in Refs. [3–5,9–14]. However,
Zitterbewegung of massless particles has not been thoroughly
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studied. A probable cause is a demonstration by Newton and
Wigner [15] and Wightman [16] for the photon that it cannot
be strictly localized according to natural criteria. However, the
group velocity of massless particles and the corresponding ra-
dius vector can be determined and a rigorous consideration of
their Zitterbewegung can be fulfilled. Such a consideration is a
goal of the present study. It has been concluded in some prece-
dent investigations that Zitterbewegung of free photons exists
[17,18]. The existence of this effect is denied in Refs. [19–21]
but it is noted that Zitterbewegung exists and can in principle
be observed for interacting photons. These conclusions have
been based on the heuristic forms of the Dirac-like consid-
eration [17,18] and on the Dirac-like quantum-mechanical
equation (without the FW transformation) [20]. The possibil-
ities of a rigorous quantum-mechanical determination of the
appropriate position operator and the FW transformation of
the Dirac-like quantum-mechanical equation have not been
realized in precedent investigations of Zitterbewegung of the
photon.

We also mention the precedent studies of Zitterbewegung
of massless and massive particles in Refs. [22,23] and of the
anyon in Refs. [23,24].

The paper is organized as follows. In the next section,
we explain previously obtained results for Zitterbewegung
of massive fermions and bosons. Distinguishing features of
a quantum-mechanical description of massless particles are
considered in Sec. III. In Sec. IV, we study Zitterbewegung
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of massless scalar and Dirac particles. Quantum mechanics of
the free photon is presented in Sec. V, and Sec. VI is devoted
to the analysis of its Zitterbewegung. In Sec. VII, we consider
Zitterbewegung of particles with an arbitrary spin in the gen-
eralized Feshbach-Villars (GFV) representation. The problem
of Zitterbewegung in external fields is analyzed in Sec. VIII.
Finally, we summarize the obtained results in Sec. IX.

The system of units h̄ = 1, c = 1 and the standard deno-
tations of the Dirac matrices (see, e.g., Ref. [25]) are used.
Hereinafter, p ≡ −ih̄∇ denotes the momentum operator.

II. PREVIOUSLY OBTAINED RESULTS FOR MASSIVE
FERMIONS AND BOSONS

In our short review of previously obtained results, we
follows Ref. [4]. The Dirac Hamiltonian for a free spin-1/2
particle is given by

HD = βm + α · p, (1)

and the Dirac velocity operator has the form

vD ≡ dr
dt

= i[HD, r] = α. (2)

The operator vD is time-dependent:
dvD

dt
= i[HD, vD] = i{α,HD} − 2iαHD = 2i(p − αHD).

(3)
The problem is usually considered in the Heisenberg pic-

ture:

vD(t ) = eiHDtαe−iHDt . (4)

In the Schrödinger picture, the result is the same. We suppose
that the eigenvalues of the momentum and Hamiltonian oper-
ators are p and H , respectively. In this case, Eq. (3) can be
presented in terms of the Dirac velocity operator:

dvD

dt
= 2i(p − vDH ). (5)

Its integration shows that the Dirac velocity oscillates:

vD(t ) =
[
vD(0) − p

H

]
e−2iHt + p

H
. (6)

The evolution of the Dirac position operator obtained from
this equation is given by

rD(t ) = rD(0) + pt

H
+ i

2H

[
vD(0) − p

H

]
(e−2iHt − 1). (7)

A similar result has been obtained for a free scalar (spin-0)
particle (see Ref. [3] and references therein). In this case, the
initial Feshbach-Villars (FV) Hamiltonian reads [26]

HFV = ρ3m + (ρ3 + iρ2)
p2

2m
, (8)

where ρi (i = 1, 2, 3) are the Pauli matrices. The velocity
operator in the FV representation is equal to

vFV = (ρ3 + iρ2)
p
m

. (9)

The corresponding acceleration operator is defined by the
equation similar to Eq. (3) [3]:

dvFV

dt
= i[HFV, vFV] = i{vFV,HFV} − 2ivFVHFV

= 2i(p − vFVHFV). (10)

It is supposed that the eigenvalues of the momentum and
Hamiltonian operators are p and H , respectively. As a result,
the final equations of dynamics of the free scalar particle [3]
are equivalent to the corresponding equations for the Dirac
particle:

vFV(t ) =
[
vFV(0) − p

H

]
e−2iHt + p

H
, (11)

rFV(t ) = rFV(0) + pt

H
+ i

2H

[
vFV(0) − p

H

]
(e−2iHt − 1).

(12)

Zitterbewegung can also be considered in the GFV rep-
resentation allowing one to describe not only massive scalar
particles but also massless ones. This representation which has
been previously used in Refs. [27–30] is, in fact, an infinite
set of representations. It has been obtained in Ref. [4] that
equations of motion in the GFV representation are equivalent
to Eqs. (11) and (12).

Amazingly, the same physical situation takes place for
Proca (spin-1) particles. Massive Proca particles have been
investigated in Refs. [4,5]. Zitterbewegung takes place in the
Sakata-Taketani representation [31,32] which does not exist
for massless particles. The final equations of motion of a
free Proca particle are equivalent to the corresponding equa-
tions for the Dirac and scalar particles [4,5]:

vST(t ) =
[
vST(0) − p

H

]
e−2iHt + p

H
, (13)

rST(t ) = rST(0) + pt

H
+ i

2H

[
vST(0) − p

H

]
(e−2iHt − 1).

(14)

In connection with this equivalence, we can mention the
existence of bosonic symmetries of the standard Dirac equa-
tion [33–39].

However, a coincidence of results obtained for particles
with different spins in various representations does not mean
that the effect of Zitterbewegung is observable. It has been
pointed out in Ref. [40] that the transition to the FW represen-
tation establishes the proportionality of the operators p and
v which should take place for free particles with any spin. In
the FW representation, the acceleration vanishes and the Dirac
Hamiltonian takes the form [41]

HFW = β
√

m2 + p2, p ≡ −ih̄
∂

∂r
. (15)

The velocity operator is given by

vFW = β
p√

m2 + p2
= p

HFW
. (16)

As a result, dvFW/(dt ) = 0 and Zitterbewegung does not take
place. Similar relations have been obtained for massive par-
ticles with the spins 0 and 1 (see Ref. [4] and references
therein).

The FW representation is the only one in which relativis-
tic QM takes a Schrödinger form and expectation values of
all operators correspond to respective classical variables (see
Refs. [12,42–45] and references therein). Therefore, this rep-
resentation is very convenient for checking an observability of
physical effects. Zitterbewegung takes place only for operators
which are not the quantum-mechanical counterparts of the
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classical position and velocity. In particular, its appearance in
the Dirac representation is caused by a significant difference
between physical meanings of the Dirac and FW position
operators (see Ref. [12] and references therein).

III. DISTINGUISHING FEATURES OF A
QUANTUM-MECHANICAL DESCRIPTION

OF MASSLESS PARTICLES

It should also be taken into account that particles can be
in localized and delocalized states (see Ref. [46]). Photons
being quanta of electromagnetic waves are usually delocalized
and are commonly described in the framework of the wave
theory. This theory determines local velocities of the wave
field. Certainly, phase and group velocities are different. A
local phase velocity is defined by the phase front �(r), vp =
ω/|∇�(r)|, where ω = ck is the angular frequency [47,48].
Another frequently used formula for the local phase velocity
has been obtained in Ref. [49] (see also Ref. [50]):

vp = c

[
1 + ∇2A(r)

k2A(r)

]−1/2

. (17)

The local group velocity is given by vg = |∂ω∇�(r)|−1

[47,48] (see also Ref. [51] for details). The both local ve-
locities can be subluminal and superluminal depending on a
region. Certainly, they characterize important properties of
light beams. For example, the local phase velocity defines an
electron acceleration in a laser beam [52–54]. The distribution
of the local phase velocity has been measured in Ref. [55].

The quantum-mechanical approach substantially differs. It
is known that the photon and other massless particles can-
not be spatially localized [15,16,56,57]. In any case, this
statement is valid for plane-wave states. Conditions admit-
ting a localization of massless particles have been considered
in Ref. [58]. Examples of light fields localized in two
dimensions are Hermite-Gaussian, Laguerre-Gaussian, and
Gaussian beams [59]. Amazingly, the two-dimensional spa-
tial localization of structured light beams results in nonzero
effective masses of their quanta [60].

As a result, the position operator r = (x, y, z) does not
characterize the coordinates of massless particles. To deter-
mine a physical sense of this operator, we can use the classical
Hamilton equation for the velocity:

v = dr
dt

= ∂H
∂ p

, (18)

where H is the Hamiltonian. In QM, this equation remains
valid as an operator equation and ∂H/(∂ p) = i[H, r]. For
massless particles, H and p correspond to h̄ω and h̄k, respec-
tively, and ∂H/(∂ p) is the group velocity. The phase velocity
is equal to vph = ω/k. Thus, r is a radius vector of a moving
point characterizing any fixed point of the envelope of the
wave packet and v is the velocity of its motion. The latter
quantity defines the group velocity of a massless particle as a
whole. Despite great achievements of the wave theory, it can-
not rigorously describe the motion of field quanta because any
field quantum is extended over the entire space. In particular,
a rigorous analysis of a subluminality of Gaussian and other
structured light beams has been recently carried out just in the
framework of QM [60].

The descriptions of massless and massive particles in
QM are substantially different. In the general case, basic
equations for massless particles cannot be obtained from
the corresponding equations for massive ones either by the
substitution m = 0 or in the limit of m → 0. First of all,
the definition of the spin should be radically changed. For
massive particles, the conventional three-component spin
(pseudo)vector s is defined in the particle rest frame (see
Ref. [12] and references therein). However, such a frame does
not exist for massless particles. For such particles, the spin can
be introduced but its projection onto the momentum direction
can have only two values, minimum and maximum. Thus, the
helicity of a massless particle is equal to (see, e.g., Ref. [25])

h = s · p
p

= ±s, (19)

where s is the spin quantum number. Two partial waves
describing states with h = ±s can be coherent when these
states have the same energy. When the helicity is fixed, this
polarization is circular. When the two partial waves describing
states with the opposite helicity are coherent, the particle
polarization is different (e.g., it can be linear).

It can be easily shown that the Dirac-Pauli spin algebra
is applicable for a description of massless Dirac fermions.
Squaring Eq. (19) results in

(s · p)2 = 1
4 p2. (20)

This equation is satisfied with the Pauli matrix σ = 2s. Thus,
the polarization of massless Dirac fermions can be defined by
the conventional Pauli and Dirac matrices. As a result, the
Dirac equation with m = 0 can be used for a description of
massless fermions. Of course, the operators σ and � charac-
terize the polarization and helicity of massless particles but do
not define the spin in the particle rest frame.

The situation is different for particles with higher spins
including the photon (s = 1) and the graviton (s = 2). The
number of components of wave functions is defined by the
number of independent spin components (2s + 1 for massive
particles). The quantum-mechanical description is equally ap-
plicable to states with a positive and a negative total energy.
For massive particles, the minimum number of components
of wave functions is therefore equal to 2(2s + 1). Such wave
functions are bispinors for Dirac particles and bispinor-like
wave functions for particles with other spins. In particular, the
bispinor-like wave functions have been successfully used for
massive spin-1 particles [4,32,61,62].

Some initial equations describing spinning massive par-
ticles may be applicable to massless ones. However, the
condition (19) defining the helicity should be satisfied in the
latter case. This condition defines two admissible longitudi-
nal spin projections and reduces the number of independent
spinor-like wave functions to four. In addition, wave functions
of massless particles loose the probabilistic interpretation and
should be considered as a distribution of a particle field
strength. We can conclude that Hamiltonian equations for
massive and massless particles substantially differ and mass-
less particles should be considered separately. This conclusion
is valid even for s = 0, 1/2 while the Klein-Gordon and Dirac
equations also cover massless particles. For massless scalar
particles, the well-known FV transformation [26] becomes in-
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applicable and the GFV one [27] should be used. For massless
Dirac particles, one should take into account the condition
(19). However, one of properties of the Dirac-Pauli spin al-
gebra is a possibility to present any spin polarization as a
coherent superposition of two basic states with the helicity
h = ±1/2. Therefore, the case of massless Dirac fermions is
not very special and can basically be obtained from previous
results for massive spin-1/2 particles. Of course, a difference
between photons and massive spin-1 particles is much more
substantial.

Zitterbewegung is a rather important quantum-mechanical
problem and massless particles occupy a significant place in
QM. However, the problem of Zitterbewegung of massless
particles was not appropriately studied in previous inves-
tigations. In particular, the existence of Zitterbewegung of
free photons has been claimed [17,18]. It has been noted in
Refs. [19–21] that Zitterbewegung does not exist for free pho-
tons but takes place for interacting ones and is observable in
this case. We consider Zitterbewegung of photons in Secs. VI
and VIII.

Therefore, the problem of Zitterbewegung of massless par-
ticles is still unsolved. Its detailed study fulfilled in the present
paper is rather important. In particular, the unsolved issue of
great interest is Zitterbewegung in external fields.

IV. ZITTERBEW EGUNG OF MASSLESS SCALAR AND
DIRAC PARTICLES

In this section, we show an absence of Zitterbewegung of
massless scalar and Dirac particles in the FW representation
and its existence in some other representations. We apply
the conventional commutative spatial coordinates. The use
of noncommutative coordinates (i.e., noncommutative geom-
etry) has been considered, e.g., in Ref. [12].

Certainly, we can utilize the general equation for the
Hamiltonian in the GFV representation derived in Ref. [27].
For a massless scalar particle, the initial Klein-Gordon equa-
tion has the form (

∂2

∂t2
− ∇2

)
ψ = 0, (21)

and the GFV Hamiltonian is given by

HGFV = ρ3
p2 + N2

2N
+ iρ2

p2 − N2

2N
, (22)

where N is an arbitrary real nonzero parameter. Hereinafter,
ρ1, ρ2, and ρ3 are the Pauli matrices:

ρ1 =
(

0 1
1 0

)
, ρ2 =

(
0 −i
i 0

)
, ρ3 =

(
1 0
0 −1

)
.

(23)
For a scalar particle, the normalization of the two-component
wave function in the FV representation [26]

� =
(

φ

χ

)
(24)

is given by ∫
�†ρ3�dV = 1.

Any GFV Hamiltonian is pseudo-Hermitian (more ex-
actly, ρ3-pseudo-Hermitian): H‡

GFV = ρ3H†
GFVρ3 = HGFV.

For massless and massive particles, the normalization of GFV
and FV wave functions is the same:∫

�
†
GFVρ3�GFVdV = 1.

The velocity operator in the GFV representation is equal to

vGFV = (ρ3 + iρ2)
p
N

. (25)

The corresponding acceleration operator reads

dvGFV

dt
= i[HGFV, vGFV] = i{vGFV,HGFV} − 2ivGFVHGFV

= 2i(p − vGFVHGFV). (26)

The dynamics of the massless scalar particle is independent of
N and is defined by the following equations:

vGFV(t ) =
[
vGFV(0) − p

H

]
e−2iHt + p

H
, (27)

rGFV(t ) = rGFV(0) + pt

H
+ i

2H

[
vGFV(0) − p

H

]
(e−2iHt − 1).

(28)

These equations are the same as the equations previously
derived for massive particles.

For a massless Dirac particle, we use the initial Dirac
equation (1), suppose that m = 0, and repeat all calculations
presented in Sec. II. Dynamic equations are the same as
Eqs. (6) and (7) and show the existence of Zitterbewegung.

As well as for massive particles, Zitterbewegung does not
appear in the FW representation. The use of this representa-
tion for spinning massless particles should be commented.

For a massless Dirac particle, the FW transformation oper-
ator is given by (cf. Refs. [41,42,63])

UFW = p + γ · p√
2p

. (29)

The FW Hamiltonian reads

HFW = β
√

p2 = βp, (30)

and the velocity operator is given by

vFW = β
p
p

= p
HFW

. (31)

Thus, the velocity and momentum are proportional. We
can repeat the conclusion [10,11] that Zitterbewegung is the
result of the interference between positive and negative energy
states. In the FW representation, it disappears not only for
massive [9–11] but also for massless Dirac particles.

V. QUANTUM MECHANICS OF THE PHOTON

While the quantum theory of radiation is well known [64]
and QM of the photon has a long history (see Refs. [65–67]
and references therein), some important results, in particular,
the FW transformation for the photon [68], have been obtained
comparatively recently. Photon (light) beams are also exten-
sively studied in optics. In optics, the wave function of the
photon, �, is not a wave function in the same sense as for the
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electron and determines the relative amplitude of the electric
field [65,69,70]. The full description of an electromagnetic
field including its interaction with matter is based on the quan-
tum field theory (see Refs. [71,72]). However, the propagation
of light in a free space can be adequately described with the
Riemann-Silberstein vector

F = 1√
2

(E + iB).

It allows one to reduce the Maxwell equations and to present
them in the form [73,74]

ih̄
∂F
∂t

= c(S · p)F, (32)

where S = (S1, S2, S3) is a vector in which the components
are the conventional spin-1 matrices [61]:

S1 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, S2 =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠,

S3 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠. (33)

This definition is not unique. One can use any other spin
matrices satisfying the properties

[Si, S j] = iei jkSk,

SiS jSk + SkS jSi = δi jSk + δ jkSi, S2 = 2I, (34)

where I is the unit 3 × 3 matrix. The spin matrices act on
three components of F. The equation (32) is similar to the
Weyl equation for a massless Dirac particle [74]. When the
six-component wave function is defined by [66–68]

� = 1√
2

(
φ

χ

)
≡ 1√

2

(
E
iB

)
, (35)

the Dirac-like equation for the free electromagnetic field can
be obtained [66–68]:

ih̄
∂�

∂t
= α · p�, α =

(
0 S
S 0

)
. (36)

In this equation, H = α · p is the Dirac-like Hamiltonian.
Only Eq. (36) has been taken into account in Ref. [20].

The additional condition of an orthogonality of the mo-
mentum direction to the fields E and B should also be taken
into account. It follows from the Maxwell equations in the
free space that p · φ = p · χ = 0. As a result, the number of
independent components of � reduces to four.

The FW transformation of Eq. (36) has been carried out
only in 2014 by Barnett [68]. It is instructive to mention that
any operator V satisfies the relation

iV × G = (S · V )G,

where G is equal to E or B. The FW transformation operator is
equivalent to the operator (29) for the massless Dirac particle
but has six components:

UFW = p + βα · p√
2p

, β =
(
I 0
0 −I

)
. (37)

As a result, the FW wave function of the photon, �FW =
UFW�, is defined by

�
(+)
FW =

(
φ

(+)
FW
0

)
=

(
E
0

)
if H = |p| > 0,

�
(−)
FW =

(
0

iχ(−)
FW

)
=

(
0
iB

)
if H = −|p| < 0. (38)

Here p and H are eigenvalues of the momentum and Hamil-
tonian operators, respectively. Negative values of H define
photon states with a negative total energy. In Eq. (38), the
fields E and B also characterize states with a positive and a
negative total energy, respectively. It is convenient to present

the fields in the matrix form, E =
(

E1
E2
E3

)
and B =

(
B1
B2
B3

)
.

For massless particles including the photon, the physical
meaning of negative-energy states is mostly the same as for
massive particles. The problem of these states cannot be satis-
factorily resolved in the context of relativistic QM [75] but the
negative-energy states are rather important for quantum elec-
trodynamics and quantum field theory [76]. Such states can
be used for a description of virtual particles and a state with a
negative energy can characterize a virtual photon. We should
note that masses of particles with negative energies are also
negative [77]. Some of the most important forces can be
considered as an exchange of virtual particles. This possibility
exists for all major forces like electromagnetic, weak, strong,
and gravitational ones. In particular, the electromagnetic inter-
action of a charged body can be interpreted as an exchange of
virtual photons. Virtual photons play a pivotal role in quantum
physics (see, e.g., Refs. [19–21,78–82]).

In the FW representation, p · φ = 0 if H = |p| > 0 and
p · χ = 0 if H = −|p| < 0. Therefore, the number of nonzero
and independent components of �FW reduces to two. It has
been proven in Ref. [68] that

P2� ≡ [p2 − (α · p)2]� = [p2 − (� · p)2]� = 0,

� =
(

S 0
0 S

)
. (39)

As a result of derivations [68], the FW Hamiltonian is
defined by

ih̄
∂�FW

∂t
= HFW�FW, HFW = βp. (40)

Quantum mechanics of the photon agrees with the general
condition (19) for the helicity. For the photon, s = S and s =
� when one uses two-component and four-component wave
functions, respectively, and s = 1. Squaring Eq. (19) leads to
the relation (� · p)2 = p2 which is equivalent to Eq. (39) (see
Ref. [68] and references therein).

Equation (38) does not mean that the electric and mag-
netic fields defines the FW wave functions of real and virtual
photons, respectively. In the electromagnetic wave, these
fields are not independent and are connected by the relations
B = n × E, E = −n × B, n = p/|p|. In addition, one can
introduce the transformed spinor-like wave functions φ′(+)

FW =
n × φ

(+)
FW, χ′(−)

FW = n × χ
(−)
FW with the same FW Hamiltonian

(40). As a result, the transformed FW wave functions take the
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form

� ′(+)
FW =

(
φ′(+)

FW
0

)
=

(
B
0

)
if H = |p| > 0,

� ′(−)
FW =

(
0

iχ′(−)
FW

)
=

(
0

−iE

)
if H = −|p| < 0. (41)

Equations (39) and (41) show that the both fields can be
equivalently used for a definition of real and virtual photons.

To complete QM of the photon, we need to deter-
mine an equation of the second order in the temporal
and spatial derivatives (Klein-Gordon-like equation). The
quantum-mechanical description of the photon in the GFV
representation will be carried out in Sec. VII. The Klein-
Gordon-like (KGL) equation can be easily obtained by
squaring the FW Hamiltonian equation (40) and has the form(

∂2

∂t2
− ∇2

)
ψ = 0. (42)

The three-component wave function ψ coincides with the up-
per three-component spinor-like part of �FW and is equal to E
for positive-energy states of the photon. For negative-energy
states, ψ = iB. The number of independent components of ψ

reduces to two due to the orthogonality condition p · ψ = 0.
It can also be shown by squaring Eq. (32) and taking into

account Eqs. (19) and (39) that the Riemann-Silberstein vector
is also a solution of the KGL equation, ψ = F = 1√

2
(E + iB),

for states with both positive and negative total energies.
We note the nonequivalence of the Dirac-like and FW

wave functions, � and �FW. The former function defines
both fields, E and B, reproduces the Maxwell equations, and
establishes the connection between states with a positive and
a negative total energy. While the FW wave function perfectly
describes the light field, it does not possesses these properties.
However, just the wave function defined only by the electric
field strength is used in optics.

VI. ZITTERBEW EGUNG OF THE FREE PHOTON

The use of the Dirac-like equation (36) and the KGL equa-
tion (42) allows us to study Zitterbewegung of the photon. The
velocity and acceleration operators determined from Eq. (36)
are given by

v ≡ dr
dt

= i[H, r] = α,

dv

dt
= i[H, v] = i{α,H} − 2iαH = 2i(p − αH) (43)

and are equivalent to the corresponding equations (2) and (3)
for Dirac particles. Certainly, the derivation for the photon
leads to the final formulas which are also equivalent to the
corresponding ones for Dirac particles:

r(t ) = r(0) + pt

H
+ i

2H

[
v(0) − p

H

]
(e−2iHt − 1), (44)

v(t ) =
[
v(0) − p

H

]
e−2iHt + p

H
. (45)

To study Zitterbewegung, we can also use the GFV trans-
formation of the KGL equation (42). In this case, we introduce

the spinor-like wave functions (cf. Ref. [27])

ψ = φ + χ, i
∂ψ

∂t
= N (φ − χ). (46)

Multiplying the second equation by i∂/(∂t ) allows one to
obtain the GFV Hamiltonian [27]:

HGFV = ρ3
p2 + N2

2N
+ iρ2

p2 − N2

2N
. (47)

We should mention that this Hamiltonian is also proportional
to the 3 × 3 unit matrix which is omitted (HGFVI → HGFV).
This is its only difference with the Hamiltonian (22). As a
result, the final equations describing Zitterbewegung coin-
cide with Eqs. (27) and (28) for the scalar particle and with
Eqs. (44) and (45) in the Dirac-like representation.

Thus, Zitterbewegung of the photon in the Dirac-like
and GFV representations is determined by the same equa-
tions which also coincide with all corresponding equations for
other massless and massive particles presented in Secs. II–
IV. Nevertheless, all noted equations have been obtained in
representations different from the FW representation. The
transition to the latter representation resulting in the Hamil-
tonian (40) eliminates Zitterbewegung. In this representation,
the velocity operator has the form [cf. Eqs. (16) and (31)]

vFW = β
p√

m2 + p2
= p

HFW
. (48)

Since the FW position and velocity operators are the
quantum-mechanical counterparts of the corresponding clas-
sical variables (see Ref. [12] and references therein), the
observability of Zitterbewegung should be determined just
in the FW representation. As a result of proportionality of
the velocity and momentum operators, Zitterbewegung of the
free photon is unobservable. Such Zitterbewegung should be
considered as a purely mathematical effect and does not exist
as a real physical one. These our conclusions contradict to the
conclusions made in Refs. [17,18].

VII. ZITTERBEW EGUNG OF PARTICLES WITH AN
ARBITRARY SPIN IN THE GENERALIZED
FESHBACH-VILLARS REPRESENTATION

Zitterbewegung can also be studied for particles with an
arbitrary spin. It has been shown by Weinberg [83] that par-
ticles with an arbitrary spin satisfy the Klein-Gordon (more
precisely, Klein-Gordon-like) equation

(
∂2

∂t2
− ∇2 + m2

)
ψ = 0, (49)

where the wave function ψ has 2s + 1 components. The num-
ber of components of this wave function is defined by the
number of independent spin components. Evidently, Eq. (49)
is equally applicable to states with a positive and a nega-
tive total energy. Any passage to the Hamiltonian formalism
joins such states and needs an introduction of the 2(2s + 1)-
component wave function �.

Equation (49) is also applicable to massless particles.
However, the condition (19) defining the helicity should be
satisfied in this case. This condition defines two admissible
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longitudinal spin projections and reduces the number of inde-
pendent components of ψ to two.

We can carry out the GFV transformation [4,27]

ψ = φ + χ, i
∂ψ

∂t
= N (φ − χ ) (50)

for particles with an arbitrary spin.
After multiplying the last relation by i∂/(∂t ), Eq. (50) can

be presented in the matrix form [4,27]

i
∂�GFV

∂t
= HGFV�GFV, �GFV =

(
φ

χ

)
,

HGFV = ρ3
p2 + m2 + N2

2N
+ iρ2

p2 + m2 − N2

2N
. (51)

Here HGFV and �GFV are the Hamiltonian and the wave
function in the GFV representation. Evidently, this repre-
sentation connects the states with a positive and a negative
total energy with each other. We note the difference between
the ST and GFV Hamiltonians for massive spin-1 particles
and underline the applicability of the GFV representation
for both bosons and fermions. The same derivations as in
Ref. [4] show that equations of motions in this representa-
tion coincide with the corresponding equations [4] for scalar
particles and with Eqs. (27) and (28). Thus, the description
of particles with an arbitrary spin in the GFV representation
demonstrates the presence of Zitterbewegung and the perfect
similarity of equations of motion for particles with any spin
in any representation (except for the FW one). The deriva-
tion is the same for massive and massless particles. In the
latter case, all obtained formulas remain valid provided that
m = 0.

Like in other cases, Zitterbewegung does not take place
in the FW representation. The FW transformation of the
Hamiltonian (51) is exact. The general form of the FW trans-
formation operator has been obtained in Ref. [42]. In the
considered case, this operator reduces to [27]

UGFV→FW = ε + N + ρ1(ε − N )

2
√

εN
, ε =

√
m2 + p2. (52)

Since this operator is ρ3-pseudounitary [27], the operator of
the inverse transformation is defined by

U †
GFV→FW = ρ3U

−1
GFV→FWρ3,

U −1
GFV→FW = UFW→GFV = ρ3U

†
GFV→FWρ3, (53)

UFW→GFV = ε + N − ρ1(ε − N )

2
√

εN
.

For the photon, m = 0 and the GFV wave function �GFV =
UFW→GFV�FW is equal to

�
(+)
GFV = E

2
√

pN

(
N + p
N − p

)
, �

(−)
GFV = iB

2
√

pN

(
N − p
N + p

)
.

(54)
for states with a positive and a negative total energy, respec-
tively. The FW wave function corresponding to these states is
defined by Eq. (38).

In the general case, we can determine the FW Hamiltonian
and the corresponding wave function with the use of the

operator (52):

HFW = βε,

�FW = �
(+)
FW = 2

√
εN

ε + N

(
φ

0

)
if HFW = |ε| > 0, (55)

�FW = �
(−)
FW = 2

√
εN

ε + N

(
0
χ

)
if HFW = −|ε| < 0.

The connection between the FW wave function and the
initial GFV one is similar to that between the FW and Dirac
wave functions [84] but the coupling factors are different in
the two cases.

For massive and massless particles, the FW velocity oper-
ator is defined by

vFW = i[HFW, rFW] = β
p√

m2 + p2
= p

HFW
. (56)

This equation is valid for particles with any spin. For massless
particles, vFW = βcp/|p|.

Therefore, dvFW/(dt ) = 0 and Zitterbewegung does not
take place. Since the FW representation is the only represen-
tation in which relativistic QM takes a Schrödinger form and
expectation values of all operators correspond to respective
classical variables, Zitterbewegung takes place only for opera-
tors which are not the quantum-mechanical counterparts of the
classical position and velocity. As a result, Zitterbewegung is
not observable. This is the same conclusion which has been
made in the previous studies [3–5,9–14].

VIII. ZITTERBEW EGUNG IN EXTERNAL FIELDS

The analysis of Zitterbewegung made in the above-
mentioned previous publications is not excaustive because
only free particles were studied. However, the problem of
Zitterbewegung of particles in external fields is also very im-
portant. In particular, it has been stated in Refs. [6,85,86] that
just Zitterbewegung causes the electrostatic contact (Darwin)
interaction.

We will consider Zitterbewegung of particles with spins
0, 1/2, and 1 in external fields. Both massless and massive
particles will be taken into consideration. This is necessary
because a consideration of massive particles simplifies mak-
ing a conclusion on an existence of Zitterbewegung in external
fields. Furthermore, we cannot include the massless photon
into our consideration because its electromagnetic interactions
can be described by quantum field theory but not by QM.

We use the method of the relativistic FW transformation
elaborated in Refs. [42,44,63,87]. It is applicable for a par-
ticle in arbitrarily strong external fields (without taking into
account effects of quantum field theory). We can mention that
the Darwin interaction manifests itself even in the weak-field
approximation. In this approximation, interactions with exter-
nal fields do not significantly affect large Zitterbewegung in
the Dirac and GFV representations and total Zitterbewegung
is mostly defined by the equations for free particles (see
Secs. II, IV, VI, and VII). The problem of existence of
Zitterbewegung in external fields is nontrivial because Zitter-
bewegung is absent for free particles in the FW representation
(see Secs. II, IV, VI, and VII) but the Darwin interac-
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tion is usually explained by Zitterbewegung. To solve this
problem, we use the previous derivations of relativistic FW
Hamiltonians for scalar [27] and spinning [32,88] particles in
electromagnetic fields.

Certainly, the FW transformation is perturbative in the
presence of external fields and an exact FW separation
into positive- and negative-energy subspaces is not possible
in a nonperturbative way. However, the FW transformation
method [42,44,63,87] applied also in Ref. [27] gives exact
and compact relativistic expressions for all terms proportional
to the zero and first powers of the Planck constant and only
for such terms proportional to h̄2 which describe contact in-
teractions (including the Darwin one). Hereinafter, we will
reproduce only such expressions and will omit other terms.
We should add that terms proportional to h̄ describe spin

interactions. While the precision of the used method of the
FW transformation has been specified only in Ref. [63], pre-
vious results obtained by this method are also exact for the
above-mentioned terms. The considered method of the FW
transformation cannot be applied for a calculation of pertur-
bations of next orders.

The relativistic FW Hamiltonian for a scalar particle in
electromagnetic fields reads [27]

HFW = ρ3ε
′ + e�, ε′ =

√
m2 + π2. (57)

We underline the absence of terms describing contact interac-
tions.

The corresponding FW Hamiltonian for a spin-1/2 particle
with magnetic and electric dipole moments (MDM and EDM)
is given by [42,88]

HFW = H(MDM)
FW + H(EDM)

FW , (58)

H(MDM)
FW = βε′ + e� + 1

4

{(
μ0m

ε′ + m
+ μ′

)
1

ε′ , [� · (π × E − E × π) − h̄∇ · E]

}

− 1

2

{(
μ0m

ε′ + μ′
)

,
 · B
}

+ β
μ′

4

{
1

ε′(ε′ + m)
, [(B · π)(� · π) + (� · π)(π · B) + 2π h̄(π · j + j · π)]

}
, (59)

H(EDM)
FW = −d
 · E + d

4

{
1

ε′(ε′ + m)
, [(E · π)(
 · π) + (
 · π)(π · E )]

}
− d

4

{
1

ε′ , (� · [π × B] − � · [B × π])

}
(60)

Here μ0 = eh̄/(2mc) is the Dirac magnetic moment, μ′ is the anomalous magnetic moment (μ = μ0 + μ′ = gesh̄/(2mc), where
g is the g factor), ε′ = √

m2 + π2, π = p − eA, �, and 
 are Dirac matrices, d is the electric dipole moment, and

j = 1

4π

(
c ∇ × B − ∂E

∂t

)

is the density of external electric current. The term in Eq. (59) proportional to ∇ · E defines the Darwin (contact) interaction.
While we take into account in Eq. (60) terms proportional to h̄2 and describing contact interactions with external charges and
currents, such terms are zero due to the Maxwell equations

∇ · B = 0, ∇ × E = −∂B
∂t

.

Terms proportional to the second and higher powers of h̄ and quadratic/bilinear in E and B are neglected.
For a spin-1 particle with a magnetic moment, taking into account quadrupole interactions [61,89] leads to the following FW

Hamiltonian [89]:

HFW = ρ3ε
′ + e� + e

4m

({(
g − 2

2
+ m

ε′ + m

)
1

ε′ ,
[

S · (π × E − E × π)

]}

− ρ3

[(
g − 2 + 2m

ε′

)
, S · B

]
+ ρ3

[
g − 2

2ε′(ε′ + m)
, (S · π,π · B)

])

+ e(g − 1)

4m2

{[
S · ∇ − 1

ε′(ε′ + m)
(S · π)(π · ∇)

]
,

[
S · E − 1

ε′(ε′ + m)
(S · π)(π · E )

]}

+ e

8m2

{
1

ε′(ε′ + m)

(
g − 1 + m

ε′ + m

)
, [S · (π × ∇), S · (π × E )]

}

− e(g − 1)

2m2
∇ · E + e

4m2

[
1

ε′2

(
g − 1 + m2

4ε′2

)
, (π · ∇)(π · E )

]
, (61)

where the g factor is used and the Planck constant is omitted.
In this equation, a noncommutativity of operators is (partially)
neglected. We should add that Eqs. (57) and (58)–(60) are
applicable for massless particles while Eq. (61) describes only
massive ones.

The presented equations perfectly agree with cor-
responding classical equations describing the momen-
tum and spin dynamics [12,90]. The agreement takes
also place for a spin-1 particle with MDM and EDM
[12,32].
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Equations (57)–(61) allow us to check the above-
mentioned statement [6,85,86] that the electrostatic contact
interaction (defined in the FW representation) is connected
with Zitterbewegung. However, this statement cannot be right.
The electrostatic contact interaction does not exist for scalar
particles and exists for spinning ones while Zitterbewegung
appears for any particles in representations different from the
FW representation. An absence of observable Zitterbewegung
for scalar particles and a similarity of Eqs. (57)–(60) for
massless and massive particles show that it not caused by
the particle localization (established in Ref. [15]) either. In
fact, the electrostatic contact interaction is conditioned by the
particle spin. Its essential difference for spin-1/2 and spin-1
partices confirms this important and unobvious statement. We
can add that a spinning particle is not perfectly pointlike.
In particular, its center of charge and center of mass do not
coincide [91–96].

The effective root-mean-square radii do not depend on
external fields and are the same as in vacuum.

We repeat that an exact FW separation into positive- and
negative-energy subspaces is not possible in a nonperturbative
way and our conclusions cannot be extended to perturbations
of next orders.

In this section, we have analyzed only Zitterbewegung
which appears even for free particles (like a nonzero root-
mean-square radius of the electron) but manifests itself only
for interacting ones. None of leading terms in equations of
motion describes such Zitterbewegung. However, it is evident
that external fields can lead to a trembling motion (e.g., Zitter-
bewegung) of particles which is observable in these fields but
does not have any analog for particles in free space. For exam-
ple, a charge undergoes Zitterbewegung in a field of a coherent
electromagnetic wave. It has been established in Refs. [19–21]
that Zitterbewegung takes place for real photons interacting
with virtual longitudinal and scalar ones and this effect is
observable. The effect cannot occur in the absence of virtual
photons. It is described in the framework of quantum field
theory and cannot be considered as a quantum-mechanical
effect.

IX. DISCUSSION AND SUMMARY

We have analyzed Zitterbewegung of massless particles
with an arbitrary spin in various representations. While Zit-
terbewegung of massless particles in the free space has been
extensively studied, the quantum-mechanical descriptions of
massless and massive particles substantially differ. In the gen-
eral case, basic equations for massless particles cannot be
obtained from the corresponding equations for massive ones
and the definition of the spin should be substantially changed.
For massive particles, the conventional three-component spin
(pseudo)vector s is defined in the particle rest frame (see
Ref. [12] and references therein). However, such a frame
does not exist for massless particles. For such particles, the
helicity has only two admissible values, +s and −s. The spin
defines the polarization and helicity of massless particles and
cannot be defined in the particle rest frame. If s �= 0, then the
bispinor-like wave functions have only four independent com-
ponents. Therefore, Hamiltonian equations for massive and
massless particles substantially differ and massless particles

should be considered separately. For this reason, the results
obtained are not obvious.

Photons and other field quanta are extended over the entire
space and the radius vector r = (x, y, z) cannot define their
coordinates. Therefore, r is a radius vector of a moving point
characterizing any fixed point of the envelope of the wave
packet characterizing the particle and v is the velocity of
its motion. The latter quantity defines the group velocity of
the massless particle as a whole but not that of any point
of the wavefront. We have considered massless scalar and
Dirac particles, the photon, and massive and massless particles
with an arbitrary spin. We have described them in different
representations. For particles with an arbitrary spin, the GFV
and FW representations have been used. In all cases, Zitterbe-
wegung takes place in any representation except for the FW
one. In such cases, formulas describing the particle motion
are the same in any representation. In the FW representation,
the operators of the velocity and momentum are proportional
and Zitterbewegung does not take place. The radius vector
(position) and velocity operators are the quantum-mechanical
counterparts of the classical position and velocity just in
the FW representation. Therefore, Zitterbewegung of free
particles is not observable. This conclusion agrees with the
conclusions made in the previous studies [3–5,9–14] for mas-
sive particles. However, it disagrees with the corresponding
conclusions reached in many other investigations including
precedent papers devoted to Zitterbewegung of the free photon
[17,18].

The very important problem is Zitterbewegung of par-
ticles in external fields. Zitterbewegung has been noted
in Refs. [6,85,86] as a reason of the electrostatic contact
(Darwin) interaction being a manifestation of effective root-
mean-square radii of spinning particles. However, our analysis
given in Sec. VIII shows that this interaction cannot be caused
by Zitterbewegung and is conditioned by the particle spin.
We underline that the effective root-mean-square radii do not
depend on external fields and are the same as in vacuum. Since
an exact FW transformation is not possible in a nonperturba-
tive way, our conclusions are restricted by the applicability
of the used transformation method and cannot be extended to
perturbations of next orders.

We have analyzed only Zitterbewegung which appears even
for free particles (like a nonzero root-mean-square radius of
the electron) but manifests itself only for interacting ones.
None of leading terms in equations of motion describes such
Zitterbewegung. However, it is evident that external fields
can lead to a trembling motion (e.g., Zitterbewegung) of
particles which is observable in these fields but does not
have any analog for particles in free space. For example,
a charge undergoes Zitterbewegung in a field of a coherent
electromagnetic wave. It has been established in Refs. [19–21]
that Zitterbewegung takes place for real photons interacting
with virtual longitudinal and scalar ones and this effect is
observable. The effect cannot occur in the absence of virtual
photons. It is described in the framework of quantum field
theory and cannot be considered as a quantum-mechanical
effect.

Thus, Zitterbewegung of particles can appear due to inter-
actions with external fields and effects of quantum field theory
(see Refs. [19–21]). In such cases, it can be observable.
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